JMLR: Workshop and Conference Proceedings 215-229

Committee Based Prediction System for Recommendation:
KDD Cup 2011, Track2

Hang Zhang HZHANG@QOPERASOLUTIONS.COM
12230 El Camino Real, Suite 330, San Diego, CA 92130

Eric Riedl EBRIEDL@MATH.HARVARD.EDU
Department of Mathematics, Harvard University

Valery Petrushin VPETRUSHINQOPERASOLUTIONS.COM
12230 El Camino Real, Suite 330, San Diego, CA 92130

Siddharth Pal SIDDHARTH.PALQOPERASOLUTIONS.COM
12230 El Camino Real, Suite 330, San Diego, CA 92130

Jacob Spoelstra JSPOELSTRA@QOPERASOLUTIONS.COM

12230 El Camino Real, Suite 330, San Diego, CA 92130

Abstract

This paper describes a solution to the 2011 KDD Cup competition, Track2: discriminating
between highly rated tracks and unrated tracks in a Yahoo! Music dataset. Our approach
was to use supervised learning based on 65 features generated using various techniques
such as collaborative filtering, SVD, and similarity scoring. During our modeling stage, we
created a number of predictors including logistic regression, artificial neural networks and
gradient-boosted decision trees. To further improve robustness and reduce the variance,
we used three of our top performing models and took a weighted average for the final
submission, which achieved 4.3768% error.
Keywords:

KDD Cup 2011, musical track ranking, ranking prediction, prediction model, artificial
neural network, gradient boosting decision tree, committee of predictors

1. Introduction

Recommender systems have revolutionized e-commerce. The ability to accurately predict
users’ preferences has had far-reaching implications for marketing, on-line communities and
e-commerce. Companies such as Amazon and Netflix have been some of the most publicized
examples of using recommender systems, but recommender systems pervade the internet
and many other aspects of our lives.

The challenge of the KDD Cup 2011 was to build recommendation engines on a Yahoo!
Music dataset. The dataset for the competition was sampled from the actual Yahoo! Music
community’s ratings for various musical items. User ratings are on four different types of
items: tracks, albums, artists and genres.

The challenge was divided into 2 separate tasks viz, Trackl - predicting the scores given
by users to various items and Track2 - separation of three highly rated (items obtaining
score of at least 80 on the scale of 0 to 100) from three other unrated tracks for a user.

© H. Zhang, E. Riedl, V. Petrushin, S. Pal & J. Spoelstra.

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

Both these tasks were independent and contestants were allowed to compete at either one
or on both of the tasks. We focused our attention on Track2.

For Track2, Yahoo! Inc. used a dataset, €2, containing user ratings on Yahoo! Music.
The set 2 was further split into two parts by the competition organizers: a training set €2y,
and a test set Q1. The test set Q1 was constructed so that for each user in Qt there were
precisely six tracks, three of which the user had rated highly and three of which the user
had not rated. The three highly rated tracks were sampled uniformly from the user’s highly
rated tracks, while the three unrated tracks were sampled from the user’s unrated tracks
with probability proportional to the number of high ratings they had received from the
general population. Contestants were asked to identify for each user in Q7 the three tracks
which were highly rated (predict 1) and the three tracks which had not been rated (predict
0). The actual labels were held back and a subset (Testl) of Q1 was used to determine the
position of the contestants on the leaderboard. The ranking of the contestants was based
on total number of misclassifications. The results on the remainder (Test2) of Qr were not
disclosed until the end of the competition.

In addition to the rating data, the competition organizers also provided datasets de-
scribing the hierarchical relationships among items. Figure 1 shows all the different possible
hierarchical relationships among the four types of items. As the figure shows, a track may
have a parent album, a parent artist, and multiple parent genres. Similarly, an album may
have a single parent artist and multiple parent genres, and an artist may have multiple par-
ent genres. Some items may not have a complete structure of parent items. For instance,
some tracks may not have parent album, but still have a parent artist and parent genres.

Track2 of the competition posed several challenges.

e The training data consisted of 224,041 tracks, 52,829 albums, 18,674 artists, 567
genres and 249,012 users. The dimensions of the ratings matrix on tracks alone
would be 224,041 x 249,012, which is too large to be stored in memory. The size
of the ratings matrix made it difficult to directly implement many standard machine
learning techniques.

e The rating data was very sparse. On average, a user had rated about 109 tracks out
of the total 224,041 tracks, and a track had been rated by 121 users out of the total
249,012 users. Users rated an average of 48 albums, 77 artists and 14 genres each. As
the numbers show, most users had only rated a very small fraction of the items.

e The format of the test data was different from that of the training data. The training
data had different numbers of ratings for different users, while in the test data, only
six items per user were given. Moreover, in the training data, the target value for each
user-item pair was a rating, while in the testing data, the target value for a user-item
pair was binary. Clearly, these formats are very different both in terms of the type of
data entry and the target value.

e Finally, there was no single, obvious way to use the hierarchical data. This was further
complicated by the fact that not every item had a complete set of parents.

We organize the paper as follows. In Section 2 we describe our approach to the challenge.
In Section 3 we describe the data analysis, feature extraction and generation of the training

216

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

Figure 1: Hierarchical structure of items.

and test datasets. In Section 5 we describe the modeling methodology and in Section 6 we
summarize our final submission and how it compared with other teams on the leaderboard.

2. Our Approach

We addressed the challenges posed by Track2 of the competition by translating the problem
into a supervised learning framework. We began by sampling out a dataset Q7 from Qy,
that shared the same structure as the test data i.e, it contained six items per user with
three items highly rated by the user and three items unrated by the user. The next step
was to extract features for flT and Q7 and prepare the modeling datasets viz, Dy, and D
respectively. We used Dy, for training various supervised classification algorithms.

By proceeding in this way, we were able to get around working on a huge rating matrix.
Extracting features also helped us deal with the sparsity of the rating data, because we could
select features which made sense even when we had relatively little rating information on
a user. Because we extracted features in a flexible, ad hoc manner, we were able to use the
hierarchical data in many different ways, which allowed us to better deal with cases like a
track with no album.

3. The Data

Data plays the most crucial role in developing good prediction models. In order to give a
sense of the types of rating data available, we present a few statistics. Table 1 presents the
total numbers of ratings on tracks, albums, artists, and genres from the general population
in Qp,. Table 2 presents the average percentage of each user’s ratings which were on the
four classes of items in .

Notice that from Table 1, we see that there were significantly more ratings on tracks
than there were on artists. However, from Table 2 we see that on average a much higher
percentage of a user’s ratings were on artists than were on tracks. This suggests that users
with a lot of ratings had more of their ratings on tracks, while users with relatively few
ratings had more of their ratings on artists. This is probably part of the reason that our

217

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

Table 1: Numbers of ratings on four classes of items from general population in €2y,

of ratings | % of total ratings

Track 27,167,857 43.9

Album | 11,928,316 19.3
Artist | 19,289,882 31.1

Genre 3,558,351 5.7

Table 2: Average % (and standard deviation) of a user’s ratings on four classes of items in
Q,

Tracks Albums | Artists Genres
21.1(22.4) | 9.5(11.8) | 55.2(27.3) | 14.2(17.7)

Q
QL <= ==== QT
b, ke-o-d &,

Figure 2: Data splits.

features which took into account statistics about the artist had higher significance in our
models.

We split dataset €2y, into two sets QT and QL in a manner similar to the way Yahoo!
Inc. prepared the training data €2, and the test data Q7 from €. For each user in y,
with at least six highly rated tracks, we randomly picked three highly rated tracks and put
them into Q. The remaining ratings of the user were put into Q. We then randomly
picked three tracks not rated by the user, where the probability of selecting a track was
proportional to the number of high ratings it received from the general population, and put
them into Q7 to constitute the remaining three tracks for the user. Thus, every user in Qr
had at least three highly rated tracks in Qy,, which gave us useful information about the
user’s preferences. If a user had less than six highly rated tracks in €2y, the user’s data was
not split and was all put into Q1. We ended up with 88186 users in Qr.

Figure 2 depicts the dataset partition by the competition organizers and the further
splits carried out by us as described above. The solid arrows represent a data split.

218

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

4. Feature Extraction and Analysis

Datasets QL and €, acted as reference dictionaries for extracting information about a
user in Q2 and Q. respectively. These two datasets contain information about a user’s
preferences and how other users have rated similar items. These dictionaries are represented
as dash-line arrows in Figure 2.

In all we extracted 65 features for the {user,track} pair {u;,t;}. We use al;, ar;, and
gj1,* -+, gjk to denote the parent album, artist, and genres of ¢;, respectively.

4.1. Six Classes of Features

These 65 features can be categorized into six classes.

o Forty-seven features based on statistics - We used various statistics to generate 47
features. Rather than list all of the features, we give a few examples which we hope
will give a flavor of the types of statistics we considered.

— The fractions of the child tracks of album alj, artist ar;, and genres g;1, ..., gji
which were rated and rated highly by user u;. (6 features)

— The relative frequencies of the parent album, artist, and genres of track ¢; being
rated or highly rated by user u;, compared to the total number of ratings the
user u; placed on albums, artists, and genres, respectively. (6 features)

— The fractions of the general population’s ratings on ¢; and its parent album,
artist, and genres which are high. (4 features)

— The average ratings over all users on the track ¢; or its parent album al;, artist
ar; and genres gj1, gj2, .., gji (4 features)

o Seven features derived from SVD prediction - SVD has been widely used in recom-
mendation systems. It has been shown that it can extract latent features from a huge
rating matrix, and improve the scalability of the recommendation system by reduc-
ing the dimension of the data while still making accurate predictions. Readers are
referred to Johnson and Wichern (2002) for details of SVD, and Sarwar et al. (2002)
and Vozalis and Margaritis (2007) for its applications in recommendation systems.
Because of the large size of the data matrix, we implemented a sparse SVD algorithm,
which only required loading the {user, item} rating entries. As a trade-off between
learning speed and accuracy, we selected £ = 500 as the number of components.

We trained SVD models on the rating data of each of the four hierarchical levels to
predict the ratings of user u; on track ¢;, album alj, artist ar; and genres gj1,-- - , gj,
and used the predictions at each level (the average of the predictions on the genre
level) as features. For each SVD model, we considered only the direct ratings of the
corresponding hierarchical level. We also generated three SVD models, one each on
the album, artist and genre levels, where we ignored direct ratings and considered
ratings on child tracks as ratings on the item. Our sparse SVD algorithm was able to
gracefully handle multiple ratings for the same {user,item} pair, which was encounted
when we used the ratings on tracks to represent the ratings on parent albums, artists,
and genres in the last three SVD models.

219

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

e Four features derived from user-based collaborative filters - Collaborative filters (CFs)
are methods of estimating the ratings on a {user, item} pair {u,i} by using ratings
on item ¢ from other users similar to user u (user-based CFs), or user u’s ratings on
items that are similar to item ¢ (item-based CFs). CFs have been widely used in
many recommendation systems, such as GroupLens (Resnick et al., 1994), LikeMinds
(Greening, 1997), and FireFly (Shardanand and Maes, 1995). We implemented two
user-based CFs, LikeMinds and FireFly, to predict user w;’s response to track ¢; and
its parent album al;. We expected that the users who had similar rating preferences
to u; and who had rated the item before might give us extra information that was
missed in the previous features. Here, we did not include user-based CFs for the
parent artist and genres of ¢; since the predictive values of the CF's at these two levels
did not help improve the performance of our prediction system.

e Three features derived from item-based CFs - We also used the predicted ratings from
item-based CF's, on t;, al;, and ar;, as features. For user u;, we calculated the pairwise
similarity, the Pearson correlation coefficient, between ¢; and each of the other tracks
u; rated in the referred dictionary. The predicted values from the item-based CF's
were just the average rating over all other tracks, albums, and artists the user rated,
weighted by the similarity with ¢;, al;, and arj, respectively. Sarwar et al. (2001) had
a detailed description of the implemented item-based CFs.

o Three features derived from similarity scores - We used similarity scores for tracks from
the test set based on their similarities with the user’s highly rated tracks’ hierarchies.
The idea is to look at the prediction problem as a relevant document retrieval problem
(Manning et al., 2008). All rated tracks form a document and their album, artist and
genre [Ds are words. The set of all highly rated tracks form the user’s document
space. Each test track is a query, which can get a similarity score that reflects how
close the track is to the user’s favorive tracks.

Three similarity scores are explored. Let the user’s rating history be represented as
a set of 3-tuples (al;, ar;, g;), where i = 1,--- ,n and al; is an album ID , ar; is an
author ID and g; is a genre ID of a track that was rated highly by the user. The test
track also is represented as a set of 3-tuples (al,ar, gj), where j =1,--- ,m and al is
an album ID, ar is an artist ID and g; are genre IDs.

The first similarity score for the track ¢ and user u is calculated using (1). First the
weighted score S;; for each combination of 3-tuples from the user history and the test
track is calculated. Then we calculated the maximum and average of S;; added them
to obtain the final score.

Sij = w1 - (al; = al) + wa - (ar; = ar) + w3 - (g = gj)
Snax = max S;;
Savg = mean(S;;)
Sl (t7 u) = Smax + Savg
Here (a = b) is equal to 1 if a and b are the same IDs and 0 otherwise. The weights

were optimized experimentally and set to w = (1,1,2). This means that the similarity
at Genre level has higher weights than at Album and Artist levels.

(1)

220

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

For the second similarity score, the user’s space is represented as pairs (item, count),
where item is an album, author or genre ID and count is the number of times the user
rated the item highly. The similarity score is calculated as a weighted sum of rating
frequencies for album, author and genres. The weights were set to w = (10,5,2) to
emphasize the importance of album and artist ratings.

The third similarity score implements the TF-IDF (term frequency-inverse document
frequency) approach with cosine similarity. Each item in the user’s space is represented
by a weight (2).

Wi — (1 +log(Tiw)) - log(N/D;) if Ti; >0 (2)
Y10 otherwise

where Tj, is the number of occurences of the i-th item in user u’s top ratings, D; is
the number of users that highly rated i-th item, and N is the number of users (in the
training set).

The test track is represented as a vector of weights that correspond to its album,
author and genres and similarity is estimated as a dot product with the corresponding
vector of weights in the user’s space (cosine similarity). Due to scarsity of data, the
direct usage of the above similarity scores for prediction gives an error rate in the
range 12 — 15%, but they served as valuable features for training more sophisticated
models.

One feature estimating a likelihood ratio - We computed one feature which attempts to
capture the ratio between how likely ¢; is drawn from user w;’s highly rated tracks and
how likely ¢; is drawn from the general population’s rating records. Because Yahoo!
selected unrated tracks in the test set based on how likely they were to be highly
rated by other users, and the highly rated tracks uniformly from the user’s own rating
history, we hope that this feature helped us account for the difference between these
distributions. We put forward the following quantities as estimates of the likelihood
that ¢; is drawn from u;’s rating records:

0 __ # of child tracks of album al; highly rated by user wu;
palj - # of tracks highly rated by user u;

0 __ # of tracks by artist ar; highly rated by user u; (3)
pm’j - # of tracks highly rated by user u;

0 __ # of tracks in genre g;l highly rated by user u;
pgjl - # of tracks highly rated by user u;

We see that p® al; is the probability that w;’s highly rated tracks have parent album al;,
and the other quantltles have sumlar mterpretatlons In a similar way, we estimate
the probabilities palj, pw],, and pg]_ A pgj . that highly rated tracks from the general
population have parent al;, ar; and g;1,--- , gjk-

Then the likelihood ratio Ir is defined as:

0 0 0
palj +pa7"j + Zl=1,2,...,kpgjl
1 1 1
palj +pm‘j + Zl=1,2,...,kpgjl

Ir =

221

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

4.2. Feature Analysis

Our features had widely varying correlations with the target value, and widely varying
correlations with each other. However, when we attempted to reduce the number of features
by eliminating ones with low correlation with the target and ones which had high correlation
with another feature, our error rate went up. We suspect that this is because the training
data contained a large amount of information, more than could be captured with such a
small number of features. Thus, every feature had at least some value. Indeed, one of our
greatest challenges was selecting a large set of sufficiently diverse features.

The features we used tended to have a high concentration at the minimum value (usually
0), especially for tracks that a user had not rated. Often, however, a positive value meant
that the track was extremely likely to be highly rated by the user. In Figure 3 we show a
histogram on a subset of the data for our feature which was most highly correlated with
the true value. We suspect that the fact that our features behaved in this way was part of
the reason that decision trees were so effective in this problem.

16000
14000
12000

10000
 Highly Rated

8000 Unrated

6000
4000
2000 I
0 M - - m m = HE m N =

-44.173 -20.999 2175 25.349 48.523
-55.76 -32.586 -9.412 13.762 36.936 60.11

Figure 3: Histograms of the probability (normalized) that ar; was highly rated, conditioned
on it was rated by user wu;

The hierarchical structure information was adequately utilized in the process of feature
development. For instance, we built SVD models not only on the {u;,t;} pairs, but also
on all {u;,al;}, {u;,ar;}, and {u;,g;} pairs, separately. As another instance, we calculated
the probabilities that u; rated al;, ar;, and g; highly and utilized them to predict whether
u; rated t; highly or not. Readers may notice other instances of how we incorporated the
hierarchical structure information in our feature development process when reading the
Appendix where we describe the features in more details.

5. MODELING

We tried various supervised learning techniques varying from linear model (logistic regres-
sion model) to nonlinear model (artificial neural network, ANN), from single model to
committee of multiple experts. Table 5 summarizes the performance of different models we
built from the leaderboard after we made the submission. It illustrates how the performance
of our recommendation system evolved during the competition.

222

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

Table 3: Error rates of different models on Test1

Model Error Rate (%)
Logistic Regression 6.2

Single ANN 5.09
Committee of 15 ANNs 4.90
Committee of 106 ANNs (106ANNs) 4.80

Gradient Boosted Decision Tree 1 (Treel) 4.45

Gradient Boosted Decision Tree 2 (Tree2) 4.456

Final Committee of 106ANNs, Treel and Tree2 | 4.376

In this section, we first introduce the logistic regression and ANN models and discuss
their performance. Next, we describe the mixture of multiple ANN models built through
bagging and show how the performance of the combined models was better than that of a
single model. We then describe the stochastic gradient boosted trees and their performance.
Finally, we talk about how we built a committee-based prediction system by averaging the
outputs of three of our best performing models and how this committee performed on the
test set Q.

Mixture of experts has been shown to be able to boost the performance of the prediction
system from a single expert (Bishop, 2006). It has been shown that mixture of experts is
able to improve the classification or regression model in terms of stability and classification
accuracy. (Polikar, 2006; Hastie et al., 2009; Opitz and Maclin, 1999).

Before describing how we built our prediction system, we first introduce how we pro-
duced the outputs of the system. All of our models outputted an estimate of the probability
that the given item was highly rated by the user. To convert these numbers into a binary
output, for the six tracks of each user in Q1 and Q7 we labeled the three tracks with the
highest probabilities with 1s, meaning highly rated by the user, and the remaining three
tracks with Os, meaning not rated by the user. The error rate of the system is just the total
number of mislabeled items divided by the total number of items in fZT or Q.

5.1. Single Logistic Model and ANN Model

Logistic regression was the first model we trained. It assumes a linear relationship between
features and the logarithm of the odds ratio between the posterior probabilities of the two
classes. This model gave us error rate 6.2% on the leaderboard.

After logistic regression, we trained a ANN model with a single hidden layer and a single
output node, in the order to capture complex underlying nonlinear relationships between
the features and the target. The target values in the training set were converted to 1 (for
highly rated items) or -1 (for unrated items). The optimal number of hidden nodes and
learning rate were determined through model performance on the hold out sets. We ended
up using 40 hidden nodes and a learning rate of A = 0.0005. The activation function was
the hyperbolic tangent function. The performance of this ANN model on the leaderboard
was 5.09%.

223

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

Output of the mixture
of ANN models

Lower NN 1 Lower NN K

Figure 4: Two-level Neural Network Structure.

The significantly improved performance of the ANN model implied that there did exist
complex nonlinear relationships between the features and the targets that was not captured
by the logistic model.

5.2. Mixture of Multiple ANN Models through Bagging

We implemented bagging when building a mixture of multiple ANN models. Bagging (boot-
strap aggregating) is a widely employed sampling technology in building a mixture of experts
(Breiman, 1996). Each expert is trained on a random sample of the full training set. From
set Dy, for each sample we randomly selected 70% of the users and put all 6 records of the
selected users into the random sample. The reason that we sampled on users instead of on
{user,track} pairs was to ensure that in the sampled data, we had the complete six records
of each user.

The outputs from all these ANN models were further input to a top-level ANN model,
whose output was the final output of the mixture of ANN system. This top-level ANN
model has no hidden layer to avoid overfitting the data. The learning rate was 0.0005. The
structure of this two-level mixture of ANN models is depicted in Figure 4.

In order to train the weights of the top-level ANN model, we had to ensure that the
inputs to it were of the same dataset. So, we passed the whole dataset Dy, through all
lower-level ANNs and trained the weights of the top-level ANN model on the outputs of
lower-level ANN models. After the top-level ANN model training was completed, the whole
two-level ANN system was ready to predict entries in the test set Dr.

Because each lower level ANN model only utilized 70% of the data in Dry,, their error
rates on Dt was around 5.61%, worse than the model trained on the whole Dy,. However,
the two-level ANN system had error rate 4.90% on D, even when only 15 lower level ANN
models were recruited. It showed that mixture of multiple ANN models through bagging
enhanced the performance of the whole prediction system. Encouraged by this, we built
106 lower-level ANN models, using various subsets of the features and data and various
numbers of hidden nodes between 40 and 66, and the error rate of the whole two-level ANN

224

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

0 20 40 60 80 100 120
Number of Models

Figure 5: Error on Combinations of Neural Nets.

system on Dt was further reduced to 4.8%, as depicted in Figure 5. We stopped building
more lower-level ANN models due to time limitations.

5.3. Gradient Boosted Decision Trees

The stochastic gradient boosting algorithm (Friedman, 2002) is one of the widely used boost-
ing algorithms. It has been used well in various domains and in data mining competitions
(Xie et al., 2009).

We trained a stochastic gradient boosting model using a decision tree as the base clas-
sifier. The additive tree models are constructed sequentially to minimize the exponential
loss function. The subsequent stage classifiers are trained on examples which were found to
be difficult or hard to classify by the previous stage classifier. We started building the best
gradient boosted tree models by adjusting the training parameters. The factors we tweaked
were the learning rate, the number of trees, and the depth of the tree. The parameters
which worked for us were learning rate = 0.06, number of trees = 800 and depth of the tree
= 13. Model performance was evaluated on a validation set. We also used the feedback from
the leaderboard as a reference. We observed that the validation feedback and the feedback
from the leaderboard were not always consistent. There were a few instances where the
model did better on the validation data than on the leaderboard. We hypothesized that
this could be happening because the some of the highly rated and non-rated items were
near the decision boundary. The best performing model gave us the error rate of 4.45% on
the leaderboard.

We trained another gradient boosted tree model using the data from the training set
where we kept those users and items which weren’t classified correctly in the hold out set
by the our best performing gradient boosted tree model. This model gave an error rate of
4.456% on the leaderboard. While the leaderboard performance was similar to the early
boosted tree model performance, the two models differed on about 0.5% of the records.
This further strengthened our belief that some highly rated items and non-rated items were
close to the decision boundary.

225

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

5.4. Committee-based Prediction System

So far, we have described three different models for classification with satisfactory perfor-
mances. We decided to mix them together through weighted voting to derive the final
prediction on the test set. The weights on these three models were selected by trial-and-
error, i.e., we submitted the results on the test set from different combinations of weights to
the competition website and picked up the one with the lowest error rate as our final weight
vector. The weights that we ended up selecting were proportional to the exponential of the
negative error. The final weights on the three models are 26% on the ensemble of ANNs,
and 37% on each of the decision trees. The ensemble of ANNs has lower weight than the
two decision trees since it has higher error rate on the test data.

6. Conclusion and Discussion

In this paper, we described the committee-based prediction system for recommendation we
built to address Track2 task of the KDD Cup 2011 competition. This is a weighted voting
system of three classifiers: one ensemble of ANN models, and two decision trees. All three
classifiers were built on the feature datasets we extracted from the user’s rating history.
The committee-based prediction system had error rate 4.376% on the test set, which placed
our team seventh on the leaderboard of the competition website.

A crucial part of our prediction system for recommendation is feature extraction. We
developed a variety of features to describe various aspects of the data, and to utilize various
aspects of the hierarchical structure among items. However, although we were able to
use the hierarchical structure in our features in many different ways, we still hope for a
more comprehensive and uniform way of utilizing the hierarchical information such that the
prediction system can be further enhanced.

Acknowledgments

We would like to acknowledge the contest organizers for organizing such an exciting, inspir-
ing, and fruitful competition. We would also like to thank the analysts and researchers at
Opera Solutions LLC. for providing very insightful and constructive advice.

References

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387310738.

Leo Breiman. Bagging predictors. Mach. Learn., 24:123-140, August 1996. ISSN 0885-6125.
doi: 10.1023/A:1018054314350.

Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data Anal., 38:367—
378, February 2002. ISSN 0167-9473. doi: 10.1016/S0167-9473(01)00065-2. URL http:
//portal.acm.org/citation.cfm?id=635939.635941.

Dan Greening. Building consumer trust with accurate product recommendations. LikeMinds
White Paper, LMWSWP-210-6966, 1997.

226

http://portal.acm.org/citation.cfm?id=635939.635941
http://portal.acm.org/citation.cfm?id=635939.635941

KDD Cup 2011 TRACK2, OPERA SOLUTIONS LLC

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statis-
tics. Springer, 2nd ed. 2009. corr. 3rd printing 5th printing. edition, September 2009.
ISBN 0387848576. URL http://www-stat.stanford.edu/~{}tibs/ElemStatLearn/
main.html.

R.A. Johnson and D.W. Wichern. Applied multivariate statistical analysis. Prentice Hall,
2002. ISBN 9780131219731.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to in-
formation retrieval. Cambridge University Press, 2008. ISBN 978-0-521-86571-5.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal
of Artificial Intelligence Research, 11:169-198, 1999. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.36.7341.

R. Polikar. Ensemble Based Systems in Decision Making. IFEE Clircuits and Systems
Magazine, 6(3):21-45, 2006.

Paul Resnick, Neophytos lacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. In CSCW
’94: Proceedings of the 1994 ACM conference on Computer supported cooperative work,
pages 175-186, New York, NY, USA, 1994. ACM. ISBN 0-89791-689-1. doi: http:
//doi.acm.org/10.1145/192844.192905.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, WWW ’01, pages 285-295, New York, NY, USA, 2001. ACM. ISBN
1-58113-348-0. doi: http://doi.acm.org/10.1145/371920.372071. URL http://doi.acm.
org/10.1145/371920.372071.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental singular
value decomposition algorithms for highly scalable recommender systems. In Fifth Inter-
national Conference on Computer and Information Science, pages 2728, 2002.

Upendra Shardanand and Patti Maes. Social information filtering: Algorithms for automat-
ing “word of mouth”. In Proceedings of ACM CHI’95 Conference on Human Factors in
Computing Systems, volume 1, pages 210-217, 1995.

Manolis G. Vozalis and Konstantinos G. Margaritis. Using svd and demographic data for
the enhancement of generalized collaborative filtering. Inf. Sci., 177(15):3017-3037, 2007.

Jianjun Xie, Viktoria Rojkova, Siddharth Pal, and Stephen Coggeshall. A combination of
boosting and bagging for kdd cup 2009 - fast scoring on a large database. Journal of
Machine Learning Research, 7:35-43, 2009.

227

http://www-stat.stanford.edu/~{}tibs/ElemStatLearn/main.html
http://www-stat.stanford.edu/~{}tibs/ElemStatLearn/main.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7341
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7341
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071

ZHANG RIEDL PETRUSHIN PAL SPOELSTRA

Appendix A. Detailed Description of Features

In addition to the brief description of the 47 features based on statistics in Section 4, we
provide more detailed information for each of them here.

Features f1-f3: These three features are the relative frequencies of the parent album,
artist, and genres of track t; being rated by user u; in the referred dictionary. Equation 5
gives the mathematical definition of fj.

of ratings on al; by user u;

bil (5)

Substituting ar; for al;, and "artists” for "albums” in Equation 5, we get the math-
ematical definition of fo. Since a single track may have multiple parent genres, fs is the
summation of the relative frequencies over genres g1, ..., gjx. The mathematical definition
of f3 is:

- # of ratings on albums by user wu;

>i—19, 1 # of ratings on g; by u;

f3= (6)

Features fi-f¢: These are similar to f; — f3, but with “rated” in the nominator replaced
by ”highly rated”.

Features f7-fg: The relative frequency that the user had rated the corresponding album,
artist, or genres highly in the referred dictionaries, under the condition that the user rated
the album, artist, or genres before. From this definition, it is clear that:

i35 50
=4 h i i =1,2,3. 7
f6+ {O if fZ‘ZO’Z) 4y ()

of genres rated by wu;

Features fig9-fi14: These five features describe how the general population responded to
track t;. Features f1p and fi1 are the relative frequencies that the general population rated
t; and rated t; highly, respectively. Feature fi2 is the relative frequency that ¢; was rated
highly under the condition that it was rated by the general population. Feature fi3 is the
average rating of ¢; over the general population, and feature fi4 is the total number of
ratings t; received from the general population. The mathematical equations for features

fio — fi2 are:

f 7 of ratings on t;
10 = Z of ratings on tracks

f __ # of high ratings on t;]
11 = "Z of ratings on tracks ()

__ # of high ratings on t; _ fi;
f12 - # of ratings on t; ~ fio
Features fi5-f19 and foo-fo4: These two sets of features are similar to features fio-f14,
except they are on ¢;’s parent album al; and artist ar;.
Features fo5-fo9: This set of features are similar to features fio-f14, except they are on
tj’s parent genres g;1, g;2, -.., gjk- Since t; may have multiple parent genres, we specifically
give the mathematical equations of fos-fo7 as follows:

228

KDD Cup 2011 Track2, OPERA SOLUTIONS LLC

f25 - # of ratings on genres
> i—12. .. 7 of high ratings on gj 9
f26 - # of ratings on tracks ()
f . Zl:l,Q 77777 p # of high ratings on g;; Jos
27T — 2171,2 . # of ratings on gj — fos

Features f39-f32: These three features describe the rating history of user w; on the child
tracks of album al;. Features f3y and f3; are the relative frequencies that user u; rated and
rated highly on the child tracks of al; in the referred dictionary, respectively. Feature fio
is the average rating user u; placed on tracks of al;.

Features f33-f35: These three features are similar to f3g-f32, except they calculate the
statistics of child tracks of artist ar;.

Features f36-f3s: These three features are similar to f3o-f32, except they are the statistics
of child albums of artist ar;.

Features f39-f41: Similar to f3o-f32. They are the statistics of child tracks of genres g;1,
...y gjk- Since t; may have multiple parent genres, the mathematical equations for f3o-f41
are as follows:

> -1 p# of rated child tracks of g;; by u;
fz0 = > i—12 . % of child tracks of gj
D> i—12. p# of highly rated child tracks of g;; by u; 10
fao = S i—1o5 i# of child tracks of g; (10)
> i—19 . pratings on child tracks of gji by u;

,,,,,

.....

Features fyo-f14: Similar to fsg-fa1, just substitute ”albums” for ”tracks”.
Features fy5-f47: Similar to fsg-f41, just substitute ”artists” for ”tracks”.

229

	Introduction
	Our Approach
	The Data
	Feature Extraction and Analysis
	Six Classes of Features
	Feature Analysis

	MODELING
	Single Logistic Model and ANN Model
	Mixture of Multiple ANN Models through Bagging
	Gradient Boosted Decision Trees
	Committee-based Prediction System

	Conclusion and Discussion
	Detailed Description of Features

