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Abstract

A large set of signals can sometimes be described sparsely using a dictionary, that is, every
element can be represented as a linear combination of few elements from the dictionary.
Algorithms for various signal processing applications, including classification, denoising and
signal separation, learn a dictionary from a given set of signals to be represented. Can we
expect that the error in representing by such a dictionary a previously unseen signal from
the same source will be of similar magnitude as those for the given examples? We assume
signals are generated from a fixed distribution, and study these questions from a statistical
learning theory perspective.

We develop generalization bounds on the quality of the learned dictionary for two
types of constraints on the coefficient selection, as measured by the expected L2 error
in representation when the dictionary is used. For the case of l1 regularized coefficient

selection we provide a generalization bound of the order of O
(√

np ln(mλ)/m
)

, where n

is the dimension, p is the number of elements in the dictionary, λ is a bound on the l1
norm of the coefficient vector and m is the number of samples, which complements existing
results. For the case of representing a new signal as a combination of at most k dictionary
elements, we provide a bound of the order O(

√
np ln(mk)/m) under an assumption on the

closeness to orthogonality of the dictionary (low Babel function). We further show that
this assumption holds for most dictionaries in high dimensions in a strong probabilistic
sense. Our results also include bounds that converge as 1/m, not previously known for this
problem. We provide similar results in a general setting using kernels with weak smoothness
requirements.

Keywords: statistical machine learning, dictionary learning, generalization bounds, signal
processing, kernel methods

1. Introduction

A common technique in processing signals from X = Rn is to use sparse representations;
that is, to approximate each signal x by a “small” linear combination a of elements di from
a dictionary D ∈ X p, so that x ≈ Da =

∑p
i=1 aidi. This has various uses detailed in

Section 1.1. The smallness of a is often measured using either ‖a‖1, or the number of non
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zero elements in a, often denoted ‖a‖0. The approximation error is measured here using a
Euclidean norm appropriate to the vector space. We denote the approximation error of x
using dictionary D and coefficients from a set A by

hA,D(x) = min
a∈A
‖Da− x‖ , (1.1)

where A is one of the following sets determining the sparsity required of the representation:

Hk = {a : ‖a‖0 ≤ k}

induces a “hard” sparsity constraint, which we also call k sparse representation, while

Rλ = {a : ‖a‖1 ≤ λ}

induces a convex constraint that is considered a “relaxation” of the previous constraint.
The dictionary learning problem is to find a dictionary D minimizing

E(D) = Ex∼νhA,D(x), (1.2)

where ν is a distribution over signals that is known to us only through samples from it. The
problem addressed in this paper is the “generalization” (in the statistical learning sense)
of dictionary learning: to what extent does the performance of a dictionary chosen based
on a finite set of samples indicate its expected error in (1.2)? This clearly depends on the
number of samples and other parameters of the problem such as the dictionary size. In
particular, an obvious algorithm is to represent each sample using itself, if the dictionary
is allowed to be as large as the sample, but the performance on unseen signals is likely to
disappoint.

To state our goal more quantitatively, assume that an algorithm finds a dictionary D
suited to k sparse representation, in the sense that the average representation error Em(D)
on the m examples given to the algorithm is low. Our goal is to bound the generalization
error ε, which is the additional expected error that might be incurred:

E(D) ≤ (1 + η)Em(D) + ε, (1.3)

where η ≥ 0 is sometimes zero, and the bound ε depends on the number of samples and
problem parameters. Since efficient algorithms that find the optimal dictionary for a given
set of samples (also known as empirical risk minimization, or ERM, algorithms) are not
known for dictionary learning, we prove uniform convergence bounds that apply simultane-
ously over all admissible dictionaries D, thus bounding from above the sample complexity
of the dictionary learning problem. In particular, such a result means that every procedure
for approximate minimization of empirical error (empirical dictionary learning) is also a
procedure for approximate dictionary learning (as defined above) in a similar sense.

Many analytic and algorithmic methods relying on the properties of finite dimensional
Euclidean geometry can be applied in more general settings by applying kernel methods.
These consist of treating objects that are not naturally represented in Rn as having their
similarity described by an inner product in an abstract feature space that is Euclidean.
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This allows the application of algorithms depending on the data only through a compu-
tation of inner products to such diverse objects as graphs, DNA sequences and text doc-
uments (Shawe-Taylor and Cristianini, 2004). Is it possible to extend the usefulness of
dictionary learning techniques to this setting? We address sample complexity aspects of
this question as well.

1.1. Background and related work

Sparse representations are by now standard practice in diverse fields such as signal process-
ing, natural language processing, etc. Typically, the dictionary is assumed to be known.
The motivation for sparse representations is indicated by the following results, in which we
assume the signals come from X = Rn are normalized to have length 1, and the represen-
tation coefficients are constrained to A = Hk where k < n, p and typically hA,D(x)� 1.

• Compression: If a signal x has an approximate sparse representation in some com-
monly known dictionary D, it can be stored or transmitted more economically with
reasonable precision. Finding a good sparse representation can be computationally
hard but if D fulfills certain geometric conditions, then its sparse representation is
unique and can be found efficiently (see, e.g., Bruckstein et al., 2009).

• Denoising: If a signal x has a sparse representation in some known dictionary D, and
x̃ = x+ν, where the random noise ν is Gaussian, then the sparse representation found
for x̃ will likely be very close to x (for example Chen et al., 2001).

• Compressed sensing: Assuming that a signal x has a sparse representation in some
known dictionary D that fulfills certain geometric conditions, this representation can
be approximately retrieved with high probability from a small number of random
linear measurements of x. The number of measurements needed depends on the
sparsity of x in D (Candes and Tao, 2006).

The implications of these results are significant when a dictionary D is known that
sparsely represents simultaneously many signals. In some applications the dictionary is
chosen based on prior knowledge, but in many applications the dictionary is learned based on
a finite set of examples. To motivate dictionary learning, consider an image representation
used for compression or denoising. Different types of images may have different properties
(MRI images are not similar to scenery images), so that learning a dictionary specific to
each type of images may lead to improved performance. The benefits of dictionary learning
have been demonstrated in many applications (Protter and Elad, 2007; Peyré, 2009).

Two extensively used techniques related to dictionary learning are Principal Component
Analysis (PCA) and K-means clustering. The former finds a single subspace minimizing the
sum of squared representation errors which is very similar to dictionary learning with A =
Hk and p = k. The latter finds a set of locations minimizing the sum of squared distances
between each signal and the location closest to it which is very similar to dictionary learning
with A = H1 where p is the number of locations. Thus we could see dictionary learning as
PCA with multiple subspaces, or as clustering where multiple locations are used to represent
each signal. The sample complexities of both algorithms are well studied (Bartlett et al.,
1998; Biau et al., 2008; Shawe-Taylor et al., 2005; Blanchard et al., 2007).
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This paper does not address questions of computational cost, though they are very rele-
vant. Finding optimal coefficients for k sparse representation (that is, minimizing (1.1) with
A = Hk) is NP-hard in general (Davis et al., 1997). Dictionary learning as the optimization
problem of minimizing (1.2) is less well understood, even for empirical ν (consisting of a
finite number of samples), despite over a decade of work on related algorithms with good
empirical results (Olshausen and Fieldt, 1997; Lewicki et al., 1998; Kreutz-Delgado et al.,
2003; Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2010).

The only prior work we are aware of that addresses generalization in dictionary learning,
by Maurer and Pontil (2010), addresses the convex representation constraint A = Rλ; we
discuss the relation of our work to theirs in Section 2.

2. Results

Except where we state otherwise, we assume signals are generated in the unit sphere Sn−1.
Our results are:

A new approach to dictionary learning generalization. Our first main contribu-
tion is an approach to generalization bounds in dictionary learning that is complementary
to the approach used by Maurer and Pontil (2010). The previous result, given below in The-
orem 6 has generalization error bounds of order

O

(√
pmin(p, n)

(
λ+

√
ln(mλ)

)2
/m

)

on the squared representation error. A notable feature of this result is the weak dependence
on the signal dimension n. In Theorem 1 we quantify the complexity of the class of functions
hA,D over all dictionaries whose columns have unit length, where A ⊂ Rλ. Combined with
standard methods of uniform convergence this results in generalization error bounds ε of

order O
(√

np ln(mλ)/m
)

when η = 0. While our bound does depend strongly on n,

this is acceptable in the case n < p, also known in the literature as the “over-complete”
case (Olshausen and Fieldt, 1997; Lewicki et al., 1998). Note that our generalization bound
applies with different constants to the representation error itself and many variants including
the squared representation error, and has a weak dependence on λ. The dependence on
λ is significant, for example, when ‖a‖1 is used as a weighted penalty term by solving
mina ‖Da−X‖+ γ · ‖a‖1; in this case λ = O

(
γ−1

)
may be quite large.

Fast rates. For the case η > 0 our methods allow bounds of order O(np ln(λm)/m).
The main significance of this is in that the general statistical behavior they imply occurs
in dictionary learning. For example, generalization error has a “proportional” component
which is reduced when the empirical error is low. Whether fast rates results can be proved
in the dimension free regime is an interesting question we leave open. Note that due to lower
bounds by Bartlett et al. (1998) of order

√
m−1 on the k-means clustering problem, which

corresponds to dictionary learning for 1-sparse representation, fast rates may be expected
only with η > 0, as presented here.

We now describe the relevant function class and the bounds on its complexity, which
are proved in Section 3. The resulting generalization bounds are given explicitly at the end
of this section.
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Theorem 1 For every ε > 0, the function class

Gλ =
{
hRλ,D : Sn−1 → R : D ∈ Rn×p, ‖di‖ ≤ 1

}
,

taken as a metric space with the distance induced by ‖·‖∞, has a subset of cardinality at
most (4λ/ε)np, such that every element from the class is at distance at most ε from the
subset.

While we give formal definitions in Section 3, such a subset is called an ε cover, and
such a bound on its cardinality is called a covering number bounds.

Extension to k sparse representation. Our second main contribution is to extend
both our approach and that of Maurer and Pontil (2010) to provide generalization bounds
for dictionaries for k sparse representations, by using a bound λ on the l1 norm of the
representation coefficients when the dictionaries are close to orthogonal. Distance from
orthogonality is measured by the Babel function (which, for example, upper bounds the
magnitude of the maximal inner product between distinct dictionary elements) defined
below and discussed in more detail in Section 4.

Definition 2 (Babel function, Tropp 2004) For any k ∈ N, the Babel function µk :
Rn×m → R+ is defined by:

µk (D) = max
i∈{1,...,p}

max
Λ⊂{1,...,p}\{i};|Λ|=k

∑
j∈Λ

|〈dj , di〉| .

The following proposition, which is proved in Section 3, bounds the 1-norm of the
dictionary coefficients for a k sparse representation and also follows from analysis previously
done by Donoho and Elad (2003); Tropp (2004).

Proposition 3 Let each column di of D fulfill ‖di‖ ∈ [1, γ] and µk−1 (D) ≤ δ < 1, then a
coefficient vector a ∈ Rp minimizing the k-sparse representation error hHk,D(x) exists which
has ‖a‖1 ≤ γk/ (1− δ).

We now consider the class of all k sparse representation error functions. We prove in
Section 3 the following bound on the complexity of this class.

Corollary 4 The function class

Fδ,k =
{
hHk,D : Sn−1 → R : µk−1(D) < δ, di ∈ Sn−1

}
,

taken as a metric space with the metric induced by ‖·‖∞, has a covering number bound of
(4k/ (ε (1− δ)))np.

The dependence of the last two results on µk−1(D) means that the resulting bounds
will be meaningful only for algorithms which explicitly or implicitly prefer near orthogo-
nal dictionaries. Contrast this to Theorem 1 which has no significant conditions on the
dictionary.

Asymptotically almost all dictionaries are near orthogonal. A question that
arises is what values of µk−1 can be expected for parameters n, p, k? We shed some light on
this question through the following probabilistic result, which we discuss in Section 4 and
prove in the full version.
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Theorem 5 Suppose that D consist of p vectors chosen uniformly and independently from
Sn−1. Then we have

P

(
µk >

1

2

)
≤ 1(

e(n−2)/(10k ln p)2 − 1
) .

Since low values of the Babel function have implications to representation finding algo-
rithms, this result is of interest also outside the context of dictionary learning. Essentially
it means that random dictionaries of size sub-exponential in (n − 2)/k2 have low Babel
function.

New generalization bounds for l1 case. The covering number bound of Theorem 1
implies several generalization bounds for the problem of dictionary learning for l1 regularized
representation which we give here. These differ from those by Maurer and Pontil (2010) in
depending more strongly on the dimension of the space, but less strongly on the particular
regularization term. We first give the relevant specialization of the result by Maurer and
Pontil (2010) for comparison and for reference as we will later build on it. This result is
independent of the dimension n of the underlying space, thus the Euclidean unit ball B
may be that of a general Hilbert space, and the errors measured by hA,D are in the same
norm.

Theorem 6 (Maurer and Pontil 2010) Let A ⊂ Rλ, and let ν be any distribution on
the unit sphere B. Then with probability at least 1− e−x over the m samples in Em drawn
according to ν, for all dictionaries D ⊂ B with cardinality p:

Eh2
A,D ≤ Emh2

A,D +

√√√√p2
(

14λ+ 1/2
√

ln (16mλ2)
)2

m
+

√
x

2m
.

Using the covering number bound of Theorem 1 and a bounded differences concentration
inequality (see Lemma 21), we obtain the following result. The details are given in Section
3.

Theorem 7 Let λ > e/4, with ν a distribution on Sn−1. Then with probability at least
1−e−x over the m samples in Em drawn according to ν, for all D with unit length columns:

EhRλ,D ≤ EmhRλ,D +

√
np ln (4

√
mλ)

2m
+

√
x

2m
+

√
4

m
.

Using the same covering number bound and the general result Corollary 23 (given in
Section 3), we obtain the following fast rates result. A slightly more general result is easily
derived by using Proposition 22 instead.

Theorem 8 Let λ > e/4, np ≥ 20 and m ≥ 5000 with ν a distribution on Sn−1. Then with
probability at least 1− e−x over the m samples in Em drawn according to ν, for all D with
unit length columns:

EhRλ,D ≤ 1.1EmhRλ,D + 9
np ln (4λm) + x

m
.
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Generalization bounds for k sparse representation. Proposition 3 and Corollary 4
imply certain generalization bounds for the problem of dictionary learning for k sparse
representation, which we give here.

A straight forward combination of Theorem 2 of Maurer and Pontil (2010) (given here
as Theorem 6) and Proposition 3 results in the following theorem.

Theorem 9 Let δ < 1 with ν a distribution on Sn−1. Then with probability at least 1−e−x
over the m samples in Em drawn according to ν, for all D s.t. µk−1(D) ≤ δ and with unit
length columns:

Eh2
Hk,D

≤ Emh2
Hk,D

+
p√
m

 14k

1− δ
+

1

2

√√√√ln

(
16m

(
k

1− δ

)2
)+

√
x

2m
.

In the case of clustering we have k = 1 and δ = 0 and this result approaches the rates
of Biau et al. (2008).

The following theorems follow from the covering number bound of Corollary 4 and
applying the general results of Section 3 as for the l1 sparsity results.

Theorem 10 Let δ < 1 with ν a distribution on Sn−1. Then with probability at least 1−e−x
over the m samples in Em drawn according to ν, for all D s.t. µk−1(D) ≤ δ and with unit
length columns:

EhHk,D ≤ EmhHk,D +

√
np ln 4

√
mk

1−δ
2m

+

√
x

2m
+

√
4

m
.

Theorem 11 Let δ < 1, np ≥ 20 and m ≥ 5000 with ν a distribution on Sn−1. Then with
probability at least 1 − e−x over the m samples in Em drawn according to ν, for all D s.t.
µk−1(D) ≤ δ and with unit length columns:

EhHk,D ≤ 1.1EmhHk,D + 9
np ln

(
4
√
mk

1−δ

)
+ x

m
.

Generalization bounds for dictionary learning in feature spaces. We further
consider applications of dictionary learning to signals that are not represented as elements
in a vector space, or that have a very high (possibly infinite) dimension.

In addition to providing an approximate reconstruction of signals, sparse representation
can also be considered as a form of analysis, if we treat the choice of non zero coefficients
and their magnitude as features of the signal. In the domain of images, this has been used
to perform classification (in particular, face recognition) by Wright et al. (2008). Such
analysis does not require that the data itself be represented in Rn (or in any vector space);
it is enough that the similarity between data elements is induced from an inner product in
a feature space. This requirement is fulfilled by using an appropriate kernel function.

Definition 12 Let R be a set of data representations, and let the kernel function κ : R2 →
R and the feature mapping φ : R → H be such that:

κ (x, y) = 〈φ (x) , φ (y)〉

where H is some Hilbert space.
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As a concrete example, choose a sequence of n words, and let φ map a document to
the vector of counts of appearances of each word in it (also called bag of words). Treating
κ(a, b) = 〈φ(a), φ(b)〉 as the similarity between documents a and b, is the well known “bag of
words” approach, applicable to many document related tasks (Shawe-Taylor and Cristianini,
2004). Then the statement φ(a) + φ(b) ≈ φ(c) does not imply that c can be reconstructed
from a and b, but we might consider it indicative of the content of c. The dictionary of
elements used for representation could be decided via dictionary learning, and it is natural
to choose the dictionary so that the bags of words of documents are approximated well by
small linear combinations of those in the dictionary.

As the example above suggests, the kernel dictionary learning problem is to find a
dictionary D minimizing

Ex∼νhφ,A,D(x),

where we consider the representation error function

hφ,A,D(x) = min
a∈A
‖(ΦD) a− φ (x)‖H ,

in which Φ acts as φ on the elements of D, A ∈ {Rλ, Hk}, and the norm ‖·‖H is that induced
by the kernel on the feature space H.

Analogues of all the generalization bounds mentioned so far can be replicated in the
kernel setting. The dimension free results of Maurer and Pontil (2010) apply most naturally
in this setting, and may be combined with our results to cover also dictionaries for k sparse
representation, under reasonable assumptions on the kernel.

Proposition 13 Let ν be any distribution on R such that x ∼ ν implies that φ(x) is in
the unit ball BH of H with probability 1. Then with probability at least 1− e−x over the m
samples in Em drawn according to ν, for all D ⊂ R with cardinality p such that ΦD ⊂ BH
and µk−1(ΦD) ≤ δ < 1:

Eh2
φ,Hk,D

≤ Emh2
φ,Hk,D

+

√√√√√√p2

(
14k/(1− δ) + 1/2

√
ln

(
16m

(
k

1−δ

)2
))2

m
+

√
x

2m
.

Note that in µk−1(ΦD) the Babel function is defined in terms of inner products in H,
and can therefore be computed efficiently by applications of the kernel.

In Section 5 we prove the above result and also cover number bounds as in the linear case
considered before. In the current setting, these bounds depend on the Hölder smoothness
order α of the feature mapping φ. Formal definitions are given in Section 5 but as an
example, the well known Gaussian kernel has α = 1. We give now one of the generalization
bounds using this method.

Theorem 14 Let R have ε covers of order (C/ε)n. Let κ : R2 → R+ be a kernel function
s.t. κ(x, y) = 〈φ(X), φ(Y )〉, for φ which is uniformly L-Hölder of order α > 0 over R, and
let γ = maxx∈R ‖φ(x)‖H. Let δ < 1, and ν any distribution on R, then with probability at
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least 1 − e−x over the m samples in Em drawn according to ν, for all dictionaries D ⊂ R
of cardinality p s.t. µk−1(ΦD) ≤ δ < 1 (where Φ acts like φ on columns):

EhHk,D ≤ EmhHk,D + γ


√√√√np ln

(√
mCα kγ

2L
1−δ

)
2αm

+

√
x

2m

+

√
4

m
.

The covering number bounds needed to prove this theorem and analogs for the other
generalization bounds are proved in Section 5.

3. Covering numbers of Gλ and Fδ,k
The main content of this section is the proof of Theorem 1 and Corollary 4. We also show
that in the k sparse representation setting a finite bound on λ does not occur generally thus
an additional restriction, such as the near-orthogonality on the set of dictionaries on which
we rely in this setting, is necessary. Lastly, we recall known results from statistical learning
theory that link covering numbers to generalization bounds.

We recall the definition of the covering numbers we wish to bound. Anthony and
Bartlett (1999) give a textbook introduction to covering numbers and their application
to generalization bounds.

Definition 15 (Covering number) Let (M,d) be a metric space and S ⊂M . Then the ε
covering number of S defined as N (ε, S, d) = min

{
|A| |A ⊂M and S ⊂

(⋃
a∈ABd (a, ε)

)}
is the size of the minimal ε cover of S using d.

To prove Theorem 1 and Corollary 4 we first note that the space of all possible dictio-
naries is a subset of a unit ball in a Banach space of dimension np (with a norm specified
below). Thus (see formalization in Proposition 5 of Cucker and Smale, 2002) the space of
dictionaries has an ε cover of size (4/ε)np. We also note that a uniformly L Lipschitz map-
ping between metric spaces converts ε/L covers into ε covers. Then it is enough to show
that Ψλ defined as D 7→ hRλ,D and Φk defined as D 7→ hHk,D are uniformly Lipschitz (when
Φk is restricted to the dictionaries with µk−1(D) ≤ c < 1). The proof of these Lipschitz
properties is our next goal, in the form of Lemmas 18 and 19.

The first step is to be clear about the metrics we consider over the spaces of dictionaries
and of error functions.

Definition 16 (Induced matrix norm) Let p, q ≥ 1, then a matrix A ∈ Rn×m can be

considered as an operator A :
(
Rm, ‖·‖p

)
→
(
Rn, ‖·‖q

)
. The p, q induced norm is ‖A‖p,q ,

supx∈Rm‖x‖p=1 ‖Ax‖q.

Lemma 17 For any matrix D, ‖D‖1,2 is equal to the maximal Euclidean norm of any
column in D.

Proof That the maximal norm of a column bounds ‖D‖1,2 can be seen geometrically;
Da/ ‖a‖1 is a convex combination of column vectors, then ‖Da‖2 ≤ maxdi ‖di‖2 ‖a‖1 be-
cause a norm is convex. Equality is achieved for a = ei, where di is the column of maximal
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norm.

The images of Ψλ and Φk are sets of representation error functions–each dictionary
induces a set of precisely representable signals, and a representation error function is simply
a map of distances from this set. Representation error functions are clearly continuous, 1-
Lipschitz, and into [0, 1]. In this setting, a natural norm over the images is the supremum
norm ‖·‖∞.

Lemma 18 The function Ψλ is λ-Lipschitz from
(
Rn×m, ‖·‖1,2

)
to C

(
Sn−1

)
.

Proof Let D and D′ be two dictionaries whose corresponding elements are at most ε > 0
far from one another. Let x be a unit signal and Da an optimal representation for it. Then
‖(D −D′) a‖2 ≤ ‖D −D′‖1,2 ‖a‖1 ≤ ελ. If D′a is very close to Da in particular it is not a
much worse representation of x, and replacing it with the optimal representation under D′,
we have hRλ,D′(x) ≤ hRλ,D(x) + ελ. By symmetry we have |Ψλ(D)(x)−Ψλ(D′)(x)| ≤ λε.
This holds for all unit signals, then ‖Ψλ(D)−Ψλ(D′)‖∞ ≤ λε.

We now provide a proof for Proposition 3 which is used in the corresponding treatment
for covering numbers under k sparsity.
Proof (Of Proposition 3) Let Dk be a submatrix of D whose k columns from D achieve

the minimum on hHk,D(x) for x ∈ Sn−1. We now consider the Gram matrix G =
(
Dk
)>
Dk

whose diagonal entries are the norms of the elements of Dk, therefore at least 1. By the
Gersgorin theorem (Horn and Johnson, 1990), each eigenvalue of a square matrix is “close”
to a diagonal entry of the matrix; the absolute difference between an eigenvalue and its
diagonal entry is upper bounded by the sum of the absolute values of the remaining entries
of the same row. Since a row in G corresponds to the inner products of an element from Dk

with every element from Dk, this sum is upper bounded by δ for all rows. Then we conclude
the eigenvalues of the Gram matrix are lower bounded by 1 − δ > 0. Then in particular
G has a symmetric inverse G−1 whose eigenvalues are positive and bounded from above by
1/ (1− δ). The maximal magnitude of an eigenvalue of a symmetric matrix coincides with
its induced norm ‖·‖2,2, therefore

∥∥G−1
∥∥

2,2
≤ 1/(1− δ).

Linear dependence of elements of Dk would imply a non-trivial nullspace for the invert-
ible G. Then the elements of Dk are linearly independent, which implies that the unique
optimal representation of x as a linear combination of the columns of Dk is Dka with

a =

((
Dk
)>

Dk

)−1 (
Dk
)>

x.

Using the above and the definition of induced matrix norms, we have

‖a‖2 ≤

∥∥∥∥∥
((

Dk
)>

Dk

)−1
∥∥∥∥∥

2,2

∥∥∥∥(Dk
)>

x

∥∥∥∥
2

≤ 1/(1− δ)
∥∥∥∥(Dk

)>
x

∥∥∥∥
2

.

The vector
(
Dk
)>
x is in Rk and by the Cauchy Schwartz inequality 〈di, x〉 ≤ γ, then∥∥∥(Dk

)>
x
∥∥∥

2
≤
√
k
∥∥∥(Dk

)>
x
∥∥∥
∞
≤
√
kγ. Since only k entries of a are non zero, ‖a‖1 ≤
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√
k ‖a‖2 ≤ kγ/(1− δ).

Lemma 19 The function Φk is a k/(1 − δ)-Lipschitz mapping from the set of normalized
dictionaries with µk−1(D) < δ with the metric induced by ‖·‖1,2 to C

(
Sn−1

)
.

The proof of this lemma is the same as that of Lemma 18, except that a is taken to
be an optimal representation that fulfills ‖a‖1 ≤ λ = k/ (1− µk−1(D)), whose existence is
guaranteed by Proposition 3.

This concludes the proof of Theorem 1 and Corollary 4.
The next theorem shows that unfortunately, Φ is not uniformly L-Lipschitz for any

constant L, requiring its restriction to an appropriate subset of the dictionaries.

Theorem 20 For any 1 < k < n, p, there exists c > 0 and q, such that for every ε > 0,
there exist D,D′ such that ‖D −D′‖1,2 < ε but

∣∣(hHk,D(q)− hHk,D′(q)
)∣∣ > c.

Proof First we show that for any dictionary D there exist c > 0 and x ∈ Sn−1 such that
hHk,D(x) > c. Let νSn−1 be the uniform probability measure on the sphere, and Ac the
probability assigned by it to the set within c of a k dimensional subspace. As c↘ 0, Ac also
tends to zero, then there exists c > 0 s.t.

(
p
k

)
Ac < 1. Then for that c and any dictionary D

there exists a set of positive measure on which hHk,D > c, let q be a point in this set. Since
hHk,D(x) = hHk,D(−x), we may assume without loss of generality that 〈e1, q〉 ≥ 0.

We now fix the dictionary D; its first k−1 elements are the standard basis {e1, . . . , ek−1},
its kth element is Dk =

√
1− ε2/4e1 + εek/2, and the remaining elements are chosen arbi-

trarily. Now construct D′ to be identical to D except its kth element is v =
√

1− ε2/4e1+lq
choosing l so that ‖v‖2 = 1. Then there exist a, b ∈ R such that q = aD′1+bD′k and we have
hHk,D′(q) = 0, fulfilling the second part of the theorem. On the other hand, since 〈e1, q〉 ≥ 0,
we have l ≤ ε/2, and then we find ‖D −D′‖1,2 = ‖εek/2− lq‖2 ≤ ‖εek/2‖+‖lq‖ = ε/2+l ≤
ε.

To conclude the generalization bounds of Theorems 7, 8, 10, 11 and 14 from the covering
number bounds we have provided, we use the following results. The first result is a straight
forward application of Hoeffding’s inequality, a union bound and the l∞ cover number
bounds. The second result1 (along with its corollary) gives fast rate bounds and uses the
‖·‖∞ cover number bounds to achieve better constants for this problem than the more
general results by Mendelson (2003) and Bartlett et al. (2005).

Lemma 21 Let F be a class of [0, B] functions with covering number bound (C/ε)d > e/B2

under the supremum norm. Then for every x > 0, with probability of at least 1− e−x over
the m samples in Em chosen according to ν, for all f ∈ F :

Ef ≤ Emf +B

(√
d ln (C

√
m)

2m
+

√
x

2m

)
+

√
4

m
.

1. We thank Andreas Maurer for suggesting this result and a proof elaborated in the full version.
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Proposition 22 Let F be a class of [0, 1] functions that can be covered for any ε > 0 by
at most (C/ε)d balls of radius ε in the L∞ metric where C ≥ e and β > 0. Then with
probability at least 1− exp (−x), we have for all f ∈ F :

Ef ≤ (1 + β)Emf +K (d,m, β)
d ln (Cm) + x

m
,

where K (d,m, β) =

√
2
(

9√
m

+ 2
) (

d+3
3d

)
+ 1 +

(
9√
m

+ 2
) (

d+3
3d

)
+ 1 + 1

2β .

The corollary we use to obtain Theorems 8 and 11 follows because K (d,m, β) is non-
increasing in d,m.

Corollary 23 Let F , x be as above. For d ≥ 20, m ≥ 5000 and β = 0.1 we have with
probability at least 1− exp (−x) for all f ∈ F :

Ef ≤ 1.1Emf + 9
d ln (Cm) + x

m
.

4. On the Babel function

The Babel function is one of several metrics defined in the sparse representations literature
to quantify an ”almost orthogonality” property that dictionaries may enjoy. Such prop-
erties have been shown to imply theoretical properties such as uniqueness of the optimal
k sparse representation. In the algorithmic context, Donoho and Elad (2003) and Tropp
(2004) use the Babel function to show that particular efficient algorithms for finding sparse
representations fulfill certain quality guarantees when applied to such dictionaries. This re-
inforces the practical importance of the learnability of this class of dictionary. We proceed
to discuss some elementary properties of the Babel function, and then state a bound on the
proportion of dictionaries having sufficiently good Babel function.

Measures of orthogonality are typically defined in terms of inner products between the
elements of the dictionary. Perhaps the simplest of these measures of orthogonality is the
following special case of the Babel function.

Definition 24 The coherence of a dictionary D is µ1(D) = maxi 6=j |〈di, dj〉|.

The Babel function considers sums of k inner products at a time rather than the maximum
over all inner products, and thus better quantifies the effects of non orthogonality on repre-
senting a signal with particular level k + 1 of sparsity. As a particular example of the finer
grained control µk when compared to µ1, consider the following example. Let D consist of
k pairs of elements, so that the subspace spanned by each pair is orthogonal to all other
elements, and such that the inner product between the elements of any single pair is half.
In this case µk(D) = µ1(D) = 1/2. However note that to ensure µk < 1 only restricting µ1

requires the constraint µ1(D) < 1/k, which is not fulfilled in our example.
To better understand µk (D), we consider first its extreme values. When µk (D) = 0, for

any k > 1, this means that D is an orthogonal set (therefore p ≤ n). The maximal value
of µk (D) is k, and occurs only if some dictionary element is repeated (up to sign) at least
k + 1 times.
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A well known generic class of dictionaries with more elements than a basis is that of
frames (see Duffin and Schaeer, 1952), which include many wavelet systems and filter banks.
Some frames can be trivially seen to fulfill our condition on the Babel function.

Proposition 25 Let D ∈ Rn×p be a frame of Rn, so that for every v ∈ Sn−1 we have that∑n
i=1 |〈v, di〉|

2 ≤ B, with ‖di‖2 = 1 for all i, and B < 1 + 1/k. Then µk−1(D) < 1.

This may be easily verified by considering the inner products of any dictionary element
with any other k elements as a vector in Rk; the frame condition bounds its squared Eu-
clidean norm by B− 1 (we remove the inner product of the element with itself in the frame
expression). Then use the equivalence of l1 and l2 norms.

4.1. Proportion of dictionaries with µk−1(D) < δ

We return to the question of the prevalence of dictionaries having µk−1 < δ. Are almost all
dictionaries such? If the answer is affirmative, it implies that Theorem 11 is quite strong,
and representation finding algorithms such as basis pursuit are almost always exact, which
might help prove properties of dictionary learning algorithms. If the opposite is true and few
dictionaries have low Babel function, the results of this paper are weak. While there might
be better probability measures on the space of dictionaries, we consider one that seems
natural: suppose that a dictionary D is constructed by choosing p unit vectors uniformly
from Sn−1; what is the probability that µk−1(D) < δ?

Theorem 5 gives us the following answer to this question. Under the assumption that
the sparsity parameter k grows slowly, if at all, as n↗∞ (specifically, that k ln p = o(

√
n)),

this theorem implies that asymptotically almost all dictionaries under the Lebesgue measure
are learnable.

5. Dictionary learning in feature spaces

We propose in Section 2 a scenario in which dictionary learning is performed in a feature
space corresponding to a kernel function. Here we show how to adapt the different general-
ization bounds discussed in this paper for the particular case of Rn to more general feature
spaces, and the dependence of the sample complexities on the properties of the kernel func-
tion or the corresponding feature mapping. We begin with the relevant specialization of the
results of Maurer and Pontil (2010) which have the simplest dependence on the kernel, and
then discuss the extensions to k sparse representation and to the cover number techniques
presented in the current work.

Theorem 6 applies as is to the feature space, under the simple assumption that the
dictionary elements and signals are in its unit ball which is guaranteed by some kernels
such as the Gaussian kernel. Then we take ν on the unit ball of H to be induced by some
distribution ν ′ on the domain of the kernel, and the theorem applies to any such ν ′ on
R. Nothing more is required if the representation is chosen from Rλ. The corresponding
generalization bound for k sparse representations when the dictionary elements are near
orthogonal in the feature space is given in Proposition 13.
Proof (Of Proposition 13) Proposition 3 applies with the Euclidean norm of H, and γ = 1.
We apply Theorem 6 with λ = k/ (1− δ).
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The results so far show that generalization in dictionary learning can occur despite the
potentially infinite dimension of the feature space, without considering practical issues of
representation and computation. We now make the domain and applications of the kernel
explicit in order to address a basic computational question, and allow the use of cover num-
ber based generalization bounds to prove Theorem 14. We now consider signals represented
in a metric space (R, d), in which similarity is measured by the kernel κ corresponding to
the feature map φ : R → H. The elements of a dictionary D are now from R, and we
denote ΦD their mapping by φ to H. The representation error function used is hφ,A,D.

We now show that the approximation error in the feature space is a quadratic function
of the coefficient vector; the quadratic function for particular D and x may be found by
applications of the kernel.

Proposition 26 Computing the representation error at a given x, a,D requires O
(
p2
)

ker-
nel applications in general, and only O

(
k2 + p

)
when a is k sparse.

The squared error expands to

p∑
i=1

ai

p∑
j=1

ajκ (di, dj) + κ (x, x)− 2

p∑
i=1

aiκ (x, di) .

We note that the k sparsity constraint on a poses algorithmic difficulties beyond those
addressed here. Some of the common approaches to these, such as orthogonal matching
pursuit (Chen et al., 1989), also depend on the data only through their inner products, and
may therefore be adapted to the kernel setting.

The cover number bounds depend strongly on the dimension of the space of dictionary
elements. Taking H as the space of dictionary elements is the simplest approach, but may
lead to vacuous or weak bounds, for example in the case of the Gaussian kernel whose feature
space is infinite dimensional. Instead we propose to use the space of data representations
R, whose dimensions are generally bounded by practical considerations. In addition, we
will assume that the kernel is not “too wild” in the following sense.

Definition 27 Let L,α > 0, and let (A, d′) and (B, d) be metric spaces. We say a mapping
f : A → B is uniformly L Hölder of order α on a set S ⊂ A if ∀x, y ∈ S, the following
bound holds:

d (f(x), f(y)) ≤ L · d′(x, y)α.

The relevance of this smoothness condition is as follows.

Lemma 28 A Hölder function maps an ε cover of S to an Lεα cover of its image f(S).

Thus, to obtain an ε cover of the image of S, it is enough to begin with an (ε/L)1/α cover
of S.

A Hölder feature map φ allows us to bound the cover numbers of the dictionary elements
in H using their cover number bounds in R. Note that not every kernel corresponds to a
Hölder feature map (the Dirac δ kernel is a counter example: any two distinct elements are
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mapped to elements at a mutual distance of 1), and sometimes analyzing the feature map is
harder than analyzing the kernel. The following lemma bounds the geometry of the feature
map using that of the kernel.

Lemma 29 Let κ(x, y) = 〈φ(x), φ(y)〉, and assume further that κ fulfills a Hölder condition
of order α uniformly in each parameter, that is, |κ(x, y)− κ(x+ h, y)| ≤ L ‖h‖α. Then φ
uniformly fulfills a Hölder condition of order α/2 with constant

√
2L.

This result is not sharp. For example, for the Gaussian case, both kernel and the feature
map are Hölder order 1.
Proof Using the Hölder condition, we have that ‖φ(x)− φ(y)‖2H = κ (x, x) − κ (x, y) +
κ (y, y)− κ (x, y) ≤ 2L ‖x− y‖α. All that remains is to take the square root of both sides.

For a given feature mapping φ, set of representations R, we define two families of
function classes so:

Wφ,λ = {hφ,Rλ,D : D ∈ Dp} and

Qφ,k,δ = {hφ,Hk,D : D ∈ Dp ∧ µk−1 (ΦD) ≤ δ} .

The next proposition completes this section by giving the cover number bounds for the
representation error function classes induced by appropriate kernels, from which various
generalization bounds easily follow, such as Theorem 14.

Proposition 30 Let R be a set of representations with a cover number bound of (C/ε)n,
and let either φ be uniformly L Hölder condition of order α on R, or κ be uniformly L
Hölder of order 2α on R in each parameter, and let γ = supd∈R ‖φ(d)‖H. Then the function
classes Wφ,λ and Qφ,k,δ taken as metric spaces with the supremum norm, have ε covers of

cardinalities at most
(
C (λγL/ε)1/α

)np
and

(
C
(
kγ2L/ (ε (1− δ))

)1/α)np
, respectively.

Proof We first consider the case of l1 constrained coefficients. If ‖a‖1 ≤ λ and also
maxd∈D ‖φ(d)‖H ≤ γ then by considerations applied in Section 3, to obtain an ε cover
of the set {mina ‖(ΦD) a− φ (x)‖H : D ∈ D}, it is enough to obtain an ε/ (λγ) cover of

{ΦD : D ∈ D}. If also φ is uniformly L Hölder of order α over R then an (λγL/ε)−1/α cover

of the set of dictionaries is sufficient, which as we have seen requires at most
(
C (λγL/ε)1/α

)np
elements.

In the case of l0 constrained representation, the bound on λ due to Proposition 3 is
γk (1− δ), and the result follows from the above by substitution.

6. Conclusions

Our work has several implications on the design of dictionary learning algorithms as used
in signal, image, and natural language processing. First, the fact that generalization is
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only logarithmically dependent on the l1 norm of the coefficient vector widens the set of
applicable approaches to penalization. Second, in the particular case of k sparse represen-
tation, we have shown that the Babel function is a key property for the generalization of
dictionaries. It might thus be useful to modify dictionary learning algorithms so that they
obtain dictionaries with low Babel functions, possibly through regularization or through
certain convex relaxations. Third, mistake bounds (e.g., Mairal et al. 2010) on the quality
of the solution to the coefficient finding optimization problem may lead to generalization
bounds for practical algorithms, by tying such algorithms to k sparse representation.

The upper bounds presented here invite complementary lower bounds. The existing
lower bounds for k = 1 (vector quantization) and for k = p (representation using PCA di-
rections) are applicable, but do not capture the geometry of general k sparse representation,
and in particular do not clarify the effective dimension of the unrestricted class of dictio-
naries for it. We have not excluded the possibility that the class of unrestricted dictionaries
has the same dimension as that of those with a small Babel function. The best upper bound
we know for the larger class, being the trivial one of order O

((
p
k

)
n2
/
m), leaves a significant

gap for future exploration.
We view the dependence on µk−1 from an “algorithmic luckiness” perspective (Herbrich

and Williamson, 2003): if the data is described by a dictionary with low Babel function the
generalization bounds are encouraging.
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