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Abstract
We explore a transfer learning setting, in which a finite sequence of target concepts are sampled
independently with an unknown distribution from a known family. We study the total number of
labeled examples required to learn all targets to an arbitrary specified expected accuracy, focusing
on the asymptotics in the number of tasks and the desired accuracy. Our primary interest is for-
mally understanding the fundamental benefits of transfer learning, compared to learning each target
independently from the others. Our approach to the transfer problem is general, in the sense that
it can be used with a variety of learning protocols. The key insight driving our approach is that
the distribution of the target concepts is identifiable from the joint distribution over a number of
random labeled data points equal the Vapnik-Chervonenkis dimension of the concept space. This
is not necessarily the case for the joint distribution over any smaller number of points. This work
has particularly interesting implications when applied to active learning methods.
Keywords: Statistical Learning Theory, Transfer Learning, Bayesian Learning, Active Learning

1. Introduction

Transfer learning reuses knowledge from past related tasks to ease the process of learning to per-
form a new task. The goal of transfer learning is to leverage previous learning and experience to
more efficiently learn novel, but related, concepts, compared to what would be possible without this
prior experience. The utility of transfer learning is typically measured by a reduction in the num-
ber of training examples required to achieve a target performance on a sequence of related learning
problems, compared to the number required for unrelated problems: i.e., reduced sample complex-
ity. In many real-life scenarios, just a few training examples of a new concept or process is often
sufficient for a human learner to grasp the new concept given knowledge of related ones. For ex-
ample, learning to drive a van becomes much easier a task if we have already learned how to drive
a car. Learning French is somewhat easier if we have already learned English (vs Chinese), and
learning Spanish is easier if we know Portuguese (vs German). We are therefore interested in un-
derstanding the conditions that enable a learning machine to leverage abstract knowledge obtained
as a by-product of learning past concepts, to improve its performance on future learning problems.
Furthermore, we are interested in how the magnitude of these improvements grows as the learning
system gains more experience from learning multiple related concepts.
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The ability to transfer knowledge gained from previous tasks to make it easier to learn a new
task can potentially benefit a wide range of real-world applications, including computer vision,
natural language processing, cognitive science (e.g., fMRI brain state classification), and speech
recognition, to name a few. As an example, consider training a speech recognizer. After training
on a number of individuals, a learning system can identify common patterns of speech, such as
accents or dialects, each of which requires a slightly different speech recognizer; then, given a
new person to train a recognizer for, it can quickly determine the particular dialect from only a
few well-chosen examples, and use the previously-learned recognizer for that particular dialect. In
this case, we can think of the transferred knowledge as consisting of the common aspects of each
recognizer variant and more generally the distribution of speech patterns existing in the population
these subjects are from. This same type of distribution-related knowledge transfer can be helpful in
a host of applications, including all those mentioned above.

Supposing these target concepts (e.g., speech patterns) are sampled independently from a fixed
population, having knowledge of the distribution of concepts in the population may often be quite
valuable. More generally, we may consider a general scenario in which the target concepts are
sampled i.i.d. according to a fixed distribution. As we show below, the number of labeled examples
required to learn a target concept sampled according to this distribution may be dramatically reduced
if we have direct knowledge of the distribution. However, since in many real-world learning sce-
narios, we do not have direct access to this distribution, it is desirable to be able to somehow learn
the distribution, based on observations from a sequence of learning problems with target concepts
sampled according to that distribution. The hope is that an estimate of the distribution so-obtained
might be almost as useful as direct access to the true distribution in reducing the number of labeled
examples required to learn subsequent target concepts. The focus of this paper is an approach to
transfer learning based on estimating the distribution of the target concepts. Whereas we acknowl-
edge that there are other important challenges in transfer learning, such as exploring improvements
obtainable from transfer under various alternative notions of task relatedness (Evgeniou and Pontil,
2004; Ben-David and Schuller, 2003), or alternative reuses of knowledge obtained from previous
tasks (Thrun, 1996), we believe that learning the distribution of target concepts is a central and
crucial component in many transfer learning scenarios, and can reduce the total sample complexity
across tasks.

Note that it is not immediately obvious that the distribution of targets can even be learned in this
context, since we do not have direct access to the target concepts sampled according to it, but rather
have only indirect access via a finite number of labeled examples for each task; a significant part of
the present work focuses on establishing that as long as these finite labeled samples are larger than
a certain size, they hold sufficient information about the distribution over concepts for estimation
to be possible. In particular, in contrast to standard results on consistent density estimation, our
estimators are not directly based on the target concepts, but rather are only indirectly dependent
on these via the labels of a finite number of data points from each task. One desideratum we pay
particular attention to is minimizing the number of extra labeled examples needed for each task,
beyond what is needed for learning that particular target, so that the benefits of transfer learning
are obtained almost as a by-product of learning the targets. Our technique is general, in that it
applies to any concept space with finite VC dimension; also, the process of learning the target
concepts is (in some sense) decoupled from the mechanism of learning the concept distribution, so
that we may apply our technique to a variety of learning protocols, including passive supervised
learning, active supervised learning, semi-supervised learning, and learning with certain general
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data-dependent forms of interaction (Hanneke, 2009). For simplicity, we choose to formulate our
transfer learning algorithms in the language of active learning; as we explain below, this problem
can benefit significantly from transfer. Formulations for other learning protocols would follow along
similar lines, with analogous theorems; only the results in Section 4.1 are specific to active learning.

Transfer learning is related at least in spirit to much earlier work on case-based and analogical
learning (Carbonell, 1983, 1986; Veloso and Carbonell, 1993; Kolodner (Ed), 1993; Thrun, 1996),
although that body of work predated modern machine learning, and focused on symbolic reuse of
past problem solving solutions rather than on current machine learning problems such as classifi-
cation, regression or structured learning. More recently, transfer learning (and the closely related
problem of multitask learning) has been studied in specific cases with interesting (though some-
times heuristic) approaches (Caruana, 1997; Silver, 2000; Micchelli and Pontil, 2004; Baxter, 1997;
Ben-David and Schuller, 2003). This paper considers a general theoretical framework for transfer
learning, based on an Empirical Bayes perspective, and derives rigorous theoretical results on the
benefits of transfer. We discuss the relation of this analysis to existing theoretical work on transfer
learning below.

1.1. Outline of the paper

The remainder of the paper is organized as follows. In Section 2 we introduce basic notation used
throughout, and survey some related work from the existing literature. In Section 3, we describe and
analyze our proposed method for estimating the distribution of target concepts, the key ingrediant
in our approach to transfer learning, which we then present in Section 4. Finally, in Section 4.1, we
describe the particularly strong implications of these results for active learning.

2. Definitions and Related Work

First, we state a few basic notational conventions. We denote N = {1, 2, . . .} and N0 = N∪{0}. For
any random variable X , we generally denote by PX the distribution of X (the induced probability
measure on the range of X), and by PX|Y the regular conditional distribution of X given Y . For
any pair of probability measures µ1, µ2 on a measurable space (Ω,F), we define

‖µ1 − µ2‖ = sup
A∈F
|µ1(A)− µ2(A)|.

Next we define the particular objects of interest to our present discussion. Let Θ be an arbitrary
set (called the parameter space), (X ,BX ) be a Borel space (Schervish, 1995) (where X is called the
instance space), and D be a fixed distribution on X (called the data distribution). For instance, Θ
could be Rn and X could be Rm, for some n,m ∈ N, though more general scenarios are certainly
possible as well, including infinite-dimensional parameter spaces. Let C be a set of measurable
classifiers h : X → {−1,+1} (called the concept space), and suppose C has VC dimension d <∞
(Vapnik, 1982) (such a space is called a VC class). C is equipped with its Borel σ-algebra B, induced
by the pseudo-metric ρ(h, g) = D({x ∈ X : h(x) 6= g(x)}). Though all of our results can be
formulated for general D in slightly more complex terms, for simplicity throughout the discussion
below we suppose ρ is actually a metric, in that any h, g ∈ C with h 6= g have ρ(h, g) > 0; this
amounts to a topological assumption on C relative to D.

For each θ ∈ Θ, πθ is a distribution on C (called a prior). Our only (rather mild) assumption on
this family of prior distributions is that {πθ : θ ∈ Θ} be totally bounded, in the sense that ∀ε > 0,
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∃ finite Θε ⊆ Θ s.t. ∀θ ∈ Θ, ∃θε ∈ Θε with ‖πθ − πθε‖ < ε. See (Devroye and Lugosi, 2001) for
examples of categories of classes that satisfy this.

The general setup for the learning problem is that we have a true parameter value θ? ∈ Θ, and
a collection of C-valued random variables {h∗tθ}t∈N,θ∈Θ, where for a fixed θ ∈ Θ the {h∗tθ}t∈N
variables are i.i.d. with distribution πθ.

The learning problem is the following. For each θ ∈ Θ, there is a sequence

Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},

where {Xti}t,i∈N are i.i.d. D, and for each t, i ∈ N, Yti(θ) = h∗tθ(Xti). For k ∈ N we denote by
Ztk(θ) = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}.

The algorithm receives values ε and T as input, and for each t ∈ {1, 2, . . . , T} in increasing
order, it observes the sequenceXt1, Xt2, . . ., and may then select an index i1, receive label Yti1(θ?),
select another index i2, receive label Yti2(θ?), etc. The algorithm proceeds in this fashion, sequen-
tially requesting labels, until eventually it produces a classifier ĥt. It then increments t and repeats
this process until it produces a sequence ĥ1, ĥ2, . . . , ĥT , at which time it halts. To be called correct,
the algorithm must have a guarantee that ∀θ? ∈ Θ,∀t ≤ T,E

[
ρ
(
ĥ, h∗tθ?

)]
≤ ε. We will be inter-

ested in the expected number of label requests necessary for a correct learning algorithm, averaged
over the T tasks, and in particular in how shared information between tasks can help to reduce this
quantity when direct access to θ? is not available to the algorithm.

2.1. Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical advantages of transfer learning for active
learning, the existing literature contains several analyses of the advantages of transfer learning for
passive learning. In his classic work, Baxter (1997) explores a similar setup for a general form of
passive learning, except in a full Bayesian setting (in contrast to our setting, often referred to as
“empirical Bayes,” which includes a constant parameter θ? to be estimated from data). Essentially,
Baxter (1997) sets up a hierarchical Bayesian model, in which (in our notation) θ? is a random
variable with known distribution (hyper-prior), but otherwise the specialization of Baxter’s setting
to the pattern recognition problem is essentially identical to our setup above. This hyper-prior
does make the problem slightly easier, but generally the results of Baxter (1997) are of a different
nature than our objectives here. Specifically, Baxter’s results on learning from labeled examples
can be interpretted as indicating that transfer learning can improve certain constant factors in the
asymptotic rate of convergence of the average of expected error rates across the learning problems.
That is, certain constant complexity terms (for instance, related to the concept space) can be reduced
to (potentially much smaller) values related to πθ? by transfer learning. Baxter argues that, as the
number of tasks grows large, this effectively achieves close to the known results on the sample
complexity of passive learning with direct access to θ?. A similar claim is discussed by Ando and
Zhang (2004) (though in less detail and formality) for a setting closer to that studied here, where θ?
is an unknown parameter to be estimated.

There are also several results on transfer learning of a slightly different variety, in which, rather
than having a prior distribution for the target concept, the learner initially has several potential
concept spaces to choose from, and the role of transfer is to help the learner select from among
these concept spaces (Baxter, 2000; Ando and Zhang, 2004). In this case, the idea is that one of
these concept spaces has the best average minimum achievable error rate per learning problem,
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and the objective of transfer learning is to perform nearly as well as if we knew which of the
spaces has this property. In particular, if we assume the target functions for each task all reside in
one of the concept spaces, then the objective of transfer learning is to perform nearly as well as
if we knew which of the spaces contains the targets. Thus, transfer learning results in a sample
complexity related to the number of learning problems, a complexity term for this best concept
space, and a complexity term related to the diversity of concept spaces we have to choose from.
In particular, as with Baxter (1997), these results can typically be interpretted as giving constant
factor improvements from transfer in a passive learning context, at best reducing the complexity
constants, from those for the union over the given concept spaces, down to the complexity constants
of the single best concept space.

In addition to the above works, there are several analyses of transfer learning and multitask
learning of an entirely different nature than our present discussion, in that the objectives of the
analysis are somewhat different. Specifically, there is a branch of the literature concerned with task
relatedness, not in terms of the underlying process that generates the target concepts, but rather
directly in terms of relations between the target concepts themselves. In this sense, several tasks
with related target concepts should be much easier to learn than tasks with unrelated target concepts.
This is studied in the context of kernel methods by Micchelli and Pontil (2004); Evgeniou and Pontil
(2004); Evgeniou, Micchelli, and Pontil (2005), and in a more general theoretical framework by
Ben-David and Schuller (2003). As mentioned, our approach to transfer learning is based on the
idea of estimating the distribution of target concepts. As such, though interesting and important,
these notions of direct relatedness of target concepts are not as relevant to our present discussion.

As with Baxter (1997), the present work is interested in showing that as the number of tasks
grows large, we can effectively achieve a sample complexity close to that achieveable with direct
access to θ?. However, in contrast, we are interested in a general approach to transfer learning and
the analysis thereof, leading to concrete results for a variety of learning protocols such as active
learning and semi-supervised learning. In particular, as we explain below, combining the results of
this work with a result of Yang, Hanneke, and Carbonell (2010) reveals the interesting phenomenon
that, in the context of active learning, transfer learning can sometimes improve the asymptotic de-
pendence on ε, rather than merely the constant factors as in the analysis of Baxter (1997).

Additionally, unlike Baxter (1997), we study the benefits of transfer learning in terms of the
asymptotics as the number of learning problems grows large, without necessarily requiring the
number of labeled examples per learning problem to also grow large. That is, our analysis re-
veals benefits from transfer learning even if the number of labeled examples per learning problem
is bounded. This is desirable for the following practical reasons. In many settings where transfer
learning may be useful, it is desirable that the number of labeled examples we need to collect from
each particular learning problem never be significantly larger than the number of such examples
required to solve that particular problem (i.e., to learn that target concept to the desired accuracy).
For instance, this is the case when the learning problems are not all solved by the same individual
(or company, etc.), but rather a coalition of cooperating individuals (e.g., hospitals sharing data on
clinical trials); each individual may be willing to share the data they used to learn their problem, in
the interest of making others’ learning problems easier; however, they may not be willing to col-
lect significantly more data to advance this cause than they themselves need for their own learning
problem. Given a desired error rate ε for each learning problem, the number of labeled examples
required to learn each particular target concept to this desired error rate is always bounded by an
ε-dependent value. Therefore, an analysis that requires a growing number of examples per learning
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problem seems undesirable in these scenarios, since for some of the problems we would need to
label a number of examples far beyond what is needed to learn a good classifier for that particular
problem. We should therefore be particularly interested in studying transfer as a by-product of the
usual learning process; failing this, we are interested in the minimum possible number of extra la-
beled examples per task to gain the benefits of transfer learning. To our knowledge, no result of this
type (bounded sample size per learning problem) has yet been established at the level of generality
studied here.

3. Estimating the Prior

The advantage of transfer learning in this setting is that each learning problem provides some infor-
mation about θ?, so that after solving several of the learning problems, we might hope to be able to
estimate θ?. Then with this estimate in hand, we can use the corresponding estimated prior distribu-
tion in the learning algorithm for subsequent learning problems, to help inform the learning process
similarly to how direct knowledge of θ? might be helpful. However, the difficulty in approach-
ing this is how to define such an estimator. Since we do not have direct access to the h∗t values,
but rather only indirect observations via a finite number of example labels, the standard results for
density estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distributions on Ztk(θ?). These variables are
directly observable, by requesting the labels of those examples. Thus, for any finite k ∈ N, this
distribution is estimable from observable data. That is, using the i.i.d. values Z1k(θ?), . . . ,Ztk(θ?),
we can apply standard techniques for density estimation to arrive at an estimator of PZtk(θ?). Then
the question is whether the distribution PZtk(θ?) uniquely characterizes the prior distribution πθ? :
that is, whether πθ? is identifiable from PZtk(θ?).

As an example, consider the space of half-open interval classifiers on [0, 1]: C = {1±[a,b) :

0 ≤ a ≤ b ≤ 1}, where 1±[a,b)(x) = +1 if a ≤ x < b and −1 otherwise. In this case, πθ?
is not necessarily identifiable from PZt1(θ?); for instance, the distributions πθ1 and πθ2 character-
ized by πθ1({1±[0,1)}) = πθ1({1±∅ }) = 1/2 and πθ2({1±[0,1/2)}) = πθ2({1±[1/2,1)}) = 1/2 are not
distinguished by these one-dimensional distributions. However, it turns out that for this half-open
intervals problem, πθ? is uniquely identifiable from PZt2(θ?); for instance, in the θ1 vs θ2 scenario,
the conditional probability P(Yt1(θi),Yt2(θi))|(Xt1,Xt2)((+1,+1)|(1/4, 3/4)) will distinguish πθ1 from
πθ2 , and this can be calculated from PZt2(θi). The crucial element of the analysis below is deter-
mining the appropriate value of k to uniquely identify πθ? from PZtk(θ?) in general. As we will see,
k = d is always sufficient, a key insight for the results that follow.

To be specific, in order to transfer knowledge from one task to the next, we use a few labeled
data points from each task to gain information about θ?. For this, for each task t, we simply take the
first d data points in the Zt(θ?) sequence. That is, we request the labels

Yt1(θ?), Yt2(θ?), . . . , Ytd(θ?)

and use the points Ztd(θ?) to update an estimate of θ?.
The following result shows that this technique does provide a consistent estimator of πθ? . Again,

note that this result is not a straightforward application of the standard approach to consistent esti-
mation, since the observations here are not the h∗tθ? variables themselves, but rather a number of the
Yti(θ?) values. The key insight in this result is that πθ? is uniquely identified by the joint distribution
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PZtd(θ?) over the first d labeled examples; later, we prove this is not necessarily true for PZtk(θ?) for
values k < d.

Theorem 1 There exists an estimator θ̂Tθ? = θ̂T (Z1d(θ?), . . . ,ZTd(θ?)), and functions R : N0 ×
(0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1], such that for any α > 0, lim

T→∞
R(T, α) =

lim
T→∞

δ(T, α) = 0 and for any T ∈ N0 and θ? ∈ Θ,

P
(
‖πθ̂Tθ? − πθ?‖ > R(T, α)

)
≤ δ(T, α) ≤ α.

One important detail to note, for our purposes, is thatR(T, α) is independent from θ?, so that the
value of R(T, α) can be calculated and used within a learning algorithm. The proof of Theorem 1
will be established via the following sequence of lemmas. Lemma 2 relates distances in the space of
priors to distances in the space of distributions on the full data sets. In turn, Lemma 3 relates these
distances to distances in the space of distributions on a finite number of examples from the data
sets. Lemma 4 then relates the distances between distributions on any finite number of examples
to distances between distributions on d examples. Finally, Lemma 5 presents a standard result
on the existence of a converging estimator, in this case for the distribution on d examples, for
totally bounded families of distributions. Tracing these relations back, they relate convergence of
the estimator for the distribution of d examples to convergence of the corresponding estimator for
the prior itself.

Lemma 2 For any θ, θ′ ∈ Θ and t ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof Fix θ, θ′ ∈ Θ, t ∈ N. Let X = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .}, and for
k ∈ N let Xk = {Xt1, . . . , Xtk}. and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For h ∈ C, let cX(h) =
{(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ C, define ρX(h, g) = lim
m→∞

1
m

∑m
i=1 1[h(Xti) 6= g(Xti)] (if the limit exists), and

ρXk(h, g) = 1
k

∑k
i=1 1[h(Xti) 6= g(Xti)]. Note that since C has finite VC dimension, so does the

collection of sets {{x : h(x) 6= g(x)} : h, g ∈ C}, so that the uniform strong law of large numbers
implies that with probability one, ∀h, g ∈ C, ρX(h, g) exists and has ρX(h, g) = ρ(h, g) (Vapnik,
1982).

Consider any θ, θ′ ∈ Θ, and any A ∈ B. Then since B is the Borel σ-algebra induced by ρ, any
h /∈ A has ∀g ∈ A, ρ(h, g) > 0. Thus, if ρX(h, g) = ρ(h, g) for all h, g ∈ C, then ∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This implies c−1
X (cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X (cX(A))) = πθ(A),

and similarly for θ′.
Any measurable set C for the range of Zt(θ) can be expressed as C = {cx̄(h) : (h, x̄) ∈ C ′}

for some appropriate C ′ ∈ B ⊗ B∞X . Letting C ′x̄ = {h : (h, x̄) ∈ C ′}, we have

PZt(θ)(C) =

∫
πθ(c

−1
x̄ (cx̄(C ′x̄)))PX(dx̄) =

∫
πθ(C

′
x̄)PX(dx̄). = P(h∗tθ,X)(C

′).
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Likewise, this reasoning holds for θ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗tθ,X) − P(h∗
tθ′ ,X)‖

= sup
C′∈B⊗B∞X

∣∣∣∣∫ (πθ(C
′
x̄)− πθ′(C ′x̄))PX(dx̄)

∣∣∣∣
≤
∫

sup
A∈B
|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.

Since we also have

‖πθ − πθ′‖ = ‖P(h∗tθ,X)(· × X∞)− P(h∗
tθ′ ,X)(· × X∞)‖

≤ ‖P(h∗tθ,X) − P(h∗
tθ′ ,X)‖ = ‖PZt(θ) − PZt(θ′)‖,

this means ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

Lemma 3 There exists a sequence rk = o(1) such that ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof The left inequality follows from Lemma 2 and the basic definition of ‖ · ‖, since PZtk(θ)(·) =
PZt(θ)(· × (X × {−1,+1})∞), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

The remainder of this proof focuses on the right inequality. Fix θ, θ′ ∈ Θ, let γ > 0, and let
B ⊆ (X × {−1,+1})∞ be a measurable set such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

Let A be the collection of all measurable subsets of (X × {−1,+1})∞ representable in the form
A′ × (X × {−1,+1})∞, for some measurable A′ ⊆ (X × {−1,+1})k and some k ∈ N. In
particular, since A is an algebra that generates the product σ-algebra, Carathéodory’s extention
theorem (Schervish, 1995) implies that there exist disjoint sets {Ai}i∈N inA such thatB ⊆

⋃
i∈NAi

and
PZt(θ)(B)− PZt(θ′)(B) <

∑
i∈N

PZt(θ)(Ai)−
∑
i∈N

PZt(θ′)(Ai) + γ.

Additionally, as these sums are bounded, there must exist n ∈ N such that∑
i∈N

PZt(θ)(Ai) < γ +

n∑
i=1

PZt(θ)(Ai),

so that ∑
i∈N

PZt(θ)(Ai)−
∑
i∈N

PZt(θ′)(Ai) < γ +

n∑
i=1

PZt(θ)(Ai)−
n∑
i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(
n⋃
i=1

Ai

)
− PZt(θ′)

(
n⋃
i=1

Ai

)
.
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As
⋃n
i=1Ai ∈ A, there exists k′ ∈ N and measurable A′ ⊆ (X ×{−1,+1})k′ such that

⋃n
i=1Ai =

A′ × (X × {−1,+1})∞, and therefore

PZt(θ)

(
n⋃
i=1

Ai

)
− PZt(θ′)

(
n⋃
i=1

Ai

)
= PZtk′ (θ)(A

′)− PZtk′ (θ′)(A
′)

≤ ‖PZtk′ (θ) − PZtk′ (θ′)‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

In summary, we have ‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖ + 3γ. Since this is true for an
arbitrary γ > 0, taking the limit as γ → 0 implies

‖πθ − πθ′‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

In particular, this implies there exists a sequence rk(θ, θ′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ
′).

This would suffice to establish the upper bound if we were allowing rk to depend on the par-
ticular θ and θ′. However, to guarantee the same rates of convergence for all pairs of parameters
requires an additional argument. Specifically, let γ > 0 and let Θγ denote a minimal subset of Θ
such that, ∀θ ∈ Θ, ∃θγ ∈ Θγ s.t. ‖πθ − πθγ‖ < γ: that is, a minimal γ-cover. Since |Θγ | < ∞ by
assumption, defining rk(γ) = maxθ,θ′∈Θγ rk(θ, θ

′), we have rk(γ) = o(1). Furthermore, for any
θ, θ′ ∈ Θ, letting θγ = argminθ′′∈Θγ ‖πθ − πθ′′‖ and θ′γ = argminθ′′∈Θγ ‖πθ′ − πθ′′‖, we have (by
triangle inequalities)

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′γ‖+ ‖πθ′γ − πθ′‖
< 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′γ)‖.

By triangle inequalities and the left inequality from the lemma statement (established above), we
also have

‖PZtk(θγ) − PZtk(θ′γ)‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′) − PZtk(θ′γ)‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′ − πθ′γ‖
< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

Defining rk = infγ>0 (4γ + rk(γ)), we have the right inequality of the lemma statement, and since
rk(γ) = o(1) for each γ > 0, we have rk = o(1).

Lemma 4 ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ 4 · 22k+dkd
√
‖PZtd(θ) − PZtd(θ′)‖.
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Proof Fix any t ∈ N, and let X = {Xt1, Xt2, . . .} and Y(θ) = {Yt1(θ), Yt2(θ), . . .}, and for k ∈ N
let Xk = {Xt1, . . . , Xtk} and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, then PZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.
Now suppose k > d. For a sequence z̄ and I ⊆ N, we will use the notation z̄I = {z̄i : i ∈ I}.

Note that, for any k > d and x̄k ∈ X k, there is a sequence ȳ(x̄k) ∈ {−1,+1}k such that no
h ∈ C has h(x̄k) = ȳ(x̄k) (i.e., ∀h ∈ C, ∃i ≤ k s.t. h(x̄ki ) 6= ȳi(x̄

k)). Now suppose k > d and
take as an inductive hypothesis that there is a measurable set A∗ ⊆ X∞ of probability one with
the property that ∀x̄ ∈ A∗, for every finite I ⊂ N with |I| > d, for every ȳ ∈ {−1,+1}∞ with
‖ȳI − ȳ(x̄I)‖1/2 ≤ k − 1,∣∣PYI(θ)|XI (ȳI |x̄I)− PYI(θ′)|XI (ȳI |x̄I)

∣∣
≤ 2k−1 · max

ỹd∈{−1,+1}d,D∈Id

∣∣∣PYd(θ)|Xd(ỹ
d|x̄D)− PYd(θ′)|Xd(ỹ

d|x̄D)
∣∣∣ .

This clearly holds for ‖ȳI − ȳ(x̄I)‖1/2 = 0, since PYI(θ)|XI (ȳI |x̄I) = 0 in this case, so this will
serve as our base case in the inductive proof. Next we inductively extend this to the value k > 0.
Specifically, letA∗k−1 be theA∗ guaranteed to exist by the inductive hypothesis, and fix any x̄ ∈ A∗,
ȳ ∈ {−1,+1}∞, and finite I ⊂ N with |I| > d and ‖ȳI − ȳ(x̄I)‖1/2 = k. Let i ∈ I be such that
ȳi 6= ȳi(x̄I), and let ȳ′ ∈ {−1,+1} have ȳ′j = ȳj for every j 6= i, and ȳ′i = −ȳi. Then

PYI(θ)|XI (ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI(θ)|XI (ȳ
′
I |x̄I),

and similarly for θ′. By the inductive hypothesis, this means∣∣PYI(θ)|XI (ȳI |x̄I)− PYI(θ′)|XI (ȳI |x̄I)
∣∣

≤
∣∣∣PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})

∣∣∣
+
∣∣PYI(θ)|XI (ȳ

′
I |x̄I)− PYI(θ′)|XI (ȳ

′
I |x̄I)

∣∣
≤ 2k · max

ỹd∈{−1,+1}d,D∈Id

∣∣∣PYd(θ)|Xd(ỹ
d|x̄D)− PYd(θ′)|Xd(ỹ

d|x̄D)
∣∣∣ .

Therefore, by the principle of induction, this inequality holds for all k > d, for every x̄ ∈ A∗,
ȳ ∈ {−1,+1}∞, and finite I ⊂ N, where A∗ has D∞-probability one.

In particular, we have that for θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖

≤ 2kE
[

max
ȳk∈{−1,+1}k

∣∣∣PYk(θ)|Xk(ȳk|Xk)− PYk(θ′)|Xk(ȳk|Xk)
∣∣∣]

≤ 22kE
[

max
ỹd∈{−1,+1}d,D∈{1,...,k}d

∣∣∣PYd(θ)|Xd(ỹ
d|XD)− PYd(θ′)|Xd(ỹ

d|XD)
∣∣∣]

≤ 22k
∑

ỹd∈{−1,+1}d

∑
D∈{1,...,k}d

E
[∣∣∣PYd(θ)|Xd(ỹ

d|XD)− PYd(θ′)|Xd(ỹ
d|XD)

∣∣∣] .
798



TRANSFER LEARNING

Exchangeability implies this is at most

22k
∑

ỹd∈{−1,+1}d

∑
D∈{1,...,k}d

E
[∣∣∣PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd)

∣∣∣]
≤ 22k+dkd max

ỹd∈{−1,+1}d
E
[∣∣∣PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd)

∣∣∣] .
To complete the proof, we need only bound this value by an appropriate function of ‖PZtd(θ) −
PZtd(θ′)‖. Toward this end, suppose

E
[∣∣∣PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd)

∣∣∣] ≥ ε,
for some ỹd. Then either

P
(
PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd) ≥ ε/4

)
≥ ε/4,

or
P
(
PYd(θ′)|Xd(ỹ

d|Xd)− PYd(θ)|Xd(ỹ
d|Xd) ≥ ε/4

)
≥ ε/4.

For which ever is the case, let Aε denote the corresponding measurable subset of X d, of probability
at least ε/4. Then

‖PZtd(θ) − PZtd(θ′)‖ ≥
∣∣∣PZtd(θ)(Aε × {ỹd})− PZtd(θ′)(Aε × {ỹd})

∣∣∣
≥ (ε/4)PXd(Aε) ≥ ε

2/16.

Therefore,

E
[∣∣∣PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd)

∣∣∣] ≤ 4
√
‖PZtd(θ) − PZtd(θ′)‖,

which means

22k+dkd max
ỹd∈{−1,+1}d

E
[∣∣∣PYd(θ)|Xd(ỹ

d|Xd)− PYd(θ′)|Xd(ỹ
d|Xd)

∣∣∣]
≤ 4 · 22k+dkd

√
‖PZtd(θ) − PZtd(θ′)‖.

The following lemma is a standard result on the existence of converging density estimators for
totally bounded families of distributions. For instance, the skeleton estimates described by Yatracos
(1985); Devroye and Lugosi (2001) satisfy this; in fact, in many contexts (though certainly not all),
even a simple maximum likelihood estimator would suffice. The reader is referred to (Yatracos,
1985; Devroye and Lugosi, 2001) for a proof of this lemma.

Lemma 5 (Yatracos, 1985; Devroye and Lugosi, 2001) Let P = {pθ : θ ∈ Θ} be a totally bounded
family of probability measures on a measurable space (Ω,F), and let {Wt(θ)}t∈N,θ∈Θ be Ω-valued
random variables such that {Wt(θ)}t∈N are i.i.d. pθ for each θ ∈ Θ. Then there exists an estimator
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θ̂Tθ? = θ̂T (W1(θ?), . . . ,WT (θ?)) and functions RP : N0× (0, 1]→ [0,∞) and δP : N0× (0, 1]→
[0, 1] such that ∀α > 0, limT→∞RP(T, α) = limT→∞ δP(T, α) = 0, and ∀θ? ∈ Θ and T ∈ N0,

P
(
‖pθ̂Tθ? − pθ?‖ > RP(T, α)

)
≤ δP(T, α) ≤ α.

We are now ready for the proof of Theorem 1
Proof [Theorem 1] For ε > 0, let Θε ⊆ Θ be any finite subset such that ∀θ ∈ Θ, ∃θε ∈ Θε

with ‖πθε − πθ‖ < ε; this exists by the assumption that {πθ : θ ∈ Θ} is totally bounded. Then
Lemma 3 implies that ∀θ ∈ Θ, ∃θε ∈ Θε with ‖PZtd(θε) − PZtd(θ)‖ ≤ ‖πθε − πθ‖ < ε, so that
{PZtd(θε) : θε ∈ Θε} is a finite ε-cover of {PZtd(θ) : θ ∈ Θ}. Therefore, {PZtd(θ) : θ ∈ Θ} is totally
bounded. Lemma 5 then implies that there exists an estimator θ̂Tθ? = θ̂T (Z1d(θ?), . . . ,ZTd(θ?))
and functions Rd : N0 × (0, 1] → [0,∞) and δd : N0 × (0, 1] → [0, 1] such that ∀α > 0,
limT→∞Rd(T, α) = limT→∞ δd(T, α) = 0, and ∀θ? ∈ Θ and T ∈ N0,

P
(
‖PZ(T+1)d(θ̂Tθ? )|θ̂Tθ?

− PZ(T+1)d(θ?)‖ > Rd(T, α)
)
≤ δd(T, α) ≤ α. (1)

Defining
R(T, α) = min

k∈N

(
rk + 4 · 22k+dkd

√
Rd(T, α)

)
,

and δ(T, α) = δd(T, α), and combining (1) with Lemmas 4 and 3, we have

P
(
‖πθ̂Tθ? − πθ?‖ > R(T, α)

)
≤ δ(T, α) ≤ α.

Finally, note that lim
k→∞

rk = 0 and lim
T→∞

Rd(T, α) = 0 imply that lim
T→∞

R(T, α) = 0.

3.1. Identifiability from d Points

Inspection of the above proof reveals that the assumption that the family of priors is totally bounded
is required only to establish the estimability and bounded rate guarantees. In particular, the implied
identifiability condition is, in fact, always satisfied, as stated formally in the following corollary.

Corollary 6 For any priors π1, π2 on C, if h∗i ∼ πi, X1, . . . , Xd are i.i.d. D independent from h∗i ,
and Zd(i) = {(X1, h

∗
i (X1)), . . . , (Xd, h

∗
i (Xd))} for i ∈ {1, 2}, then PZd(1) = PZd(2) ⇒ π1 = π2.

Proof The described scenario is a special case of our general setting, with Θ = {1, 2}, in which
case PZd(i) = PZ1d(i). Thus, if PZd(1) = PZd(2), then Lemma 4 and Lemma 3 combine to imply
that ‖π1 − π2‖ ≤ infk∈N rk = 0.

It is natural to wonder whether this identifiability remains true for some smaller number of
points k < d, so that we might hope to create an estimator for πθ? based on an estimator for PZtk(θ?).
However, one can show that d is actually the minimum possible value for which this remains true
for all D and all families of priors. Formally, we have the following result, holding for every VC
class C.
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Theorem 7 There exists a data distribution D and priors π1, π2 on C such that, for any posi-
tive integer k < d, if h∗i ∼ πi, X1, . . . , Xk are i.i.d. D independent from h∗i , and Zk(i) =
{(X1, h

∗
i (X1)), . . . , (Xk, h

∗
i (Xk))} for i ∈ {1, 2}, then PZk(1) = PZk(2) but π1 6= π2.

Proof Note that it suffices to show this is the case for k = d− 1, since any smaller k is a marginal
of this case. Consider a shatterable set of points Sd = {x1, x2, . . . , xd} ⊆ X , and let D be uniform
on Sd. Let C[Sd] be any 2d classifiers in C that shatter Sd. Let π1 be the uniform distribution
on C[S]. Now let Sd−1 = {x1, . . . , xd−1} and C[Sd−1] ⊆ C[Sd] shatter Sd−1 with the property
that ∀h ∈ C[Sd−1], h(xd) =

∏d−1
j=1 h(xj). Let π2 be uniform on C[Sd−1]. Now for any k < d

and distinct indices t1, . . . , tk ∈ {1, . . . , d}, {h∗i (xt1), . . . , h∗i (xtk)} is distributed uniformly in
{−1,+1}k for both i ∈ {1, 2}. This implies PZd−1(1)|X1,...,Xd−1

= PZd−1(2)|X1,...,Xd−1
, which im-

plies PZd−1(1) = PZd−1(2). However, π1 is clearly different from π2, since even the sizes of the
supports are different.

4. Transfer Learning

In this section, we look at an application of the techniques from the previous section to transfer learn-
ing. Like the previous section, the results in this section are general, in that they are applicable to a
variety of learning protocols, including passive supervised learning, passive semi-supervised learn-
ing, active learning, and learning with certain general types of data-dependent interaction (Hanneke,
2009). For simplicity, we restrict our discussion to the active learning formulation; the analogous
results for these other learning protocols follow by similar reasoning.

The result of the previous section implies that an estimator for θ? based on d-dimensional joint
distributions is consistent with a bounded rate of convergence R. Therefore, for certain prior-
dependent learning algorithms, their behavior should be similar under πθ̂Tθ? to their behavior under
πθ? .

To make this concrete, we formalize this in the active learning protocol as follows. A prior-
dependent active learning algorithm A takes as inputs ε > 0, D, and a distribution π on C. It
initially has access toX1, X2, . . . i.i.d. D; it then selects an index i1 to request the label for, receives
Yi1 = h∗(Xi1), then selects another index i2, etc., until it eventually terminates and returns a
classifier. Denote by Z = {(X1, h

∗(X1)), (X2, h
∗(X2)), . . .}. To be correct, the algorithmA must

guarantee that for h∗ ∼ π, ∀ε > 0, E [ρ(A(ε,D, π), h∗)] ≤ ε. We define the random variable
N(A, f, ε,D, π) as the number of label requests A makes before terminating, when given ε, D,
and π as inputs, and when h∗ = f is the value of the target function; we make the particular data
sequence Z the algorithm is run with implicit in this notation. We will be interested in the expected
sample complexity SC(A, ε,D, π) = E [N(A, h∗, ε,D, π)].

We propose the following algorithmAτ for transfer learning, defined in terms of a given correct
prior-dependent active learning algorithm Aa. We discuss interesting specifications for Aa in the
next section, but for now the only assumption we require is that for any ε > 0 and D, there is a
value sε <∞ such that for every π and f ∈ C, N(Aa, f, ε,D, π) ≤ sε; this is a very mild require-
ment, and any active learning algorithm can be converted into one that satisfies this without signifi-
cantly increasing its sample complexities for the priors it is already good for (Balcan, Hanneke, and
Vaughan, 2010). We denote by mε = 16d

ε ln
(

24
ε

)
, and B(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.
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Algorithm 1Aτ (T, ε): an algorithm for transfer learning, specified in terms of a generic subroutine
Aa.

for t = 1, 2, . . . , T do
Request labels Yt1(θ?), . . . , Ytd(θ?)
if R(t− 1, ε/2) > ε/8 then

Request labels Yt(d+1)(θ?), . . . , Ytmε(θ?)

Take ĥt as any h ∈ C s.t. ∀i ≤ mε, h(Xti) = Yti(θ?)
else

Let θ̌tθ? ∈ B
(
θ̂(t−1)θ? , R(t− 1, ε/2)

)
be such that

SC(Aa, ε/4,D, πθ̌tθ? ) ≤ min
θ∈B(θ̂(t−1)θ? ,R(t−1,ε/2))

SC(Aa, ε/4,D, πθ) + 1/t

Run Aa(ε/4,D, πθ̌tθ? ) with data sequence Zt(θ?) and let ĥt be the classifier it returns
end if

end for

Theorem 8 The algorithm Aτ is correct. Furthermore, if ST (ε) is the total number of label re-
quests made by Aτ (T, ε), then lim sup

T→∞

E[ST (ε)]
T ≤ SC(Aa, ε/4,D, πθ?) + d.

The remarkable implication of Theorem 8 is that, via transfer learning, it is possible to achieve
almost the same long-run average sample complexity as would be achievable if the target’s prior
distribution were known to the learner. We will see in the next section that this is sometimes signif-
icantly better than the single-task sample complexity.

The algorithm Aτ is stated in a simple way here, but Theorem 8 can be improved with some
obvious modifications to Aτ . The extra “+d” in Theorem 8 is not actually necessary, since we
could stop updating the estimator θ̌tθ? (and the corresponding R value) after some o(T ) number
of rounds (e.g.,

√
T ), in which case we would not need to request Yt1(θ?), . . . , Ytd(θ?) for t larger

than this, and the extra d · o(T ) number of labeled examples vanishes in the average as T →
∞. Additionally, the ε/4 term can easily be improved to any value arbitrarily close to ε (even
(1 − o(1))ε) by running Aa with argument ε − 2R(t − 1, ε/2) − δ(t − 1, ε/2) instead of ε/4,
and using this value in the SC calculations in the definition of θ̌tθ? as well. In fact, for many
algorithmsAa (e.g., with SC(Aa, ε,D, πθ?) continuous in ε), combining the above two tricks yields
lim sup
T→∞

E[ST (ε)]
T ≤ SC(Aa, ε,D, πθ?).

Returning to our motivational remarks from Subsection 2.1, we can ask how many extra labeled
examples are required from each learning problem to gain the benefits of transfer learning. This
question essentially concerns the initial step of requesting the labels Yt1(θ?), . . . , Ytd(θ?). Clearly
this indicates that from each learning problem, we need at most d extra labeled examples to gain
the benefits of transfer. Whether these d label requests are indeed extra depends on the particular
learning algorithm Aa; that is, in some cases (e.g., certain passive learning algorithms), Aa may
itself use these initial d labels for learning, so that in these cases the benefits of transfer learning
are essentially gained as a by-product of the learning processes, and essentially no additional la-
beling effort need be expended to gain these benefits. On the other hand, for some active learning
algorithms, we may expect that at least some of these initial d labels would not be requested by
the algorithm, so that some extra labeling effort is expended to gain the benefits of transfer in these
cases.
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Proof [Theorem 8] Recall that, to establish correctness, we must show that ∀t ≤ T , E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε, regardless of the value of θ? ∈ Θ. Fix any θ? ∈ Θ and t ≤ T . If R(t − 1, ε/2) > ε/8, then
classic results from passive learning indicate that E

[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε (Vapnik, 1982). Otherwise,

by Theorem 1, with probability at least 1−ε/2, we have ‖πθ?−πθ̂(t−1)θ?
‖ ≤ R(t−1, ε/2). On this

event, if R(t− 1, ε/2) ≤ ε/8, then by a triangle inequality ‖πθ̌tθ? − πθ?‖ ≤ 2R(t− 1, ε/2) ≤ ε/4.
Thus,

E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ E

[
E
[
ρ
(
ĥt, h

∗
tθ?

) ∣∣∣θ̌tθ?]1 [‖πθ̌tθ? − πθ?‖ ≤ ε/4]]+ ε/2. (2)

For θ ∈ Θ, let ĥtθ denote the classifier that would be returned by Aa(ε/4,D, πθ̌tθ? ) when
run with data sequence {(Xt1, h

∗
tθ(Xt1)), (Xt2, h

∗
tθ(Xt2)), . . .}. Note that for any θ ∈ Θ, any

measurable function F : C→ [0, 1] has

E
[
F (h∗tθ?)

]
≤ E [F (h∗tθ)] + ‖πθ − πθ?‖. (3)

In particular, supposing ‖πθ̌tθ? − πθ?‖ ≤ ε/4, we have

E
[
ρ
(
ĥt, h

∗
tθ?

) ∣∣∣θ̌tθ?] = E
[
ρ
(
ĥtθ? , h

∗
tθ?

) ∣∣∣θ̌tθ?]
≤ E

[
ρ
(
ĥtθ̌tθ?

, h∗
tθ̌tθ?

) ∣∣∣θ̌tθ?]+ ‖πθ̌tθ? − πθ?‖ ≤ ε/4 + ε/4 = ε/2.

Combined with (2), this implies E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε.

We establish the sample complexity claim as follows. First note that convergence of R(t −
1, ε/2) implies that limT→∞

∑T
t=1 1 [R(t, ε/2) > ε/8] /T = 0, and that the number of labels used

for a value of t with R(t− 1, ε/2) > ε/8 is bounded by a finite function mε of ε. Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )

]
1[R(t− 1, ε/2) ≤ ε/8]/T

≤ d+ lim sup
T→∞

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )

]
/T. (4)

By the definition of R, δ from Theorem 1, we have

lim
T→∞

1

T

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )1

[
‖πθ̂(t−1)θ?

− πθ?‖ > R(t− 1, ε/2)
]]

≤ lim
T→∞

1

T

T∑
t=1

sε/4P
(
‖πθ̂(t−1)θ?

− πθ?‖ > R(t− 1, ε/2)
)

≤ sε/4 lim
T→∞

1

T

T∑
t=1

δ(t− 1, ε/2) = 0.
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Combined with (4), this implies

lim sup
T→∞

E[ST (ε)]

T
≤ d+

lim sup
T→∞

1

T

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )1

[
‖πθ̂(t−1)θ?

− πθ?‖ ≤ R(t− 1, ε/2)
]]
.

For any t ≤ T , on the event ‖πθ̂(t−1)θ?
− πθ?‖ ≤ R(t− 1, ε/2), we have (by the property (3) and a

triangle inequality)

E
[
N(Aa, h∗tθ? ,ε/4,D, πθ̌tθ? )

∣∣∣θ̌tθ?]
≤ E

[
N(Aa, h∗tθ̌tθ? , ε/4,D, πθ̌tθ? )

∣∣∣θ̌tθ?]+ 2R(t− 1, ε/2)

= SC
(
Aa, ε/4,D, πθ̌tθ?

)
+ 2R(t− 1, ε/2)

≤ SC (Aa, ε/4,D, πθ?) + 1/t+ 2R(t− 1, ε/2),

where the last inequality follows by definition of θ̌tθ? . Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

1

T

T∑
t=1

SC (Aa, ε/4,D, πθ?) + 1/t+ 2R(t− 1, ε/2)

= d+ SC (Aa, ε/4,D, πθ?) .

4.1. Application to Self-Verifying Active Learning

Recent work of Yang, Hanneke, and Carbonell (2010) shows that there is a correct prior-dependent
active learning algorithm A such that, for any prior π over C, SC(A, ε,D, π) = o(1/ε). This is
interesting, in that it contrasts with established results for correct prior-independent active learn-
ing algorithms, where there are known problems (C,D) for which any prior-independent active
learning algorithm A′ that is correct (in the sense studied above) has some prior π for which
SC(A′, ε,D, π) = Ω(1/ε); for instance, the class of interval classifiers on [0, 1] under a uniform
distribution D satisfies this (Balcan, Hanneke, and Vaughan, 2010).

Combined with the results above for transfer learning, we get an immediate corollary that, run-
ning Aτ with the active learning algorithm A having this o(1/ε) sample complexity guarantee, we
have

lim sup
T→∞

E[ST (ε)]

T
= o(1/ε).

Thus, in the case of active learning, there are scenarios where transfer learning (of the type
studied here) can provide significant improvements in the average expected sample complexity,
including improvements to the asymptotic dependence on ε.
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5. Conclusions

We have shown that when learning a sequence of i.i.d. target concepts from a known VC class,
with an unknown distribution from a known totally bounded family, transfer learning can lead to
amortized expected sample complexity close to that achievable by an algorithm with direct knowl-
edge of the the targets’ distribution. Furthermore, the number of extra labeled examples per task,
beyond what is needed for learning that task, is bounded by the VC dimension of the class. The
key insight leading to this result is that the prior distribution is uniquely identifiable based on the
joint distribution over the first VC dimension number of points. This is not necessarily the case for
the distribution over any number of points less than the VC dimension. As a particularly interesting
application, we note that in the context of active learning, transfer learning of this type can even lead
to improvements in the asymptotic dependence on the desired error rate guarantee ε in the average
expected sample complexity, and in particular can guarantee this average is o(1/ε).

Acknowledgments

We extend our sincere thanks to Avrim Blum for several thought-provoking discussions on this
topic.

References

R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and
unlabeled data. Technical Report RC23462, IBM T.J. Watson Research Center, 2004.

M.-F. Balcan, S. Hanneke, and J. Wortman Vaughan. The true sample complexity of active learning.
Machine Learning, 80(2–3):111–139, September 2010.

J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task sampling.
Machine Learning, 28:7–39, 1997.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:
149–198, 2000.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Conference
on Learning Theory, 2003.

J. G. Carbonell. Learning by analogy: Formulating and generalizing plans from past experience.
In R. S. Michalski, J. G.Carbonell, and T. M. Mitchell, editors, Machine Learning, An Artificial
Intelligence Approach. Tioga Press, Palo Alto, CA, 1983.

J. G. Carbonell. Derivational analogy: A theory of reconstructive problem solving and expertise
acquisition. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning,
An Artificial Intelligence Approach, Volume II. Morgan Kaufmann, 1986.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, New York,
NY, USA, 2001.

805



YANG HANNEKE CARBONELL

T. Evgeniou and M. Pontil. Regularized multi-task learning. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2004.

T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

S. Hanneke. Theoretical Foundations of Active Learning. PhD thesis, Machine Learning Depart-
ment, School of Computer Science, Carnegie Mellon University, 2009.

J. Kolodner (Ed). Case-Based Learning. Kluwer Academic Publishers, The Netherlands, 1993.

C. Micchelli and M. Pontil. Kernels for multi–task learning. In Advances in Neural Information
Processing 18, 2004.

M. J. Schervish. Theory of Statistics. Springer, New York, NY, USA, 1995.

D. L. Silver. Selective Transfer of Neural Network Task Knowledge. PhD thesis, Computer Science,
University of Western Ontario, 2000.

S. Thrun. Is learning the n-th thing any easier than learning the first? In In Advances in Neural
Information Processing Systems 8, 1996.

V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,
1982.

M. M. Veloso and J. G. Carbonell. Derivational analogy in prodigy: Automating case acquisition,
storage and utilization. Machine Learning, 10:249–278, 1993.

L. Yang, S. Hanneke, and J. Carbonell. The sample complexity of self-verifying bayesian active
learning. Technical Report CMU-ML-10-105, Carnegie Mellon University, 2010.

Y. G. Yatracos. Rates of convergence of minimum distance estimators and Kolmogorov’s entropy.
The Annals of Statistics, 13:768–774, 1985.

806


	Introduction
	Outline of the paper

	Definitions and Related Work
	Relation to Existing Theoretical Work on Transfer Learning

	Estimating the Prior
	Identifiability from d Points

	Transfer Learning
	Application to Self-Verifying Active Learning

	Conclusions

