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Abstract

This paper presents detailed information of our solutions to the task 2 of KDD Cup 2011.
The task 2 is called binary user preference prediction problem in the paper because it aims
at separating tracks rated highly by specific users from tracks not rated by them, and the
solutions of this task can be easily applied to binary user behavior data. In the contest, we
firstly implemented many different models, including neighborhood-based models, latent
factor models, content-based models, etc. Then, linear combination is used to combine
different models together. Finally, we used robust post-processing to further refine the
special user-item pairs. The final error rate is 2.4808% which placed number 2 in the
Leaderboard.

Keywords: recommender system, collaborative filtering, item-based, latent factor model,
model ensemble

1. Introduction

The tasks of KDD Cup 2011 (Dror et al., 2012) arise from recommender system. Rec-
ommender system is an important tool to help users find information of their interests by
analyzing their historical behaviors. KDD Cup 2011 releases a large dataset of users’ rating
behaviors in Yahoo! Music and asks participants to design models which can predict user
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preferences very well. It has two tasks. The first task is rating prediction problem. It asks
participants to predict users’ rating for items by analyzing users’ previous ratings for items.
This is very similar to the Netflix Prize (Bell and Koren, 2007). The main difference is that
KDD Cup 2011 also releases some taxonomy data to describe relationships between tracks,
albums, artists and genres. Competitors may use these content information to make more
accurate prediction.

The task 2 is a new problem in recommender systems. This task asks participants to
separate 3 tracks rated highly by each specific user from 3 tracks not rated by her. In this
task, the most important thing is to predict which tracks the active users will rate. This
is very similar to top-N recommendation task. We can easily regard it as a top-3 recom-
mendation task. However, there are still some differences between task 2 and traditional
top-N recommendation task. In many top-N recommendation tasks, recommending pop-
ular items may gain high accuracy, but it suffers from the problem of lacking of novelty
and diversity (Hurley and Zhang, 2011). Furthermore, in the Yahoo! Music datasets, users
may not like some popular tracks. The task 2 introduces negative samples for every user.
These negative samples contain the items which are very popular but have not been rated
by the user. Thus, in task 2, recommending popular items will not achieve high accuracy
because negative samples include many popular items. Therefore, we regard it as binary
user preference prediction problem rather than top-N recommendation problem.

To solve binary user preference prediction problem, we try to find some data insights.
After analyzing the dataset carefully, we make two useful observations.

1. Taxonomy data is useful in binary user preference prediction problem. If
a user has rated an artist/album, she will have large probability to rate the tracks of
the artist/album.

2. Time ordering of user’s rating data is useful in binary user preference
prediction problem. User’s rating data in task 2 may be ordered by time. Time
ordering in user’s rating data is useful as user’s taste and mood may change. So we
guess if two items are close in the rating sequence, they may have large similarity.
This is the key discovery to gain high accuracy in task 2.

We mainly implement 3 types of different recommendation algorithms and improve
them by using above two useful observations. These algorithms include content filtering,
neighborhood-based collaborative filtering, latent factor model on both rating and binary
data, etc. After that, we combine our models together by a linear model to gain high
accuracy. Finally, we use robust post-processing to further refine the special user-item
pairs.

The rest of the paper is organized as follows. Section 2 will introduce main notations in
the paper and the methods of the validation dataset generation. In Section 3, we will propose
different models used in the final solution. Model ensemble and post-processing methods
are presented in Section 4. Experimental results are given in Section 5 and conclusions are
made in Section 6.
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2. Preliminary

2.1. Notations

We use many different models to solve the task 2. So, there are many different notations
used in this paper. Table 1 lists some main notations all through the paper. In the paper,
users are denoted by u, v. There are four types of items: track, album, artist, genre. Tracks
are denoted by i, j, albums are denoted by b, artists are denoted by a, genres are denoted
by g. The dataset also includes some taxonomy data. Given a track i, its album is denoted
by b(i) and its artist is denoted by a(i).

Symbols Definition

U users set
I items set
IT tracks set
IA artists set
IB albums set
IG genres set
rui rating of user u assigned to item i
a(i) artist of track i
b(i) album of track i
ni popularity of track i (the number of users rated for this track)
ρi popularity rank of track i in descending order
na popularity of artist a
nb popularity of album b
ni,s popularity of item i which rated no less than s
A(a) set of tracks belongs to artist a
B(b) set of tracks belongs to album b
I(u) a set of items user u rated
U(i) a set of users who rated item i
U(i, Tr) a set of users who rated item i higher than Tr

Table 1: Main notations used in the paper

2.2. Validation Set Generation

The task 2 releases a training dataset and a test dataset. The training dataset contains
61,944,406 rating records from 249,012 users and 296,111 items, and the test dataset contains
607,032 user-item pairs from 101,172 users and 118,239 items. Competitors need to train
models in training data and predict the test data.

The test dataset is divided into two sets, called “Test1” and “Test2”. Test1 is used to
rank contestants on the Leaderboard and Test2 is used for the final ranking. We use Test1
to evaluate our models. In this paper, Test1 is denoted by TS .

In order to test models without submitting prediction results, we firstly generate a
validation dataset TV from the training data which has identical distribution with the test
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data. For user u in the test data, three tracks which are rated higher than 80 in the
training data by u are extracted as positive samples and three tracks which have not been
rated by the user u are selected as negative samples. However, there are usually more than
three tracks with ratings higher than 80 or not rated by user u. Hence, similar to the
official’s selection, we choose the three positive samples randomly from the user’s training
tracks scored higher than 80 and select the negative samples according to the probability
proportional to the number of high (80 or higher) ratings that a track received in the
overall population. Additionally, neither the positive nor the negative samples should be
included in the given 6 tracks in the test dataset. Fortunately, we get a validation dataset
TV which also includes 607,032 user-item pairs from 101,172 users and 118,239 items. In
every submission, the error rate in the validation data is very similar to the error rate in
the test data, the error rate in TV is about 0.03% to 0.05% higher than the error rate in TS .

2.3. Evaluation Metric

The task 2 uses error rate as evaluation. Given a test dataset T , r̂ui or r̂(u, i) is denoted
as user u’s preference on item i. For user u, top 3 items with highest r̂ui will be predicted
as positive samples, and the other 3 items will be predicted as negative samples. The error
rate of predictions in the test data T is denoted by Error(T ) throughout the paper.

3. Recommendation Models

3.1. Content-based Model

In task 2, we observe one important property of the taxonomy data.

• If a user has rated an artist/album, she will have large probability to rate the tracks
of the artist/album.

Specifically, for all the people in the training set, a user will have a probability of 45%
to rate a track if she has rated the track’s artist. If she has rated an album, she will have a
probability of 75% to rate the tracks of the album. For the users in the test set, the number
will become 58% and 75%.

We use the above rule to design a simple content-based model and it can achieve error
rate of 10.8006% in TS .

Following is the formulation of content-based model:

r̂ui = r̃u,a(i) + r̃u,b(i) +

∑
j∈I(u):a(j)=a(i) ruj∑
j∈I(u):a(j)=a(i) 1

+

∑
j∈I(u):b(j)=b(i) ruj∑
j∈I(u):b(j)=b(i) 1

+ β(a(i), b(i)) (1)

where r̃u,a(i) = ru,a(i) if user u has rated artist of track i, or r̃u,a(i) = 0 otherwise. β(a(i), b(i)) =
35 if the both artist and album of track i are NONE or β(a(i), b(i)) = 0 otherwise.

It means that the track i is barely rated highly by the user u when r̂ui equals zero.
However, the missing values of artist and album cannot indicate anything (user u may like
or dislike track i). So r̂ui should be much larger than 0 when both artist and album of
some track are NONE. In this case, the first four terms in Equation 1 are zeros, then we
let β(a(i), b(i)) = 35 to achieve the best precision.
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3.2. Item-based Collaborative Filtering Model

Item-based collaborative filtering (ItemCF) (Linden et al., 2003) is the most famous recom-
mendation algorithm, it can be easily applied to task 2. In ItemCF, the preference of user
u on item i is measured by:

r̂ui =
∑

j∈S(I(u),k)

wij · (1 + ruj)
γ1 (2)

where S(I(u), k) includes top k items in I(u) that are similar to item i, wij is the similarity
between item i and item j, rui is the rating user u assigned to item i, and γ1 is a parameter
to control the impact of the ratings on final results. We use γ1 = 0.65 in final results.

The simplest way to measure item similarity is using the Jaccard Index:

wij =
|U(i) ∩ U(j)|
|U(i) ∪ U(j)|

(3)

where U(i) is a set of users who rate item i. Using this similarity metric can gain error rate
of 9% in the test set.

The most important discovery is that we find the user rating data in the training data
may be ordered by time. Such temporal information is valuable, as verified in past works
Xiang et al. (2010). We make this assumption for two reasons. Firstly, in task 2, most of the
users will firstly rate an artist and then rate the tracks of the artist. Secondly, the training
data have anchoring effect. i.e. if a user gives a high rating to one item, she is more likely to
give high rating to the next item she wants to rate. Furthermore, experimental results show
that using this assumption can decline error rate significantly (about 1% improvement on
one single model and 0.1% improvement on combined models, which will be illustrated in
details in Section 5.2). Under this assumption, two items will have large similarity if they
are close in the rating sequence. Let dui be position of item i in user u’s rating sequence,
then the similarity between items can be measured by:

wij =

∑
u∈U(i)∩U(j)

1
|dui−duj |γ3

|U(i) ∪ U(j)|
(4)

We use γ3 = 1.1 in final results.
If many users give high ratings to item i and low ratings to item j, these two items may

have low similarity. So, rating information is also useful to measure item similarity. We
add rating information into Equation 4 by the following formulation:

wij =

∑
u∈U(i)∩U(j)

1
|dui−duj |γ3 (1+|rui−ruj |)γ4

|U(i) ∪ U(j)|
(5)

We use γ4 = 0.2 in final results.
To leverage on the taxonomy data, we add taxonomy information into Equation 2 in

the following ways:

r̂ui =
∑

j∈S(I(u),k)

wij · (1 + ruj)
γ1 · (1 + γ2 · I(a(i) = j ∨ b(i) = j)) (6)
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Here, I(a(i) = j ∨ b(i) = j) = 1 if item j is the artist/album of item i, or I(a(i) = j ∨ b(i) =
j) = 0 otherwise. γ2 is a parameter, and we use γ2 = 1.5 in final result.

At last, we find that popular tracks have higher prediction scores than unpopular tracks
in ItemCF’s results. Due to the reason that general ItemCF algorithm usually result in
Matthew effect (the popular items become more popular), we add a penalty function to
popular items. Therefore our prediction function (Equation 6) can be converted to

r̂ui =
∑

j∈S(I(u),k)
wij · (1 + ruj)

γ1 · (1 + γ2 · I(a(i) = j ∨ b(i) = j)) · 1
√
ni

(7)

Here ni is popularity of item i.
The ItemCF model consider many different factors. Table 2 shows the test set error rate

of ItemCF after adding different factors. Experimental results show that temporal infor-
mation and popular bias play the most important role in reducing error rate of predictions.
The parameters γ1, · · · , γ4 are set manually.

Factors Error Rate%

initial model (Eqn. 2 & 3) 8.8950
+ removing popular bias 5.2467
+ using temporal information 3.9125
+ using rating information 3.8341
+ using taxonomy information (Eqn. 7 & 5) 3.6407

Table 2: Test set error rate of ItemCF after using different information

3.3. Latent Factor Model on Rating Data

In task 2, the positive samples are tracks that users will rate higher than 80, and the
negative samples are tracks that users will not rate. In this way, rating data are also very
useful. We also apply two famous latent factor model, RSVD (Paterek, 2007) (Equation 8)
and SVD++ (Koren, 2008) (Equation 9) to task 2 to predict users’ rating on tracks in the
test data. Table 3 list error rate of these two models.

r̂ui = µ+ bu + bi + pTuqi (8)

r̂ui = µ+ bu + bi + qTi (pu +
1√
|I(u)|

∑
j∈I(u)

yj) (9)

Model Latent Factor Number Error Rate %

RSVD 200 17.1486
SVD++ 200 26.4302

Table 3: Test set error rate of two latent factor model on rating data
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3.4. Binary Latent Factor Model

Latent Factor Model (LFM) have been used in Netflix prize competition and achieved great
success. There are many different types of LFM, such as RSVD, NSVD, SVD++, etc.
However, LFM are mostly used in rating prediction task, such as task 1 in KDD Cup,
few researchers have used it in top-N recommendation problem with binary user behavior
data because binary user behavior data only contain positive samples. Pan et al. (2008)
proposed that LFM can be applied to binary user behavior data after generating negative
samples from missing values randomly. Pan et al. (2008) proposed many different methods
to generate negative samples, such as using all missing values as negative samples, sampling
negative samples by uniform distribution, user-oriented sampling, item-oriented sampling.

In order to apply LFM to binary user preference prediction problem, we need to firstly
generate some negative samples for every user. For user u, let I(u) be items that user u
rated, and I(u, Tr) be items that user u rated higher than score r. Then, given a rating
threshold Tr, we will randomly choose |I(u, Tr)| items that the user have not rated with a
probability proportional to number of their high (≥ Tr) ratings. Then, we use Equation 10
as our predictor:

r̂ui = pTuqi (10)

where r̂ui is the prediction of the probability user u rate item i highly, pu is latent factor
vector of user u and qi is latent factor vector of item i. This model is denoted by BinarySVD
in the paper.

Let K+ be all positive samples and K− be all negative samples sampled from missing
values. Then, model parameters pu, qi are trained by minimizing the following cost function:∑

(u,i)∈K+∪K−
(rui − pTuqi)2 + λ(||pu||2 + ||qi||2) (11)

Here, rui = 1 if user-item pair (u, i) belongs to positive samples set K+ and rui = 0 if user-
item pair (u, i) belongs to negative samples set K−. Stochastic gradient-descent is used
to minimize the cost function. We use bagging technique (Breiman, 1996) which means
resampling is made in each iteration to further improve model’s performance. Detailed
algorithms are shown in Algorithm 1. We set the max iteration number to 30 steps in the
experiment.

BinarySVD is very simple and do not use any taxonomy data provided in the task. It
can get 6% error rate in the test set. Since taxonomy data is very important in KDD Cup
task 2, we also design a complex BinarySVD model by using more taxonomy data. The
model is defined in Equation 12 and it is denoted by BinarySVD+ in the paper.

r̂ui = bu + bi + ba(i) + bb(i) + bu,I(a(i)∈I(u)) + bu,I(b(i)∈I(u)) + pTu (qi + xa(i) + yb(i)) (12)

a(i) is artist of item i if i is track or album, a(i) = i if i is artist and a(i) = −1 if i is genre.
b(i) is album of item i if i is track, b(i) = i if i is album and b(i) = −1 if i is artist or
genre. I(·) is indicator function, I(a(i) ∈ I(u)) = 1 if a(i) ∈ I(u) and I(a(i) ∈ I(u)) = 0
otherwise. I(b(i) ∈ I(u)) = 1 if b(i) ∈ I(u) and I(b(i) ∈ I(u)) = 0 otherwise. pu is the
latent factor vector for user u, qi is the latent factor vector for item i, xa(i) is latent factor
vector for artist a(i), and yb(i) is latent factor vector for artist b(i). We also use stochastic
gradient-descent to learn model parameters in BinarySVD+ and this model gain 3.49%
error rate in the test set when latent factor number equals 500.
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Algorithm 1: Pseudo code of binary latent factor model.
Data: user rating data R, rating threshold Tr, learning rate α = 0.01, regularization pa-

rameter λ = 0.01
Result: parameters of binary latent factor model
for step ← 0 to 30 do

foreach u ∈ U do
I+(u, γ) ← positive samples I−(u, γ) ← negative samples foreach i ∈ I+(u, γ) ∪
I−(u, γ) do

if i ∈ I+(u, r) then
rui ← 1

else
rui ← −1

end
r̂ui ← pTuqi eui ← rui − r̂ui foreach latent factor f do

puf ← puf + α · (euiqif − λpuf ) qif ← qif + α · (euipuf − λqif )
end

end

end

end

3.5. Neighborhood-based Binary SVD Model

Similar to SVD++ model (Koren, 2008) in rating prediction task, we also design a neighborhood-
based BinarySVD model in task 2:

rui = bu + bi + ba + bb + bu,I(a(i)∈I(u)) + bu,I(b(i)∈I(u)) +
1√
|I(u)|

qTi (
∑
j∈I(u)

yj) (13)

Here, I(u) includes all items user u rated in the training data. In this model, users are
modeled by items they rated (

∑
j∈I(u) yj). Stochastic gradient-descent is used to train the

model.

4. Model Ensemble and Post-processing

4.1. Model Ensemble

Many researches prove that combining numerous models together can gain higher accuracy
than using one single model. For example, in the Netflix Prize, the wining team has used
more than 100 models in their final solution. We use linear combination to do model ensem-
ble and use simulated annealing (SA) (Laarhoven and Aarts, 1987) to train the combination
parameters.

Several steps are adopted as follows in order to do model ensemble. Firstly, we split
the training dataset (K) into the local training dataset (KL) and the local test dataset
(the validation dataset) (TV ). The generation method of the validation dataset has been
discussed in Section 2. Secondly, we train each single model in the local training dataset
KL and make predictions in the validation dataset TV . Thirdly, we train each model in the

144



Hybrid Recommendation for Binary Data

whole training dataset K and make predictions in the test set TS . Finally, linear combine
model is trained in the validation dataset TV and predictions are made in the test set TS .

Before model ensemble, we firstly normalize prediction results of each model in the
validation dataset/the test dataset. Let r̂L(u, i) be the normalized prediction results on the
validation data. Normalization will make sure that mean value of all predictions equals 0
and the standard deviation of all predictions equals 1.

The final predictions on both the validation data and the test data are the linear com-
bination of all models:

r̂L(u, i) =
∑
k

βkr̂
k
L(u, i) (14)

r̂S(u, i) =
∑
k

βkr̂
k
S(u, i) (15)

where r̂kL(u, i) is the normalized prediction results of user u’s preference on item i by kth
model on the validation data, r̂kS(u, i) is the normalized prediction results of user u’s pref-
erence on item i by kth model in the test set, and βk is the linear combination parameter
for the kth model.

Ensemble parameters β are learned by minimize error rate of predictions in the valida-
tion dataset:

β = arg min
β

Error(
∑
k

βkr̂
k
L) (16)

Since the error rate function Error(·) is a combinatorial function, SA is used to minimize
it. Algorithm 2 is pseudo code of model ensemble. In the algorithm, RandomModify(·) is
a function to change parameters randomly in every step.

Algorithm 2: Pseudo code of Simulated Annealing.
Data: r̂kL(u, i) from different models on the validation data
Result: linear combination parameters β
β ← random number vector error ← Error(β) T ← 10 while T > ε do

β′ ← RandomModify(β) error′ ← Error(β′) if min(exp( error−error
′

T ), 1) >
rand(0, 1) then

β ← β′ error ← error′

end
T ← T × 0.99

end
Function: RandomModify(β)
begin

β′ ← β if rand(0, 1) > 0.5 then
Choose two different positions i, j randomly x← min(βi, βj)× rand(0, 0.2) β′i ←
βi + x β′j ← βj − x

else
Choose one position i randomly β′i ← βi × rand(0.8, 1.2)

end
return β′

end
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In order to overcome the problem of over-fitting in model ensemble, we also apply 8-fold
cross validation to the validation dataset to get linear combination parameters. Firstly, the
the validation dataset is divided into 8 parts. Then, 7 parts are used to train combination
parameters with 1 part left. After training for 8 times, we will get 8 different combination
parameters, and the final combination parameters is the average of the 8 different combi-
nation parameters. Experimental results show that cross validation can improve prediction
accuracy significantly.

4.2. Post-processing

After combining all models, we get the predictions at the validation data TV and the test
data TS . Now, we can use post-processing methods to model some special data features.
Firstly, we extract a subset of user-item pairs by some rules, then the prediction of these
pairs in both TV and TS will be multiple by a parameter α to minimize the prediction error
in TV . After applying one rule to extract user-item pairs and do post-processing, we use
another rule on the new prediction results in TV and TS . Pesudo code of post-processing
are shown in Algorithm 3.

We want to find subsets of user-item pairs from the test data set, in which their results
predicted by our models are worse than the performance of their own complementary sets
in the test data set. In the contest, we used 9 different rules to select user-item pairs and
do post-processing. Table 4 shows all symbols used in post-processing which are not listed
in Table 1. The rules in the table are ordered by the time we discover them. However, we
also try different orders, but they generate similar results.

Symbols Definition

φu,a mini∈I(u) na(i)
Φu,a maxi∈I(u) na(i)
φu,b mini∈I(u) nb(i)
Φu,b maxi∈I(u) nb(i)
ψu,a mini∈I(u),a(i)=a rui
Ψu,a maxi∈I(u),a(i)=a rui
ψu,b mini∈I(u),b(i)=b rui
Ψu,b maxi∈I(u),b(i)=b rui

Table 4: Symbols used in post-processing

In the third line of Table 4, nb(i) is the popularity of the album of item i, and φu,b is
denoted as the minimum popularity of b(i) in the rated items of user u. In the first line of
Table 5, the rule matches the ratings satisfying that the popularity of album b(i) divided
by φu,b(i), which was defined in the third line of Table 4, is less than 8, and b(i) must be
also rated by user u. In other words, Rule 1 finds out the user-item pairs that the user both
rated item i and its album b(i), and the popularity of b(i) is not too larger than some other
item with the same album b(i).

We have listed all the post-processings in Table 5 in the form of equation. Here we
explain some of them. Rule 7 is used to select the top 5 popular tracks. Our models do not
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Id Rules

1 nb(i)/φu,b(i) < 8, b(i) ∈ I(u)

2 nb(i),80/na(i),80 > 2

3 |A(a(i))| < 8, ni > 3000
4 Ψu,b(i) < 60

5 b(i) ∈ I(u), ru,b(i) ≤ 30

6 b(i) ∈ I(u), ru,b(i) = 100

7 ρi < 6
8 ru,b(i) = 90, ru,a(i) = 10

9 ni = minj,b(j)=b(i) nj

Table 5: Rules used in post-processing

perform very well in these tracks, so we should refine their prediction results. While rule 8
is adopted to find out some “strange” ratings. The users rated very high for some track’s
album, but very low for the same track’s artist. We don’t know why the users behave like
that, but we know our models do not handle these user-item pairs very well. The other rules
almost act in the same way. We choose these rules so that we can improve the performance
of our model in both the validation dataset and the test dataset.

Algorithm 3: Pseudo code of post-processing.
Data: user rating data R, prediction results in the validation dataset TV and the test

dataset TS .
Result: new prediction results in the validation dataset TV and the test dataset TS
foreach Rule κ in rules set do

Extract subset Kκ of user-item pairs by the rule e← 1 α← 1 for α′ ← 1.2; α′ ≥ 0.8;
α′∗ = 0.99 do

foreach (u, i) ∈ Kκ ∩ TL do
r̂ui ← r̂ui · α′

end
e′ ← error rate in TV if e′ < e then

e← e′ α← α′

end

end
foreach (u, i) ∈ Kκ ∩ (TL ∪ TS) do

r̂ui ← r̂ui · α
end

end

5. Experiments

5.1. Results of Different Models

In the contest, 19 different models are used in the final model ensemble. Table 6 lists detailed
information of these models, including model type, and error rate in the test set. In the
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table, many models have the same type, but they differ in model parameters. Furthermore,
results show that BinarySVD+ has the best performance as a single model. It can gain
3.5362% error rate in the validation set, and 3.4941% error rate in the test set.

Id Model Type Error Rate (%)

1 Content-based 10.8006
2 ItemCF 3.6407
3 ItemCF 3.8044
4 ItemCF 3.8341
5 ItemCF 4.2830
6 ItemCF 4.7682
7 ItemCF 4.7709
8 ItemCF 5.6330
9 BinarySVD 6.0515
10 BinarySVD 6.4047
11 BinarySVD 7.1098
12 BinarySVD+ 3.4941
13 BinarySVD+ 3.5278
14 NBinarySVD 6.7163
15 NBinarySVD+ 3.7965
16 NBinarySVD+ 3.8064
17 UserCF 15.4837
18 RSVD 17.1486
19 SVD++ 26.4302

Table 6: Test set error rate of different models

5.2. Model Ensemble Results

We apply 8-fold cross validation (CV) to model ensemble. Table 8 shows final ensemble
parameters of every model. If temporal information is removed from our ItemCF model (Id
= 2, 3 and 4 in Table 6), the error rate will increase by almost 0.1%, as shown in Table 7.

Table 8 shows that the best single model does not have the largest combination pa-
rameter. The ItemCF model(Id = 4) has the largest combination parameter. One possible
reason of this is that the model has used the temporal information in the training data,
and other models have not. Each of the 19 models are necessary, removing any of them will
increase the error rate by at least 0.02%.

Validation set Test set

All models 2.5593% 2.5033%
Models without temporal information 2.6400% 2.5985%

Table 7: Validation set rate and Test set error rate of predictions by model ensemble
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Id Model Type βId

1 Content-based 0.002
2 ItemCF 0.079
3 ItemCF 0.231
4 ItemCF 0.438
5 ItemCF 0.030
6 ItemCF 0.001
7 ItemCF 0.001
8 ItemCF 0.013
9 BinarySVD 0.003
10 BinarySVD 0.011
11 BinarySVD 0.020
12 BinarySVD+ 0.006
13 BinarySVD+ 0.017
14 NBinarySVD 0.003
15 NBinarySVD+ 0.033
16 NBinarySVD+ 0.025
17 UserCF 0.049
18 RSVD 0.027
19 SVD++ 0.010

Table 8: Linear combination parameters in model ensemble

5.3. Post-processing Results

After model ensemble, we use post-processing to gain lower error rate. 9 rules are used
in post-processing to extract user-item pairs and Table 9 shows error rate in the test set
after applying every rule. Overall, post-processing can reduce validation set error rate from
2.5593 to 2.5102, and reduce test set error rate from 2.5033 to 2.4808.

Id Rules Error Rate%

1 nb(i)/φu,b(i) < 8, b(i) ∈ I(u) 2.4924

2 nb(i),80/na(i),80 > 2 2.4919

3 |A(a(i))| < 8, ni > 3000 2.4913
4 Ψu,b(i) < 60 2.4894

5 b(i) ∈ I(u), ru,b(i) ≤ 30 2.4888

6 b(i) ∈ I(u), ru,b(i) = 100 2.4873

7 ρi < 6 2.4864
8 ru,b(i) = 90, ru,a(i) = 10 2.4841

9 ni = minj,b(j)=b(i) nj 2.4808

Table 9: Experimental results of post-processing
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6. Conclusion and Future Work

Most of the researchers focus on solving rating prediction problems since Grouplens publish
their first article (Resnick et al., 1994) in recommender systems. However, predicting which
items users will rate is more important than predicting which rating the active user will
assign to the given items, because the first problem is a kind of top-N recommendation
problem which is the real problem of many on-line recommender systems. Furthermore,
the solution of first problem can be also easily applied to implicit feedback data, such
as watching history, browsing history, etc. The main contribution of the task 2 problem is
that it proposed a way to avoid popularity bias in top-N recommendations by using popular
items as negative samples. Our solution to the binary user preference prediction problem is
implementing 3 types of different recommendation algorithms and improving them by using
our two useful observations. In future, we will do more online test to see if this method can
really help us increase recommendation quality in real system.

Taking genre data into consideration is another direction for improvement in future work.
The experimental results show that genre data have little impact on final results mainly
because of the following two reasons. First, each track has many different genre labels. We
tried to find the most popular genre labels, and re-label all the tracks, unfortunately it does
not work very well. Second, there are some human factors in labeling these genre data, in
other words, the genre data itself is inaccurate to some extent. In future, we will try to
consider these two main problems in order to further improve the predicting accuracy in
real recommender systems.
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