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Abstract

The second track of this year’s KDD Cup asked contestants to separate a user’s highly
rated songs from unrated songs for a large set of Yahoo! Music listeners. We cast this
task as a binary classification problem and addressed it utilizing gradient boosted decision
trees. We created a set of highly predictive features, each with a clear explanation. These
features were grouped into five categories: hierarchical linkage features, track-based statis-
tical features, user-based statistical features, features derived from the k-nearest neighbors
of the users, and features derived from the k-nearest neighbors of the items. No music
domain knowledge was needed to create these features. We demonstrate that each group
of features improved the prediction accuracy of the classification model. We also discuss
the top predictive features of each category in this paper.
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1. Introduction

The KDD Cup 2011 contest posed a fascinating challenge in recommending music items
based on a massive ratings dataset provided by Yahoo! Music (Dror et al., 2012). The
competition consisted of two tracks: track one was aimed at predicting scores that users
gave to various music items (songs, albums, artists, and genres), and track two targeted
separating users’ highly rated songs from those they have not rated. In this competition we
focused our attention on track two as it has many real world applications but limited prior
work.

The task of recommending items to a given user based on their and other users’ ratings
for other items is known as collaborative filtering (Melville and Sindhwani, 2010). There are
two main approaches to the formal collaborative filtering task: memory-based and model-
based.

In the memory-based approach (Breese et al., 1998), one first calculates the similarity
between users or items from user-item rating data to identify a subset of similar other users
or items. A recommendation is then produced by taking a weighted average of the known
ratings in this subset. The k-nearest neighbor algorithm (kNN) is a popular approach in
this category.
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The model-based approach (Bell et al., 2009) constructs a low-complexity representation
of the complete ratings matrix. Models based on standard matrix approximation methods
such as singular value decomposition (SVD) (Golub and Kahan, 1965), principal component
analysis (Pearson, 1901), or non-negative matrix factorization are popular. The model-based
approach can handle the problem of data sparsity better and it is more amenable to large
data sets.

Track two of the 2011 KDD Cup posed a similar but different problem from the tra-
ditional collaborative filtering task. Instead of asking the contestants to predict the user’s
rating on a given music item (like in track one), it asked the participants to separate user’s
highly rated songs from those they have not rated. We framed this interesting real world
task as a binary classification problem.

Creating effective features is one of the most important steps in solving a supervised
learning problem. One way to this end is utilizing the recently emerged latent factor and
matrix factorization techniques (Bell et al., 2009). A set of latent user-based features and
a set of item-based features can be derived from the user-item ratings using the matrix
factorization alogrithms like SVD. However these features require intensive computing cost
for a large dataset. Furthermore, it is hard to explain explicitly the meaning of each feature.

In this work, we developed a set of hand crafted features which can be grouped into
the following five classes: hierarchical linkage features, item-based statistical features, user-
based statistical features, features derived from the k-nearest neighbors of the users, and
features derived from the k-nearest neighbors of the items. These features combined with
our learning algorithm proved to be quite powerful and led us to a fifth place final ranking
for the track two challenge.

The rest of this paper is organized as follows. Section 2 discusses how we set up the
problem. The details of feature creation are described in Section 3. Our learning algo-
rithm approach is outlined in Section 4. We show our experimental results in Section 5.
Finally we discuss and compare our results with alternative approaches and outline possible
improvements in Section 6.

2. Problem Setup

The training dataset for track two consists of 62,551,438 ratings from 249,012 users on
296,111 items. The test dataset consists of 607,032 ratings, in which each user contributes
exactly 3 highly rated items and exactly 3 unrated items.

To convert this training data set into a binary classification problem, we needed to
create positive and negative exemplars. We employed a similar sampling strategy as was
used to prepare the test dataset by the contest organizers. We first extracted all tracks
rated 80 or higher from the training dataset and set this aside as sampling pool D. For a
given user in the training set, we randomly picked n highly rated tracks by this user from
the pool and tagged them as positive samples (which we denoted with a value of 1). D has
9,053,130 ratings and 219,429 distinct tracks. If we randomly pick one item from pool D,
the probability of a given item being picked is proportional to its odds of receiving high
ratings in the overall population. Here n is chosen as an integer between 3 and 5 depending
on the number of highly rated tracks in the training set for this user. All users with less
than 3 highly rated tracks in the training set were left out. For users with more than 5
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highly rated tracks, we randomly selected up to 5 tracks. This resulted in 491,920 ratings
with 101,172 distinct users (the same number of users as in the test dataset). This sampling
scheme is to simulate how the test set was created in the contest. We did not explore other
imbalanced sampling schemes in the competition.

We then constructed the negative examples from the sampling pool D. For a given user
u, we randomly picked n tracks that were not rated by w, and tagged them as negative
examples (denoted with value 0). The distribution of the negative examples is therefore the
same as the positive ones. The probability of a given item being picked is also proportional
to its odds of receiving high ratings in the overall population. Since the training set does
not have all the rated items for a given user (each user in the test set has 3 highly rated
tracks), we also checked the negative examples against the test set to make sure the tracks
tagged as negative for user u were in fact unrated by u. In the end, we were left with a new
training set in which each user had n highly rated tracks, and n unrated tracks (which were
highly rated by other users). The total number of records in this training set was 983,840.
We then built a classification model using this constructed training set to predict which
tracks the user rated highly and which ones were never rated by this user.

3. Feature Creation

The performance of a supervised learning model relies on two important factors: predictive
features and effective learning algorithms. In this work, we created 5 groups of features:

e Hierarchical Linkage Features

Track-based Statistical Features

User-based Statistical Features

User-based kNN Features

Item-based kNN Features

3.1. Hierarchical Linkage Features

A distinctive attribute of this year’s KDD Cup data set was that user ratings were given
to items of four types: tracks, albums, artists, and genres. In addition, the items were
linked together to form a hierarchy. Each album was by an artist and consisted of one or
more tracks. Additionally each item was associated with one or more genres. This rich
hierarchical information was very useful to create predictive features. For example, if a
user rated an album highly, there was a good chance that the user also rated the individual
tracks of that album highly. Table 1 lists ten hierarchical linkage features extracted for a
given user-track pair. The intuition of these features is that if a user rates an item highly,
he will rate the linked items highly as well.

We tested the predictiveness of the hierarchical linkage features listed in Table 1. The
percentage of records with a tag value of 1 and a tag value of 0 is shown in Table 2, which
includes both scenarios of when a feature is triggered (feature value > 0) as well as when
a feature is not triggered (feature value < 0). The hit rate is defined as the percentage of
records that meet the firing rule. It was seen that variables like R(u, Al(tr)), R(u, Ar(tr)),
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Table 1: Hierarchical Linkage Features for a given user-track (u,tr) pair

Feature notation

Default value

Feature description

R(u, Al(tr))

-1

The rating score of user u on the album Al(¢r) that
contains track tr. -1 means user u never rated al-

bum Al(tr).

R(u, Ar(tr))

The rating score of user u on the artist Ar(¢r) who
composed track tr.

R(u, G(tr))

Average rating score of user uw on track tr’s genres
G(tr).

R(u, T'(Al(tr))\tr)

Average rating score of user u on other tracks that
belong to the same album as track ¢r. T(Al) re-
turns the list of all tracks belonging to album Al.

R(u, T(Ar(tr))\tr)

Average rating score of user u on other tracks that
belong to the same artist as track tr.

R(u, I(G(tr))\tr)

Average rating score of user u on other items (in-
cluding track, album and artist) that belong to the
same genres as track tr. I(G) takes a list of gen-
res G as input and returns the list of all tracks,
albums, and artists associated with at least one of
the genres.

N(u,G(tr))

Number of ratings of user u on track ¢r’s associated
genres.

N (u, T(Al(tr)\tr)

Number of ratings of user w on other tracks that
belong to the same album as track tr

N (u, T(Ar(tr))\tr)

Number of ratings of user u on other tracks that
belong to the same artist as track tr

N(u, I(G(tr))\tr)

Number of ratings of user u on other items that
belong to the same genre as track tr.
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R(u, T(Al(tr))\tr) all had over 90% positive tags once triggered. This implied that once
the user had rated a track’s album (take R(u, Al(¢r)) as an example), more than 90% of
the time the user would rate the track. However, when these variables were not triggered,
performance would be reduced significantly. We needed to construct additional features to
separate the target when these linkage features did not fire.

Table 2: Predictiveness of the hierarchical linkage features

Feature firing rule | Percentage of tag = 1 | Percentage of tag = 0 | Hit rate
R(u, Al(tr)) >0 98.53% 1.42% 28.22%

R(u, Al(tr)) <0 30.92% 69.08% 71.78%

R(u, Ar(tr)) >0 90.5% 9.45% 41.58%

R(u, Ar(tr)) <0 21.16% 78.84% 58.42%
R(u,G(tr)) > 0 64.47% 35.53% 44.06%
R(u,G(tr)) <0 38.63% 61.37% 55.94%

R(u, T(Al(tr))\tr) >0 90.60% 9.40% 19.06%
R(u, T(Al(tr))\tr) <0 40.46% 59.54% 80.94%
R(u, T(Al(tr))\tr) >0 88.05% 11.95% 27.31%
R(u, T(Al(tr))\tr) <0 35.72% 64.28% 72.69%

3.2. Track-based Statistical Features

After analyzing the input datasets, we found that individual tracks varied wildly along a
number of dimensions. Some were popular and had far more ratings than others. Within
the ratings applied by the users, some tracks had a large variance, while others seemed to
be consistently rated high or low. To capture some of these properties and further separate
the items, we created sixteen statistical features for each track. Table 3 defines each of
these features, which describe the statistical properties of ratings a track received across
all users. It includes maximum, minimum, mean, different distribution percentiles, the
frequency count of high ratings a track received and the probability of this track being
picked in the test dataset.

3.3. User-based Statistical Features

Similar to what was seen for tracks, individual users exhibited a variety of behaviors. Some
users rated many items whereas others rated just a few. Some users only rated items
highly, others had a wide distribution, and some only gave items midrange scores. There
was also variation among the types of items each user rated, some focused on tracks, some
on albums, and so forth. To quantify and further distinguish between users, we developed a
set of statistical features defined in Table 4. In this table x represents either a track, album,
artist, or genre, thus there are four sets of user-based statistical features created.
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Table 3: Track-based statistical features

Feature notation | Definition

N(tr) | Number of ratings for track tr.

Rynaz(tr) | Maximum rating of track tr.

Rynin(tr) | Minimum rating of track ¢r.

R(tr) | Average rating of track tr.

R, (tr) | Standard deviation of ratings on track tr.
Rycim(tr) | Lower confidence limit for the average rating of track tr.
Rucrm(tr) | Upper confidence limit for the mean rating of track ¢r.
Riin(tr) | Rating percentiles for track tr.

i € {1, 5, 25, 50, 75, 95, 99} and i = 5 means
5th percentile.

Np.g(tr) | Number of score > 80 ratings for track tr-
Phiest(tr) | Probability that track ¢r will be picked in test dataset.

Table 4: User-based statistical features. Here = represents a single track, album, artist or
genre. Thus there are four sets of these features in total.

Feature notation | Definition

R(u,x) | User’s average rating on x.

N(u,z) | User’s rating count on x.

Pctp.g,(u,z) | Proportion of the total of the user’s ratings which
are highly rated ratings of z.

Pct(u,z) | Proportion of the total of the user’s ratings which
are ratings of x.

Ritn(u, x) | ith percentile of user’s ratings on x.
i €{1,5,25,50,75,95,99}.

Rrycrm(u, ) | Lower confidence limit for the average rating of user on z.
RycLm(u, x
U

)
)
Ry(u,x) | Standard deviation of user’s ratings on z.
)
)

Upper confidence limit for the average rating of user on .

Maximum rating of user on x.

Rmaz
R, ;

min(2) | Minimum rating of user on x.
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3.4. kNN Features

Since each user rated a small subset of all possible musical items, the user-items rating
matrix was very sparse. To improve prediction accuracy and better approximate the user’s
ratings for unrated items, a classic collaborative filtering approach involves finding “similar”
users who have rated the unrated items. The k-nearest neighbors algorithm (kKNN) provides
a simple means of finding “similar” users and items, and has been widely studied and applied
to recommender systems for over a decade (Konstan et al., 1997).

There are two popular kNN targets for collaborative filtering: users and items. We
used both of these methods. User-based kNN features were computed on user vectors in
a 296,111-dimensional space with one dimension for each distinct track, album, artist, and
genre. Item-based ENN features were computed on item vectors in a 249,012-dimensional
space with one dimension for each distinct user. Both the user and item vectors were
generally very sparse and this fact was utilized to make the cosine similarity computation
described below more efficient. For example, when we calculated the user-user similarity,
we were essentially looking for the number of common items rated by both users. We only
stored the rated items by each user in a sorted list whose size is usually small. There were
only N comparisons to be made in order to find out the overlap between the two sorted
lists, where NN is the size of the smaller list.

Two important factors must be addressed in the use of kNN: 1) how to set the value for
the parameter k& (the number of nearest neighbors to consider), and 2) the metric used to
measure the distance between each pair of users or items.

An optimal k value is usually obtained by repeated trials, taking the value which min-
imizes the prediction error. For recommender systems, this is usually computed based on
the root mean squared error (RMSE) on rating scores.

Various similarity measures have been explored in the past, including Pearson correlation
similarity, cosine similarity, mean squared differences, and so forth (Cremonesi et al., 2010).

For this competition, we did not apply the kNN algorithm directly to classification.
Instead, we created two sets of additional features by running kNN first on the similarity
between users and then on the similarity between items. These new features were added
and used to train our classification model.

3.4.1. USER-BASED kNN FEATURES

We used a Cosine similarity between two users u; and u;, defined as follows (Breese et al.,
1998):
_ Ry, - Ry,

[ R, ||| R |

where R, and Ruj are the rating vectors of u; and u; respectively.

Items varied in popularity. Two users who shared ratings for a popular item may not
be as similar to one another as two users who share ratings for a rare item. Inspired by
the idea of Inverse Document Frequency (Aizawa, 2000) commonly used in information
retrieval, we weighted each item based on its popularity, i.e., its frequency count across
the whole training dataset. If the frequency count for item i is ¢;, the weight for item ¢ is

S(ui,uj) (1)
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defined as )

~ logy 3+ )
The Cosine similarity in Equation (1) becomes
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where r; and r; are the indices of the items rated by u; and u;, respectively.
The rating for item ¢ for user u could be predicted using a simple weighted average, as

. 5 jex RU )8 (w, )

> jeK S(u,j)

where R(j,4) is the rating of user j on item i. K indexes over users.
Table 5 defines the features created for the user-based kNN. These features describe the

average of ratings a track (or its album, artist or genre) received from a user’s k nearest

neighbors. The number of the nearest neighbors who rated the track as well as the average
of similarity scores are also listed as individual features.

i

(3)

S(ui,uj

(4)

Rpred(ua Z) =

3.4.2. ITEM-BASED NN FEATURES

In addition to finding similar users based on the items they rate, we exploited the inverse
relationship and found similar items based on how users rated them. We constructed
several item-based features by using k-nearest neighbors to find similar items. The similarity
measure used is the same as that defined in Equation (1) except users u; and u; were replaced
by items x; and x;. Table 6 gives the definition of these features. For a given user-track
pair (u,tr), this set of features describes the ratings received from a user u on a track
tr’s nearest neighbors. These nearest neighbors can be track, album, artist or genre. The
number of ratings and the similarity score are also treated as different features. There are
fifteen item-based kNN features created for a given value of k. We used k = 10 and k = 20
in this competition.

4. Learning Algorithm

Using the complete training dataset as input, we calculated all of the features discussed in
Section 3 and fed these results into our classification model. When dealing with a binary
classification task, there are a variety of choices for the learning algorithm: logistic regres-
sion, neural networks, support vector machines (SVM), decision trees, etc. In this compe-
tition we chose gradient boosted regression trees as our classifier due to its implementation
simplicity and superior accuracy in many real-world applications (Friedman, 2001; Li et al.,
2007; Xie et al., 2009). The gradient boosted regression tree software package we used is
called TreeNet, developed by Salford Systems (Salford, 1999). We withheld 25% of the
modeling dataset as a validation set and used the remaining 75% as the training set. The
parameters used in the final submission of our TreeNet model were set as follows: learning
rate = 0.015, number of nodes = 10, number of trees = 1000, minimum child = 200, loss
function = Huber.
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Table 5: User-based kNN features for a user-track pair (u,tr). II(u, k) represents user u’s

k nearest neighbors. In this competition we set k = 10.

Feature notation

Definition

R(II(u, k), tr)

Average rating on track tr from user u’s k nearest neigh-
bors.

R(I(u, k), Al(tr))

Average rating on track’s album Al(¢r) from u’s k nearest
neighbors.

R(II(u, k), Ar(tr))

Average rating on track’s artist Ar(tr) from u’s k nearest
neighbors.

R(II(u, k), G(tr))

Average rating on track’s genres G(tr) from u’s k nearest
neighbors.

N(II(u, k), tr)

Number of ratings on track tr from u’s k nearest neigh-
bors.

N(II(u, k), Al(tr))

Number of ratings on track’s album Al(¢tr) from u’s k
nearest neighbors.

N(II(u, k), Ar(tr))

Number of ratings on track’s artist Ar(tr) from u’s k
nearest neighbors.

N(I(u, k), G(tr))

Number of ratings on track’s genres G (tr)from u’s k near-
est neighbors.

ST (u, k), tr)

Average of similarity score from u’s k nearest neighbors
who rated track ¢r.

S(I(u, k), Al(tr))

Average of similarity score from u’s k nearest neighbors
who rated track tr’s album.

S(M(u, k), Ar(tr))

Average of similarity score from u’s k nearest neighbors
who rated track tr’s artist.

S(I1(u, k), G(tr))

Average of similarity score from u’s k nearest neighbors
who rated track ¢r’s genres.
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Table 6: Item-based kNN features for a user-track pair (u,tr). We created two sets of
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item-based kNN features using k£ = 10 and k = 20.

Feature Notation

Definition

R(u, Iy (tr, k))

Average rating from user u on track tr’s k nearest neigh-
bor items (can be track, album or artist).

R(u, Op(tr, k)) Average rating from user v on track ¢r’s k nearest tracks.
R(u,ILy(tr, k)) Average rating from user v on track ¢r’s k nearest albums.
R(u, I, (tr, k) Average rating from user u on track tr’s k nearest artists.

R(u,Ig(tr, k)) Average rating from user u on track ¢r’s k nearest genres.

N (u,II;(tr, k)) | Number of ratings from user u on track tr’s k nearest

neighbor items (can be track, album or artist).

Number of ratings from user u on track tr’s k nearest
tracks.

Number of ratings from user u on track tr’s k nearest
albums.

Number of ratings from user u on track tr’s k nearest
artists.

Number of ratings from user u on track tr’s k nearest
genres.

S'(u, My (tr, k))

Average similarity score of track tr’s k nearest neighbor
items (can be track, album or artist) that are rated by
user u.

S(u, Mp(tr, k))

Average similarity score of track tr’s k nearest neighbor
tracks that are rated by user u.

S(u, I gy (tr, k))

Average similarity score of track tr’s k nearest neighbor
albums that are rated by user u.

S(u, M (tr,k))

Average similarity score of track tr’s k nearest neighbor
artists that are rated by user w.

S(u, g(tr, k))

Average similarity score of track tr’s k nearest neighbor
genres that are rated by user u.
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We spent most of our effort generating more predictive features instead of tuning model
parameters like learning rate, number of trees with the same set of features, etc. After all
feature values were calculated, feature (i.e. variable) selection was performed based on the
importance of each feature to overall prediction performance. For each decision tree inside
TreeNet, feature importance was calculated by (Breiman et al., 1984):

flwi, T) =Y Al(w;,T), (5)

teT

where AI(z;,T) = I(t) —pr I(tr) —pr I(tg) is the decrease in impurity to the actual or
potential split on variable x; at a node t of an optimally pruned tree T'. pL and pR are the
proportions of cases sent to the left ¢; or right tg by x;. The features were entered into the
model based on their total contribution to the impurity reduction at each split. The top
predective features of each category in the final model are noted and discussed in Section 5.

5. Results

The steps we took to tackle the track two problem follow the order of feature creation
described in Section 3. Our first model was built on the ten hierarchical linkage features
alone. The output of this model is a probability of the user highly rating the given track.
We denote this as P(u,tr). After the model was trained, the test dataset was scored and
sorted by descending P(u,tr) value for each user. The top three records for that user (those
with the highest P(u,tr)) were labeled as 1 and the remaining three were labeled as 0. The
error rate for this approach was 10.00% when measured on the 50% of the test set available
(called the testl set) and shown on the leaderboard. The remainder of the test set is called
test2 and held out by the contest organizers to determine final ranking.

We proceeded by adding the track-based statistical features to the linkage features and
used this to build our second model. This model achieved an error rate of 9.14% on the
testl set.

Table 7 shows the error rates of models with different groups of features. It also lists
the top five most predictive features of each model and the top three predictive features in
each category. The significance of each feature is calculated by Equation (5) as stated in
section 4. From this, it is seen that the hierarchical linkage features dominate the first three
models. Only one track based feature N (¢r) made it into the list of top five features. None
of the top three user-based features made it into the overall top five. This implies that the
track-based and user-based statistical features were not as strong as the hierarchical linkage
features. Once added into the model, the kNN features became the most predictive. In
particular, the item-based kNN features were stronger than the user-based kNN features.

From Figure 1, it is seen that the error rate continued to decrease with the addition of
more features. The hierarchical linkage features dominated the first three models. Our best
single model result achieved a 3.98% error rate on the test1 set. It has been shown in many
data mining competitions (Bell et al., 2008; Guyon et al., 2009; Chapelle and Chang, 2011)
that combining predictions from many individual classifiers can further improve the overall
accuracy. We bagged 11 boosted tree models in our final ensemble. Each component model
had slightly different parameter settings but was trained on the same training set and all
five groups of features. Our final model was a simple voting sum of the (1 or 0) prediction
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from each component model. For example, if all models predicted 1 for a given user-item
pair, then the sum would be 11. The top three tracks that had the highest voting sum for a
given user were labeled as 1 and the rest were labeled as 0 in the final result. This bagging
process improved our final result to an error rate of 3.87% on the testl set and 3.80% on
test2 set, which placed us fifth on this track of the competition.

Table 7: Results of different models. The error rate is from the leader board on testl
dataset. The top 5 predictive features of each model as well as the top 3 predictive
features in each category (2nd row in the same category) are also listed.

Feature Group Error Rate | Predictive Features
Hierarchical link- 10.00% R(u, Ar(tr)), R(u, T(Al(tr))\tr), R(u, Al(tr)),
age (HL) R(u,T)Ar(tr))\tr), R(u, G(tr))
HL +  Track- | 897% | R(u, Ar(tr)),  R(u, Al(tr)),  R(u,T(Al(tr))\tr),
based  statistics R(u, T(Ar(tr))\tr), N(tr)
(TS)

N(t?") R ( ), RUCLM(tT)
HL + TS + User- | 7.19% | R(u, Ar(tr)),  R(u,Al(tr)),  R(u,T(Al(tr))\tr),
based statistics N (u, I(G(tr)\tr), R(u, T(Ar(tr)\tr)

N(u,z), Pct(u,al), N(u,tr)
Above + User- | 5.78% | R(Il(u,k),tr),  R(u, Al(tr)), R(u, Ar(tr)),
kNN N(u, I(G(tr))\tr), R(u, T(Al(tr))\tr)

R(II(u. k). tr), RAI(u, k), Ar(ar)), N (u, k). tr)
Above + Ttem- | 4.39% | R(u, I (tr,k)),  S(u,X;(tr k),  R(u, Ar(tr)),
kNN (k=10) R(u, Al(tr)), RAI(u, k), tr

R(u, 1 (tr, k), S(u, I (tr, k), R(u, 4, (tr, k))
Above + Item- | 3.98% | R(u, I (tr k),  S(u,M;(tr, k),  R(u, Ar(tr)),
kNN (k=20) R(u, Al(tr)), N(u,z)

R(u, I (tr k), S(u, Oy (tr, k), N(u, I (tr, k)

Final model 3.87% Final model is a vote average of 11 models that each
have all the above categories of features but with
slightly different model configurations.

6. Discussion

We have described the detailed steps taken by our team in the KDD Cup 2011 track two
competition. We converted each user’s music preference prediction into a binary classifica-
tion problem from the one class training dataset. We created five sets of derived features
to characterize the behavior of users and musical items. From this, we found that the
item-based kNN features were the strongest among all the sets of features. The hierarchical
linkage features were the second-strongest. The predictiveness of these features revealed
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hierarchical linkage -

+ track—-based features -

+ user—based features -

+ user—kNN features -

+ item-kNN features (k=10) -

+ item-kNN features (k=20) -

Error Rate (%)

Figure 1: Improvement of model performance with increase of features

the importance of the hierarchical relationships among the musical items. User-based kNN
features were weak compared with the above two sets. One reason may have been that the
user-based data was sparser (it is very unlikely that a given item has only been rated by
1 or 2 users, however highly possible that a user only rated a handful of items). Another
reason is that track two only required the algorithm to rank the items within the same user.
As long as the rank of each item within the same user was correct, differing characteristics
between users may have had less impact on the result.

Matrix factorization, particularly the SVD approach, has demonstrated superior predic-
tion accuracy than the classic nearest-neighbor techniques for recommender systems (Bell
et al., 2009). An alternative approach would have been to use the latent factors gener-
ated from the SVD to build the classification model. Since the latent factors are obtained
through global optimization on the rating error, the classification model built on top of
these factors would likely have better performance. However, these latent features may not
have as clear explanations as the features we utilized in this work.

The top three teams on the leaderboard all broke the 2.5% error rate. This improvement
may come from the complex blending of many single models (Mckenzie et al., 2012; Lai et al.,
2012; Jahrer and Toscher, 2012) rather than the simple voting sum of 11 models used in our
work. The post-processing based on the discovery of some data insights (Lai et al., 2012)
also further improved the final model results, which our team failed to explore.

In addition to the SVD approaches, further improvements in model performance were
possible within the current framework. These areas include optimizing the k value in the
kNN features, testing different similarity functions and combining the models built on dif-
ferent samples (we only performed one sampling for the model development dataset in the
competition).
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