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Abstract

We consider the celebrated Blackwell Approachability Theorem for two-player games with
vector payoffs. Blackwell himself previously showed that the theorem implies the existence
of a “no-regret” algorithm for a simple online learning problem. We show that this rela-
tionship is in fact much stronger, that Blackwell’s result is equivalent to, in a very strong
sense, the problem of regret minimization for Online Linear Optimization. We show that
any algorithm for one such problem can be efficiently converted into an algorithm for the
other. We provide one novel application of this reduction: the first efficient algorithm for
calibrated forecasting.

1. Introduction

Von Neumann’s minimax theorem (1928) establishes a central result in the theory of two-
player zero-sum games, essentially by providing a prescription to both players. This pre-
scription is in the form of a pair of optimal strategies, either of which attains the optimal
worst-case value of the game even without knowledge of the opponent’s strategy. However,
the theorem fundamentally requires that both players have utility that can be expressed as
a scalar. In 1956, in response to von Neumann’s result, David Blackwell posed an intriguing
question: what guarantee can we hope to achieve when playing a two-player game with a
vector-valued payoff?

When our payoffs are non-scalar quantities, it does not make sense to ask “can we earn
at least 7”. A sensible generalization is, “can we guarantee that our vector payoff lies in
some convex set S7” In this case the story is more difficult, and Blackwell observed that
an oblivious strategy does not suffice—in short, we do not achieve “minimax duality” for
vector-payoff games as we can when the payoff is a scalar. Blackwell was able to prove
that this negative result applies only for one-shot games. In his celebrated Approachability
Theorem (Blackwell, 1956), one can achieve a duality statment in the limit when the game
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is played repeatedly, and the player may learn from his opponent’s prior actions. Blackwell
constructed an algorithm (that is, an adaptive strategy) that guarantees the average payoff
vector “approaches” S.

Blackwell’s Approachability Theorem has the flavor of learning in repeated games, a
topic which has received much interest. In particular, there are a wealth of recent results
on so-called no-regret learning algorithms for making repeated decisions given an arbitrary
(and potentially adversarial) sequence of cost functions. The first no-regret algorithm for a
“discrete action” setting was given in a seminal paper by James Hannan in 1956 (Hannan,
1957). That same year, David Blackwell pointed out (Blackwell, 1954) that his Approach-
ability result leads, as a special case, to an algorithm with essentially the same low-regret
guarantee proven by Hannan.

Over the years several other problems have been reduced to Blackwell approachability,
including asymptotic calibration (Foster and Vohra, 1998), online learning with global cost
functions (Even-Dar et al., 2009) and more (Mannor and Shimkin, 2008). Indeed, it has been
presumed that approachability, while establishing the existence of a no-regret algorithm, is
strictly more powerful than regret-minimization; hence its utility in such a wide range of
problems. In the present paper we prove, to the contrary, that Blackwell’s Approachability
Theorem is equivalent, in a very strong sense, to no-regret learning for the setting of Online
Linear Optimization. This shows that the connection discovered by Blackwell, between
regret and approachability, is much stronger than originally supposed.

More specifically, we show how any no-regret algorithm can be converted into an algo-
rithm for Approachability and vice versa. This algorithmic equivalence is achieved via the
use of conic duality: an approachability problem over a convex cone K can be reduced to
an online linear optimization instance where we must “learn” within the polar cone K°.
The reverse direction is similar. This equivalence provides a range of benefits and one such
is “asymptotic calibrated forecasting”. The calibration problem was reduced to Blackwell’s
Approachability Theorem by Foster (1999), and a handful of other calibration techniques
have been proposed, yet none have provided any efficiency guarantees on the strategy. Using
a similar reduction from calibration to approachability, and by carefully constructing the
reduction from approachability to online linear optimization, we achieve the first efficient
calibration algorithm.

Related work There is by now vast literature on all three main topics of this paper:
approachability, online learning and calibration, see (Cesa-Bianchi and Lugosi, 2006) for an
excellent exposition.

Calibration is a fundamental notion in prediction theory and has found numerous ap-
plications in economics and learning. Dawid (1982) was the first to define calibration, with
numerous algorithms later given by Foster and Vohra (1998), Fudenberg and Levine (1999),
Hart and Mas-Colell (2000) and more (see e.g. (Sandroni et al., 2003; Perchet, 2009)).
Foster has given a calibration algorithm based on approachability (Foster, 1999). There
are numerous definitions (mostly asymptotic) of calibration in the literature. In this paper
we give precise finite-time rates of calibration. Furthermore, we give the first efficient al-
gorithm for calibration: attaining e-calibration (formally defined later) required a running
time o{i poly(%) for all previous algorithms, whereas our algorithm runs in time proportional
to log <.
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2. Game Theory Preliminaries

2.1. Two-Player Games

Formally, a two-player normal-form game is defined by a pair of action sets [n] and [m], for
natural numbers n, m, and a pair of utility functions uy, us : [n] x [m] — R. When player 1
chooses action i and player 2 chooses action j, player 1 and player 2 receive utilities w1 (7, j)
and wua(7, j) respectively. An important class of two-player games are known as zero-sum,
in that w1 = —uo. For zero-sum games we drop the subcripts on ui,us and simply write
u(i, j) for player 1’s utility, and —u(i,j) for player 2’s utility. For the remainder of this
section, we shall be concerned entirely with zero-sum games, hence we will refer to player
1 as the Player and player 2 as the Adversary.

It is natural to assume that the players in a game may include randomness in their
choice of action; simple games such as Rock-Paper-Scissors require randomness to achieve
optimality. When the players choose their actions randomly according to the distributions
p € A, and q € A,,, respectively, the expected utility for the Player is E” p(1)q(j)u(i, 7).
Von Neumann’s minimax theorem, widely considered the first key result in game theory,
tells us that both the Player and the Adversary have an “optimal” randomized strategy
that can be played without knowledge of the strategy of their respective opponent.

Theorem 1 (Von Neumann’s Minimax Theorem (Neumann et al., 1947)) For any
integers n,m > 0 and any utility function u : [n] x [m] — R,
max min 3 p(i)a(j)u(i, j) = min max > p()alj)u(i, j)
1,] 4,7
The statement of the minimax theorem is often referred to as duality as it swaps the min
and max. This result can be used to establish strong duality for linear programming. It was

proven by Maurice Sion in the 1950’s that von Neumann’s notion of duality can be extended
further, for a much larger class of input spaces and a more general class of functions.

Theorem 2 (Sion (1958)!) Given conver compact sets X C R™,Y C R™, and a function
f: X XY —= R convex and concave in its first and second arguments respectively, we have
Inf sup fxy) = sup Jnf f(x,¥).

In the present work we shall not need anything quite so general, although we use this
theorem to generalize slightly the class of two-player zero-sum games. Rather than define
the actions of our players as being drawn randomly from discrete sets [n] and [m], let the
players’ decision space be characterized by given compact convex sets X C R™ and JJ C R™
respectively. In addition, we shall assume that the utility is characterized by a biaffine
function u : X x Y — R; that is, u(ax + (1 — a)x',y) = au(x,y) + (1 — a)u(x’,y) and
u(x,ay + (1 — a)y’) = au(x,y) + (1 — a)u(x,y’) for every 0 < a < 1, x,x’ € X and
y,y’ € Y. Following Sion’s theorem, we arrive at the following.

Corollary 3 For compact conver sets X C R"™ and Y C R™ and any biaffine function
u: X xY —R, we have

max min u(x = min max u(xX
xe}((ye)i ( ’y) yey xe))(( ( ’y)
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This alternative description of a zero-sum game has two advantages. First, we now
assume that both players are deterministic. That is, we have converted the notion of a ran-
domized strategy on a discrete action space to a deterministic strategy x inside of a convex
set X. Rather than evaluate the expected utility of a randomized action, this expectation
is now incorporated via the linearity of u(-,-). Note, crucially, that the assumptions that
u is biaffine and X and ) are convex imply that neither player gains from randomness, as
ExEy u(x,y) = u(Exx, Eyy).

A second advantage of this framework is that it allows us to work with action spaces
that might seem prohibitively large. For example, we can imagine a game in which each
player must select a route in a graph G between two endpoints, and the utility is the amount
of overlap of their paths. The set of paths in a graph is exponential, and even counting
the number of such paths is #P-hard. However, we may instead set X and ) to be the
flow polytope of G. The flow polytope can be described by a polynomially-sized number of
constraints, and hence is much easier to work with.

2.2. Vector-Valued Games

Let us now turn our attention to Blackwell’s question: what can be guaranteed when
the utility function of the zero-sum game is vector-valued? Following the definition in
the previous section, we can define a vector-valued game in terms of some biaffine utility
function u : X x Y — R? from a product of two convex compact decision spaces X C R”
and Y C R™ to d-dimensional space. The biaffine property is defined in the natural way.

Note that we may not apply our usual notions of utility maximization when dealing
with vector-valued games—what does it mean to “maximize” a vector? Furthermore, the
concept of “zero-sum” is not immediately clear. Blackwell proposed the following frame-
work: suppose that the Player, who selects x € X, would like his vector payoff u(x,y) to
land inside of a particular closed convex set S C R?, where S is fixed and known to both
players. We shall say that the Player wants to satisfy S. The Adversary, who selects y € ),
would like to prevent the Player from satisfying S.

Let us return our attention to the simple case of scalar-valued games discussed in Sec-
tion 2.1. The duality statement achieved in the Minimax Theorem, typically stated in
terms of swapping the order of min and max, can instead be formulated in terms of swap-
ping quantifiers V and 3.

Proposition 1 For any conver compact sets X C R™ and Y C R™, and any biaffine utility
function u : X x Y — R, we have the following implication for any c € R:

VyeYIxeX: ux,y)€le,o0) = IxeXVyel: ulx,y)E€ [c,00).
This proposition is simply another way to state duality, in the following form:

min max u(x >c =— maxminu(x > cC.
min magcu(x, y) > mayc min u(x,y) >
Put another way, if the Player can earn ¢ by choosing his strategy with knowledge of the
Adversary’s strategy, then he can earn ¢ obliviously as well.

Here we have simply taken the Minimax Theorem and stated it in terms of satisfying a
set, namely the set S = [¢,00) for some value c. This interpretation begs the question: can
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we achieve a similar “duality” statement for vector-valued games? In other words, given a
biaffine utility function u: X x J — R% and any convex set S C R?, does the statement

VyeYIxeX: uxyesS = IxeXVye): ulxy)es

hold in general? The answer, unfortunately, is no! Consider the following easy example:
X =Y :=10,1], the payoff is simply u(z, y) := (z,y) for z,y € [0, 1], and the set in question
is S := {(z,2) Vz € [0,1]}. Certainly the premise is true, since for every y there exists an
x, namely x = y, such that u(z,y) € S. On the other hand, there is no such single = for
which u(z,y) € S for any y.

2.3. Blackwell Approachability

While we might hope that minimax duality, framed in terms of set satisfiability, would
extend from scalar-valued games to vector-valued games, the previous example appears to be
a nail in the coffin. But in fact the story is not quite so bad: the proposed example is difficult
because it is a one-shot game. What Blackwell observed, and led to the Approchability
Theorem, is that if the game is played repeatedly then one can achieve duality “in the
limit.” To make this precise we introduce some definitions.

Definition 4 A Blackwell instance is a tuple (X, Y, u(-,-),S), with X C R™ and Y C R™
compact and conver, u : X x Y — R? biaffine, and S C R? convex and closed. For any
instance (X,Y,u(-,-),S), we say that

e S is satisfiable if Ix € X Vy € YV : u(x,y) € S.
e S is response-satisfiable if Yy € Y Ix € X : u(x,y) € S.
e S is halfspace-satisfiable if, for any halfspace H O S, H is satisfiable.

To recap, when our utility function u is scalar-valued, i.e. for zero-sum games where
d = 1, then minimax duality holds and, according to Proposition 1, this be rephrased
as “If S := [c,00) is response-satisfiable then S is satisfiable.” On the other hand, for
vector-valued games it is not the case in general that “S is response-satisfiable — S is
satisfiable” for arbitrary sets S. What Blackwell showed is that response-satisfiability does
lead to a weaker condition, termed approachability. Before we define this precisely, let us
use the notation dist(z,U) to denote the distance between a point z and some convex set
U, that is infxey ||z — x||.

Definition 5 Given a Blackwell instance (X,Y,u(-,-),S), we say that S is approachable
if there exists some algorithm A which selects points in X such that, for any sequence
Y1,¥2,... €Y, we have

dist(% Zthl u(xye,yt), S) =0 as T — oo,

where x¢ < A(y1,¥2, -, ¥i-1)-

Under this new notion, we now allow the Player to implement an adaptive strategy for
a repeated version of the game, and we require that the average utility vector becomes
arbitrarily close to S. Intuitively, we may think of approachability as “satisfiability in the
limit”.
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Theorem 6 (Blackwell’s Approachability Theorem (Blackwell, 1956)) For any Black-
well instance (X,Y,u(-,-),S), S is approachable if and only if it is response-satisfiable.

The beauty of this theorem is that, while we may not be able to satisfy .S in a one-shot
version of the game, we can satisfy the set “on average” if we may play the game indefinitely.

This version of the theorem, which appears in Even-Dar et al. (2009), is not the one
usually attributed to Blackwell. The original theorem uses the concept of halfspace satisfia-
bility. It is not difficult to establish the equivalence of the two statements via the following
lemma, whose proof uses a nice application of minimax duality.

Lemma 7 For any Blackwell instance (X,Y,u(-,-),S), S is response-satisfiable if and only
if it is halfspace-satisfiable.

Proof (=) Assume that S is response-satisfiable. Hence, for any y there is an xy such
that u(xy,y) € S. Now take any halfspace H O S parameterized by 6,c, that is H =
{z : (0,z) < c}. Then let us define a scalar-valued game with utility u(x,y) = (6,u(x,y)).
Notice that H D S implies that (8,z) < c for all z € S. Since S is response-satisfiable, for
every y there is an x, such that u(xy,y) € S = u(xy,y) < c. We then immediately see
that
max min u(x,y) < r;lggwxy,y) <c

It follows from Corollary 3 that minkey maxyey u(x,y) < c. Let x* € X be any minimizer
of the latter expression and notice that, for any y € ), we have that u(x*,y) < ¢. It follows
immediately that H is satisfiable.

(«<=) Assume that S is not response-satisfiable. Hence, there must exists some yo € Y
such that u(x,yo) ¢ S for every x € X'. Consider the set U := {u(x,yo) for all x € X'} and
notice that U is convex since X is convex and u(-,yo) is affine. Furthermore, because S is
convex and SNU = () by assumption, there must exist some halfspace H separating the two
sets, that is S € H and H NU = (). By construction, we see that for any x, u(x,yo) ¢ H
and hence H is not satisfiable. It follows immediately that S is not halfspace-satisfiable. B

Although it is not posed in this language, Blackwell’s original theorem uses the concept
of a halfspace oracle. Given a Blackwell instance (X, ), u(-,-),S), define a halfspace oracle
to be a function O that takes as input any halfspace H O S and returns a point O(H) =
xyg € X, and we shall refer to a halfspace oracle as valid if it satisfies that for each halfspace
H D S, u(xpy,y) € H foranyy € ).

Theorem 8 For any Blackwell instance (X,),u(-,-),S), the set S is approachable if and
only if there exists a valid halfspace oracle.

Notice that the existence of a valid halfspace oracle is equivalent to the halfspace-satisfiability
condition. Hence, via Lemma 7, this theorem is equivalent to Theorem 6.

To achieve approachability, following Definition 5 one must construct an algorithm .4
that maps the observed subsequence y1,...,y:—1 € YV to a point x; € X. By the previous
theorem, in order for the set S to be approachable, there must be a valid halfspace oracle
O, and hence A may make calls to O. Blackwell actually provides such an algorithm, quite
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elegant for its simplicity, which can be found in his original work (Blackwell, 1956) as well
as in the book of Cesa-Bianchi and Lugosi (2006).

We note that, when an approachability algorithm A is adapted to a Blackwell instance
(X, Y,u(-,-),S), and makes calls to a halfspace oracle O, we may write A?(,y,u,s to make
the dependence clear.

3. Online Linear Optimization

Online Convex Optimization (OCO) has become a popular topic within Machine Learn-
ing since it was introduced by Zinkevich (2003), and there has been much followup work
(Shalev-Shwartz and Singer, 2007; Rakhlin et al., 2010; Hazan, 2010; Abernethy et al.,
2009). It provides a generic problem template and was shown to generalize several exist-
ing problems in the realm of online learning and repeated decision making. Among these
are online pattern classification, the “experts” or “hedge” setting, and sequential portfolio
optimization (Freund and Schapire, 1995; Hazan et al., 2007).

In the OCO setting, we imagine an online game between Player and Nature. Assume
the Player is given a convex decision set  C R% and must make a sequence of a decisions
X1,X2,... € K. After committing to x;, Nature reveals a convex loss function ¢;, and Player
pays ¢y(x;). The performance of the Player is typically measured by regret which we shall
define below. In the present work we shall be concerned with the more specific problem
of Online Linear Optimization (OLO) where the loss functions are assumed to be linear,
l4(x) = (f;,x) for some f; € RY.

We define the Player’s adaptive strategy £, which we refer to as an OLO algorithm, as a
function which takes as input a subsequence of loss vectors fi,...,f;_1 and returns a point
x¢ < L(f1,..., 1), where x; € K.

Definition 9 Given an OLO algorithm L and a sequence of loss vectors f1,fa,... € R?, let
Regret(L; f1.7) :== EtT:1<ft,xt) — minygeg ZtT:1<ft7X>- When the sequence of loss vectors is
clear, we may simply write Regret(L).

An important question is whether an OLO algorithm has a regret rate which scales sublin-
early in T. A sublinear regret is key, for then our average performance, in the long run, is
essentially no worse than the best in hindsight. We use the term no-regret algorithm when
it possesses this property.

Theorem 10 For any bounded decision set IC C R there exists an algorithm Lx such that
Regretr (L) = o(T) for any sequence of loss vectors {f;} with bounded norm.

Later in the paper we provide one such algorithm, known as Online Gradient Descent,
proposed by Zinkevich (2003).

Before proceeding, let us demonstrate the value of no-regret algorithms by proving an
aforementioned result. We shall sketch a proof of the minimax statement of Corollary 3.
Assume we are given convex and compact decision space X C R™ and Y C R™, and
without loss of generality assume we have a utility function u : X x Y — R of the form
u(x,y) = x' My for some M € R™™. Weak duality, i.e. minycy maxyexx My >
maXyey Minyey x' My is trivial, and so we turn our attention to the reverse inequality.
We shall imagine our game is played repeatedly, where on round ¢ the first player chooses
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x; and the second chooses y;, but where both players select their strategies according to a no-
regret algorithm. For every ¢ we shall set x; < Lx(f1,...,fi_1) and y; < Ly(g1,...,8-1),

where we define the vectors f; := —My; and g, := x| M By applying the definition of
regret twice, we have

%Z?:1X;Myt mln ( Et 1Xt) My_|_REgLT(£y) < glea‘)}(.(;neli’}lXTMy—i_ (T);(l)
%Zzﬂ:lszyt:?Ga;( XTM( Zt 13’t> RCLMX) > minmaxx' My — (77:)_(2)

yeY xekX

Combining these two statements gives minycy maxyecx x" My < maxxexy minycy x' My +
@. Of course, we can let T' — co which immediately gives the desired inequality.

The previous example foreshadows a key result of this paper, which is that any no-
regret learning algorithm can be converted into an approachability strategy. If we interpret
Blackwell Approachability as a generalized form of Minimax Duality for vector-valued games
then it may come as no surprise that regret-minimizing algorithms would provide a tool in
establishing both game-theoretic results. However, in a certain sense regret-minimization is
too heavy a hammer for proving Minimax Duality. For one, the above proof requires that
we imagine a repeated version of the game, whereas scalar-valued game duality holds even
for one-shot. Indeed, more standard proofs of von Neumann’s result do not rely on repeated
play. Blackwell Approachability, on the other hand, fundamentally involves repeated play,
and in fact we shall show that regret-minimization is the perfectly-sized hammer, as it is
algorithmically equivalent to approachability.

4. Equivalence of Approachability and Regret Minimization

4.1. Convex Cones and Conic Duality

We shall define some basic notions and then state some simple lemmas. Henceforth we use
the notation Ba(r) to refer to the fo-norm ball of radius . The notation x’ @ x is the vector
concatenation of x and x’.

Definition 11 A set X C R? is a cone if it is closed under multiplication by nonnegative
scalars, and X is a convex cone if it is also closed under element addition. Given any set
K C R?, define the conic hull cone(K) := {ax : a € Ry,x € K} which is also a cone in
Re. Also, given any convex cone C C R%, we can define the polar cone of C as

0.— {9 cR?: (0,x) <0 for allx € C}.

It is easily checked that if K is convex then cone(K) is also convex. The following Lemma
is folklore.

Lemma 12 If C is a convex cone then (1) (C°)Y = C and (2) supporting hyperplanes in
C° correspond to points x € C, and vice versa. That is, given any supporting hyperplane
H of CY, H can be written ezactly as {6 € R : (0,x) = 0} for some vector x € C that is
unique up to scaling.

The distance to a cone can conveniently be measure via a “dual formulation,” as we now
show.
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Lemma 13 For every convex cone C in R?

dist(x,C) = Oecrglggﬂl)(@,x) (3)

Proof We need two simple observations. Define m(x) as the projection of x onto C'. Then
clearly, for any x,

dist(x, C) = [lx — 7o ()| (4)
(x — mc(x),y) <0Vy € C and hence x — m¢(x) € C° (5)
(x —mo(x),mc(x)) =0 (6)

Given any 8 € C° with ||| < 1, since 7¢(x) € C we have that
(0,x) < (0,x — mo(x)) < [0]|[[x — mc(x)|| < [x = 7w,

which immediately implies that maxgeco g)<1(6, %) < dist(x, (). Furthermore, by select-

ing 0 = % which has norm one and, by (4), is in C°, we see that
max (0 x)>< x — mo(x) x> < x—melx) o, (x)> Ix — 7o (x)]|
’ =\ . — /N =\ 171 —  apXx—TC = - nc ;
9eC,|6]<1 [x —me(x)] [x = me(x)]
which implies that maxgcco g <1(6,%) > dist(x,C) and hence we are done. [ ]

Our results require looking at convex cones rather than convex sets, hence we must
consider the process of converting a set into a cone. In order to not lose information about
the underlying set K C R?, we shall embed the set into a higher dimension, and instead
look at cone({x} x K) C R where k := maxyex ||x|| is the diameter of . We prove that
this process of “lifting” and conifying does not perturb distances by more than a constant.

Lemma 14 Consider a compact convez set K C H in R? and x ¢ K. Let X := k ®x and
K :={k} x K. Then we have

dist(x, cone(K)) < dist(x,K) < 2dist(x, cone(K)) (7)

Proof Since dist(x,
diately. i
For notational convenience let W = Toone(K) (y) be the projection of y onto cone(K) and

) = dist(x,K) and K C cone(K), the first inequality follows imme-

v = mg(y) be the projection onto K. Consider the plane determined by the three points
x,w,v. Notice that the triangle A(x,w,Vv) is similar to the triangle A(0,x @& 0,v), and
hence by triangle similarity

vl _ Ix=vll _ dist(x,K)
k@0l [|x—w|[ dist(x,cone(K))

For a visual aid, we provide a picture of this triangle similarity in Figure 1. Since v € K
we have [|v] < ||K]| < 2k. In addition ||k & 0] = k and the result follows. [ |
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Figure 1: A geometric interpretation of the proof of Lemma 14.

4.2. Duality Theorems

In the previous sections we have presented two sequential decision problems, summarized
in Figure 2. We now show that these two decision problems are algorithmically equivalent:
any strategy (algorithm) that achieves approachability can be converted into an algorithm
that achieves low-regret, and vice versa.

Blackwell Approachability

Problem
Given a Blackwell instance
(X,Y,u(-,-),5) and a valid half-

space oracle O H — xg € X,
construct an algorithm A so that, for
any sequence yi,yo,... €V,

Online Linear Optimization
Problem

Given a compact convex set K C RY,
construct a learning algorithm £ so
that, for any sequence of loss vectors
fi,f5,... € R we have vanishing re-
gret, that is

T T T
1 .
dist (T Z u(x¢, yt), S) —0 Z(ft,xt> —mip Z(ft,x> =o(T),
t=1 t=1 t=1
where x; <+ A(y1,...,¥t-1)- where x; + L(f1,...,f_1).

Figure 2: A summary of Blackwell Approachability and Online Linear Optimization

We present this equivalence as a pair of reductions. In Algorithm 1 we show how a
learner, presented with a OLO problem characterized by a decision set K and an arriv-
ing sequence of loss vectors fi, fs, ..., can minimize regret with only oracle access to some
approachability algorithm A. In Algorithm 2 we show how a player, presented with a
Blackwell instance (X,),u(:,-),S) and a valid halfspace oracle O, can achieve approach-
ability when only given oracle access to a no-regret OLO algorithm £. For the remainder
of the paper, for a given Blackwell instance (X, Y, u(-,-),S) and approachability algorithm
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A, D(A;y1,...,yr) shall refer to the rate of approachability dist (% Zle u(X¢, yt), S).

We shall write D7(A) when the input sequence is clear. For the convex set K, we shall let
K := maxxek ||X||, the “norm” of the set .

Algorithm 1 Conversion of Approachability Alg. A to Online Linear Optimization Alg.
L

1: Input: compact convex decision set K C R?

2: Input: sequence of cost functions fi, f5,...,fp € By(1)

3: Input: approachability oracle A

4: Set: Blackwell instance (X, Y, u(-,),S), where X := K, Y := Ba(1), u(x,f) = <H o—f,
and S := cone({x} x K)°

5: Construct: valid halfspace oracle O // Existence established in Lemma 15

6: fort=1,...,7 do

7 Let: L(fy,...,fi—1) := Ag,y,u,S(f17 oo filn)

8:  Receive: cost function f;

9: end for

In Algorithm 1 we require the construction of a valid halfspace oracle. In the lemma
below we give one such oracle and prove that it is valid, but we note that this construction
may not be the most efficient in general; any particular scenario may give rise to a simpler
and faster construction.

Lemma 15 There exists a valid halfspace oracle for the Blackwell instance in Algorithm 1.

Proof Assume we have some halfspace H which contains S = cone({x} x k). We can

assume without loss of generality that H is tangent to S and, since S is a cone, H meets the

origin; that is, H = {0 : (8,zy) < 0} for some zy € R%. Furthermore, H O cone({x} x K)°

implies that zy € (cone({x} x K)°)? = cone({x} x K). Equivalently, zy = a(x & xp)

for some xy € K and some « > 0. With this in mind, we construct our oracle by setting
It remains to prove that this halfspace oracle is valid. We compute (u(xg,f),zm):

(u(xp,f),zy) = (1, xy) @ —f,ar © axy) = of, xg) + (—f, axpy) = 0.

By definition, (u(xg,f),zg) < 0 implies that u(xg,f) € H for any f and we are done. W

Theorem 16 The reduction defined in Algorithm 1, for any input algorithm A, produces
an OLO algorithm L such that Re%et(c) < 2xkDp(A).

Proof Applying Lemmas 13 and 12 to the definition of Dr(.A) gives

T T
1 1
Dr(A) =dist ( E u(xy, f;), > = max < g u(xy, f;), > (8)
t=1 t=1

wEcone(k®K)NBY(1
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Notice that, in this optimization we can assume w.l.o.g. that [|[w| =1, or w = 0. In the

former case we can write w =

” EB ” for some x € K, and we drop the latter case to obtain

the inequality

v

T
KDX
Dr(A) I)?g%< Z (x¢, ft), @X|>

=1

1 (Zt=1<ft7 Xt) — ZtT=1<ftv X>>

= — Inax

T xek Ix & x||
(S x) = L1 6X7))  LRegrety(A
T \ 2et=1\1ts t=1\1t ST egret(A)
- |k @ x| - 2K ’
where we set x* := arg minyex ZtT:1<ft, X). [ ]

We turn our attention to the second reduction.

Algorithm 2 Conversion of Online Linear Optimization Alg. £ to Approachability Alg. A

1:

2:
3:
4:

o

Input: Blackwell instance (X, Y, u(,-),5), with S a cone; and a valid halfspace oracle
@]
Input: Online Linear Optimization oracle £
Set: K =5°N By(1)
fort=1,...,7 do
Query L: 0, «+ Lx(f1,...,f—1), where fs + —u(xs,ys)
Query O: x4 < O(Hp,) where Hg, := {z: (0+,2) < 0}
Let: A(y1,...,¥t-1) = X¢
Receive: y; € Y
end for

We now prove a similar rate for reverse direction. Here we assume that S is a cone, but

we relax this restriction next.

Theorem 17 The reduction in Algorithm 2, when S is a cone, leads to a rate of approach-
ability of algorithm A of Dp(A;y1.1) < w.

Proof We state precisely the halfspace oracle guarantee from line 6. We know that
u(xs,y) € Hp, or equivalently (6, u(xs,y)) < 0 for any y € Y. In particular, since
u(x¢,yt) = —f;, we have (0, f;) > 0. We bound Dr(.A) by applying Lemma 13 to obtain:

Dr(A) =dist (

Nl =

T T
Zu Xt,Yt), ) = Iglea}é(< Z u(x¢,yt), > —max ( Z f;, 0 >
t=1 t=1

T

T
1 1
< T (; 1 (f,0;) mm tg 1 (f;, 0 ) = TRegretT(A) 9)

where the inequality follows by the halfspace oracle guarantee. |
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For a Blackwell instance (X,),u(,-),S), even when S is not a cone we can still use
Algorithm 2 by lifting S: apply Algorithm 2 to the instance (X, Y, u'(,-),S’), where S’ :=
cone({k} x S) and u'(x,y) := kK D u(x,y).

Corollary 18 Given a Blackwell instance (X,Y,u(-,-),S) with compact S, and let its lifted
instance be (X, Y,u/(-,-),S") as described above. Then

1
dist (T Zu(xt,yt),5> < 2.dist <

t=1

M| =

Zu/(XtJt)aS,) < %RegretT(.A)

t=1

Proof Apply Lemma 14 to Theorem 17. |

We include the compactness assumption only because Lemma 14 requires it yet it is
not necessary; the size of S does not enter into the bound. For any Blackwell instance
(X,Y,u(:,-),S) with non-compact S, we may always consider a functionally equivalent
instance (X, Y, u(-,-), So), where Sy C S is compact. Letting U := {u(x,y) : x € X,y € V},
which is compact, we may simply let Sy be the convex hull of all projections of points in U
onto S. Hence dist(z, S) = dist(z,Sy) for all z € U.

5. Efficient Calibration via Approachability and OLO

Imagine a sequence of binary outcomes, say ‘rain’ or ‘shine’ on a given day, and imagine a
forecaster, say the weatherman, that wants to predict the probability of this outcome on
each day. A natural question to ask is, on the days when the weatherman actually predicts
“30% chance of rain”, does it actually rain (roughly) 30% of the time? This exactly the
problem of calibrated forecasting which we now discuss.

There have been a range of definitions of calibration given throughout the literature,
some equivalent and some not, but from a computational viewpoint there are significant
differences. We thus give a clean definition of calibration, first introduced by Foster (1999),
which is convenient to asses computationally.

We let 41,42, ... € {0,1} be a sequence of outcomes, and p1, pa, ... € [0, 1] a sequence of
probability predictions by a forecaster. We define for every T" and every probability interval
[p—¢/2,p+¢/2) for p € [0,1] and € > 0, the quantities

i vdlpe € p—e/2,p+¢/2)
TLT(p, 8) '

T
nr(pe) =Y llp €lp—e/2,p+¢/2)],  pr(pe):
t=1

The quantity pr(p,e) should be interpreted as the empirical frequency of y; = 1, up to
round 7', on only those rounds where the forecaster’s prediction was within /2 of p. The
goal of calibration, of course, is to have this empirical frequency pr(p,e) be close to the
estimated frequency p in the limit. The standard definition of a calibrated forecaster is one
that satisfies

forall p € [0,1],e > 0: limsup|pr(p,e) —p| < O(e) wunless np(p,e) =o(T). (10)

T—o0
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Requiring that np(p,e) does not grow too slowly is an important condition, as we can not
expect the forecaster to be calibrated in regions on which he predicts only a small number
of times. On the other hand, this case-sensitive condition is somewhat awkward, and we
instead use the following equivalent notion.

Definition 19 Let the (¢1,¢)-calibration rate for forecaster A be

el
nr(te, ) . . €
C:(A) = max { 0, ; T(T) jie — prie.e)| - 5

We say that a forecaster is ({1,¢)-calibrated if C5.(A) = o(1).

The definition of asymptotic calibration considers the “total error” over an e-grid, and
it adjusts the normalization for each term to % The benefit here is that we can ignore
intervals in this grid for which np(p,e) = o(T). In addition, we subtract the constant /2
which is an artifact of the discretization by e; this is the smallest constant which allows
for limsupp_, o, C7(A) < 0. A standard reduction in the literature (see e.g. (Cesa-Bianchi
and Lugosi, 2006)) shows that a fully-calibrated algorithm (i.e. one satisfying (10)) can be
constructed from and (¢1, ¢)-calibrated algorithm. Henceforth we only consider the (¢1,¢)
condition.

As our goal is to minimize the calibration score C7,, we can interpret this value instead
as a distance to the f1-norm ball. Define the calibration vector cp € RET at time T as:

er(i) = "G (is — prlic, )).
Claim 1 Whenever cr ¢ Bi(g/2), we have
ngw = distl(CT, B1(€/2))

Proof Notice that for any x: disti(x, Bi(¢/2)) := miny. |y, <c/2 [[x—¥|l1 = max{0, —¢/2+
Ix||1}. The second equality follows by noting that an optimally chosen y will lie in the same
quadrant as x. When we set x = cr, it is clear that ||cr|[1 > £/2 given our assumption that
Cr ¢ Bl (8/2). |

The utility of this claim shall be to convert the problem of ({1, e)-calibration to a problem
of approachability; that is, can we approach the set Bj(¢/2) for a particular vector-valued
game? In the following section we describe this construction in detail.

5.1. Existence of Calibrated Forecaster via Blackwell Approachability

A surprising fact is that it is possible to achieve calibration even when the outcome sequence
{y:} is chosen by an adversary, although this requires a randomized strategy of the fore-
caster. Algorithms for calibrated forecasting under adversarial conditions have been given
in Foster and Vohra (1998), Fudenberg and Levine (1999), and Hart and Mas-Colell (2000).

Interestingly, the calibration problem was reduced to Blackwell’s Approachability Theo-
rem in a short paper by Foster (1999). Foster’s reduction uses Blackwell’s original theorem,
proving that a given set is halfspace-satisfiable, in particular by providing a construction for
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each such halfspace. Here we provide a reduction to Blackwell Approachability using the
response-satisfiability condition — that is by using Theorem 6 — which is both significantly
easier and more intuitive than Foster’s construction?. We also show, using the reduction
to Online Linear Optimization from the previous section, how to achieve the most effi-
cient known algorithm for calibration by taking advantage of the Online Gradient Descent
algorithm of Zinkevich (2003), using the results of Section 4.

We now describe the construction that allows us to reduce calibration to approachability.
For any € > 0 we will show how to construct an (¢1, )-calibrated forecaster. Notice that from
here, it is straightforward to produce a well-calibrated forecaster (Foster and Vohra, 1998).
For simplicity, assume € = 1/m for some positive integer m. On each round ¢, a forecaster
will now randomly predict a probability p; € {0/m,1/m,2/m,...,(m —1)/m,1}, according
to the distribution wy, that is Pr(p; = ¢/m) = w(i). We now define a vector-valued game.
Let the player choose w; € X := A,,11, and the adversary choose y; € ) := [0, 1], and the
payoff vector will be

atwi )= (wi(0) (= ) w0 (= o) coooowilmu - 0) (1)

m

Lemma 20 Consider the vector-valued game described above and let S := Bi(e/2). If we
have a strategy for choosing wy that guarantees approachability of S, that is % Ethl u(wye, yp) —
S, then a randomized forecaster that selects py according to wy is ({1, ¢€)-calibrated with high
probability.

The proof of this lemma is straightforward, and is similar to the construction in Foster
(1999). The key fact is that % ST u(wy, y:) = E[cr], where the expectation is taken over
the algorithms draws of every p; according to the distribution wy. Since each p; is drawn
independently, by standard concentration arguments we can see that if % Ethl u(wy, yy) is
close to the ¢1ball of radius £/2, then the ({1, e)-calibration vector is close to the £/2 ball
with high probability.

We can now apply Theorem 6 to prove the existence of a calibrated forecaster.

Theorem 21 For the vector-valued game defined in (11), the set Bi(g/2) is response-
satisfiable and, hence, approachable.

Proof To show response-satisfiability, we need only show that, for every strategy y € [0, 1]
played by the adversary, there is a strategy w € A,, for which u(w,y) € S. This can be
achieved by simply setting ¢ so as to minimize |ic — y|, which can always be made smaller
than /2. We then choose our distribution w € A,,11 to be a point mass on i, that is we
set w(i) = 1 and w(j) = 0 for all j # i. Then u(w,y) is identically 0 everywhere except
the ith coordinate, which has the value y —i/m. By construction, y —i/m € [—-1/m, 1/m],
and we are done. [}

2. A similar existence proof was discovered concurrently by Mannor and Stoltz (2009)
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5.2. Efficient Algorithm for Calibration via Online Linear Optimization

We now show how the results in the previous Section lead to the first efficient algorithm
for calibrated forecasting. The previous theorem provides a natural existence proof for
Calibration, but it does not immediately provide us with a simple and efficient algorithm.
We proceed according to the reduction outlined in the previous section to prove:

Theorem 22 There ezists a ({1,¢)-calibration algorithm that runs in time O(log1) per

. . . e 1
iteration and satisfies C5 = O (\/ﬁ)

The reduction developed in Theorem 17 has some flexibility, and we shall modify it for
the purposes of this problem. The objects we shall need, as well as the required conditions,
are as follows:

1. A convex set K

2. An efficient algorithm A which, for any sequence fi,fs, ..., can select a sequence of
points 01,605,... € K with the guarantee that ZtT:1<ft,9t> — mingek Z;‘F:l<ft,0> =
o(T). For the reduction, we shall set f; < —u(wy, y¢).

3. An efficient oracle that can select a particular w; € X for each 0; € K with the
guarantee that

T T
1 1
dist (T;u(wtvyt)7s> < T <;< u(we, yt),0 mln E u(we, yr), >>
where the function dist() can be with respect to any norm.

The Setup Let K = Boo(1) = {8 € R? : ||0]|«c < 1} be the unit cube. This is an
appropriate choice because we can write distq(x, By(g/2)) for x ¢ B1(¢/2)) as

disti(x,Bi(e/2)) := min x—y|i=-¢/24+|x]|1 =—€/2— min (—x,0); (13
W Bie/2) = minx—ylh=—e/2 4 = —2/2 = min_ (~x,0): (13)

The former equality was proved in Claim 1. Furthermore, we shall construct our oracle
mapping 6 — w with the following guarantee: (u(w,y),0) < £/2 for any y. Using this
guarantee, and if we plug in x = % 23:1 u(wy,y¢) (13), we arrive at:

dist; (ZtT—lll(Wt’yt)’Bl(e/Q)) = /2 min <—ZtT_1u(wt,yt),0>

T

T T
1
S T <Z< u(wtayt mll’lz wt7yt >)
t=1

t=1

This is precisely the necessary guarantee (12).
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Algorithm 3 Efficient Oracle mapping O : w — 0
Input: @ such that ||0]|e <1
if 6(0) <0 then
w < 0y // That is, choose w to place all weight on the Oth coordinate
else if §(m) > 0 then
W < 0, // That is, choose w to place all weight on the last coordinate
else

Binary search 0 to find coordinate i such that 6(:) >0 and (i +1) <0
0(i)"! ‘ —6(i+1)~1 o
W 0(i)~1-0(i+1)-! 0; + () 1—0(i+1) 1 Oit1
end if

Return w

Constructing the Oracle We now turn our attention to designing the required oracle in
an efficient manner. In particular, given any 0 with ||0]|sc < 1 we must construct w € Ay, 11
so that (¢(w,y),0) < e/2 for any y. The details of this oracle are given in Algorithm 3. It
is straightforward why, in the final else condition, there must be such a pair of coordinates
1,1+ 1 satisfying the condition. We need not be concerned with the case that 6(i + 1) = 0,
where we can simply define % =0 and T =1 leading to w < d;+1. It is also clear that,
with the binary search, this algorithm requires at most O(logm) = O(log 1/¢) computation.

In order to prove that this construction is valid we need to check the condition that,
for any y € {0,1}, (u(w,y),0) < /2; or more precisely, > i*, 0(i)w(i) (y — L) < /2.
Recalling that m = 1/e, this is trivially checked for the case when 6(1) < 0 or 8(m) > 0.
Otherwise, we have

B 0(i+1)-(—6(i+1)"") it+1
(u(w,9),6) = 0(2‘)1 oz+1 < ) 0(i) T —0(i+1)! <y_ m>
1 s |

Tm

[u—

max(|0()], |0 +1)])

| M

0(i)~1 —0(i+1)-

The Learning Algorithm The final piece is to construct an efficient learning algorithm
which leads to vanishing regret. That is, we need to construct a sequence of 6,’s in the unit
cube (denoted Buo(1)) so that

T T

> (u,6;) -~ min (uz,8) = o(T),

] 0cBso(1) )

where u; := u(wy, y). There are a range of possible no-regret algorithms available, but we
use the one given by Zinkevich known commonly as Online Gradient Descent (Zinkevich,
2003). The details are given in Algorithm 4. This algorithm can indeed be implemented
efficiently, requiring only O(1) computation on each round and O(min{m, T'}) memory. The
main advantage is that the vectors u; are generated via our oracle above, and these vectors
are sparse, having only at most two nonzero coordinates. Hence, the Gradient Descent Step
requires only O(1) computation. In addition, the Projection Step can also be performed
in an efficient manner. Since we assume that 6; € By (1), the updated point 6;,; can
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Algorithm 4 Online Gradient Descent

Input: convex set K C R¢
Initialize: 61 =0

Set Parameter: n = O(T~/?)
fort=1,...,7 do

Receive u;

0, « 0 —nuy // Gradient Descent Step

0¢+1 < Projecty (0,1, K) // L2 Projection Step
end for

violate at most two of the £, constraints of the ball By, (1). An ¢5 projection onto the cube
requires simply rounding the violated coordinates into [—1,1]. The number of non-zero
elements in @ can increase by at most two every iteration, and storing 6 is the only state
that online gradient descent needs to store, hence the algorithm can be implemented with
O(min{7T,m}) memory. We thus arrive at an efficient no-regret algorithm for choosing 6.

Putting it all Together We can now fully specify our calibration algorithm given the
subroutines defined above. The precise description is in Algorithm 5, which makes queries
to Algorithms 3 and 4.

Algorithm 5 Efficient Algorithm for Asymptotic Calibration
Input: € = 1/m for some natural number m
Initialize: 81 = 0, wy € A, 41 arbitrarily
fort=1,...,7 do
Sample iy ~ wy, predict p; = %, observe y; € {0, 1}

Set w; := u(wy, yr) // Vector-valued game defined in (11)

Query learning algorithm: 6,,; < Update(8; u;) // Subroutine from Algorithm 4

Query halfspace oracle: w1 < O(041) // Subroutine from Algorithm 3
end for

Proof [of Theorem 22] Here we have bounded the distance directly by the regret, using
equation (12), which tells us that the calibration rate is bounded by the regret of the online
learning algorithm. Online Gradient Descent guarantees the regret to be no more than
DGWT, where D is the ¢, diameter of the set, and G is the fo-norm of the largest cost

vector. For the ball By (1), the diameter D = \/; and we can bound the norm of our loss
vectors by G = v/2. Hence:

Ci = diss(er,Bae/2) < P < Cb - o L) (4
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