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Abstract

We propose an estimator for the conditional
density p(Y|X) that can adapt for asymmet-
ric heavy tails which might depend on X.
Such estimators have important applications
in finance and insurance. We draw from Ex-
treme Value Theory the tools to build a hy-
brid unimodal density having a parameter
controlling the heaviness of the upper tail.
This hybrid is a Gaussian whose upper tail
has been replaced by a generalized Pareto
tail. We use this hybrid in a multi-modal
mixture in order to obtain a nonparametric
density estimator that can easily adapt for
heavy tailed data. To obtain a conditional
density estimator, the parameters of the mix-
ture estimator can be seen as functions of X
and these functions learned. We show exper-
imentally that this approach better models
the conditional density in terms of likelihood
than compared competing algorithms : con-
ditional mixture models with other types of
components and multivariate nonparametric
models.

1 Introduction

The purpose of this paper is to introduce a new non-
parametric model for conditional density estimation
when the underlying density p(Y|X) is asymmetric
and heavy-tailed. This task is meaningful in a number
of application domains where one wishes to make pre-
dictions about a random variable Y given an observed
X, when the distribution of Y given X can have fat
tails, be multimodal or asymmetric.

Practical application domains where such distributions
occur include financial and insurance modeling. In
finance, estimating the predictive conditional distri-
bution of the profit and loss (P&L) of a portfolio is
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central for portfolio and risk management. Finance
practitioners most often use the so-called Value-at-
Risk (VaR) which is a quantile of the P&L distribu-
tion. However, the only information carried by the
VaR is a bound on the lowest loss attainable with a
given probability. It doesn’t provide any information
as how bad can things go below that bound. The Con-
ditional VaR (CVaR) has been proposed to resolve this
issue [1]; it measures the expected loss given that the
VaR has been exceeded. A density estimator provid-
ing a model of the tail of distribution is thus required
to compute the CVaR. Besides, several authors have
already provided strong evidence for the presence of
fat tails in stock returns data [2]-[3].

In insurance applications, companies are interested in
modeling the distribution of the claims given a client
profile. Insurers cover losses that fall in a given inter-
val, called the reinsurance layer, by resorting to rein-
surance companies. This reinsurance layer is meant
to protect against a range of large claims; therefore,
good estimates of the tail of the claim distribution are
needed to evaluate the probability of losses in the rein-
surance layer [4]. In both application domains, the
dimension of the input can be as much as hundreds.

In general, if one incurs a loss I(Y, X, d) when decision
d is taken and Y and X are realized, then one should
choose d to minimize the expected loss:

[ x.am(rixay.

When [ is not known precisely ahead of time, it is
reasonable to look for an estimator ¢g(x,y) of p(Y =
y|X = x) that is close to the true one in the sense of
the Kullback-Leibler (KL) divergence. However, since
the true conditional density is unknown, one can con-
sider the KL, divergence with respect to the empirical
distribution, which is equivalent to the conditional log-
likelihood.



2 Extreme value theory

The so-called Peaks over Thresholds (PoT) method
was developed to estimate the tail of a univariate dis-
tribution [5]. A suitable threshold needs to be estab-
lished and the exceedances above that threshold are
assumed to follow the Generalized Pareto (GP) dis-
tribution. The density function of the GP is given in
equation 1 where y > 0 when £ > 0and 0 <y < —f3/¢
when ¢ < 0. The location of the GP can be changed
by replacing y by y — « in the equations.
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Justification for the use of the GP to model ex-
ceedances of a random variable Y comes from Pickands
theorem [6]. This theorem states that the distribution
of the normalized exceedances of Y over a threshold
converges to a GP distribution as the threshold tends
to the right endpoint of the distribution if and only
if Y is in the maximum domain of attraction of an
Extreme-Value distribution. This condition is a fairly
general one and encompasses all well-known distribu-
tions.

The parameter £ of the GP controls the thickness of
the tail. When £ > 0, the GP can account for heavy
tails (e.g. Pareto, a-stable and Student t distribu-
tions). When & = 0, the GP can model exponential
tails (e.g. Gaussian, Exponential and Log-Normal dis-
tributions). Finally, when ¢ < 0, the GP has a finite
tail (e.g. uniform or Beta distribution). Examples of
the GP density for various tail parameters are given
in Figures 1 and 2.
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Figure 1: GP density from light (£ = 0) to heavy tail
(§£=2).

The choice of threshold above which the exceedances
are used for inference of the GP parameters is sub-
ject to a bias-variance trade-off. If the threshold is too
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Figure 2: GP density for finite tails (£ < 0).

high, very few points enter in the estimation of the
GP parameters, making the estimation subject to high
variance. If the threshold is too low, the GP approxi-
mation of the tail will have a large bias since, according
to Pickands theorem, convergence occurs as the thresh-
old approaches the right endpoint of the distribution.
Some methods have been proposed for threshold selec-
tion but there is no consensus on which one to use.

3 Hybrid Pareto distribution

Since the GP is only suited to model the tail of a dis-
tribution, we propose the hybrid Pareto distribu-
tion as a smooth extension of the GP to the whole
real axis. This new distribution is built by stitching
a GP tail to a Gaussian, while enforcing continuity of
the resulting density and of its derivative. The thresh-
old is then defined as the junction point of the Gaus-
sian and the GP and is computed implicitly as a func-
tion of the hybrid parameters. Let o be the thresh-
old and let f,.,(y) = 1/(v/270) exp(—(y — 1)/ (20%))
be the Gaussian density function with parameters p
and o, ge¢p(y — «) be the GP density of equation
1 with parameters £ and ( located above a. The
continuity constraint on the density at « means that
fuso (@) = ge,p(0) which gives:
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Continuity of the derivative of the density at & means
that f,.,(a) = g;.5(0), which yields:
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Combining equations 2 and 3, we get that:
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We set £, 1 and o as the free parameters and we let «
and 3 be functions of these free parameters. We then




solve equations 2 and 4 for &, u and o. For this, we
make use of the Lambert W function: given an input
z, w = W(z) is such that 2 = we®. We use a numerical
algorithm of order four to find the zero of z — we® [7].
We let z = (1+ £)?/2n. The dependent parameters o
and [ are obtained by the following formulae:

ﬂ(fa U) = 0(1 hi E)

W(z).
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For £ > —1, the hybrid Pareto density function is given
by:
. %f ;o (y)
hE;;L;cr(y) - 1 .
S9epy —a) fy>a
where ~ is the appropriate re-weighting so that the
density integrates to one and is given by:

ify <a,

7(5):1+%(1+Erf( W(z)/2>),

where Erf(-) is the error function Erf(z) =
% foz et dt, which can be readily approximated nu-
merically to high precision in standard ways.

Figures 3 and 4 illustrate the density and the log-
density of the Hybrid Pareto distribution.
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Figure 3: Hybrid Pareto density with parameters £ =
04, p=0ando =1.

4 Mixture models

A popular model in density estimation is the mixture
of Gaussians. When the number of components is well
chosen according to the number of observations, the
mixture of Gaussians has nice convergence properties
as a nonparametric estimator (see [8] for instance).
However, if the tail of the generative distribution is
heavy, i.e. extreme observations can occur far away in
the tail, good empirical results can often be obtained
by considering a mixture of Gaussians in which one of
the Gaussians has a very large o, that serves to capture
the points far away. One disadvantage of this approach
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Figure 4: Hybrid Pareto log-density for various tail
parameters and in all cases =0 and 0 = 1.

is that the density model will only account for observed
extremes and will still underestimate the density of
the upper tail (this is specially true for small training
sets). Another drawback is that by using symmetric
components in the mixture, the lower tail tends to be
overestimated.

We propose to combine the advantages of the mixture
model, a flexible nonparametric model, and of the GP,
capable of approximating arbitrarily well the tail of
most distributions, by using a mixture of hybrid Pareto
distributions. Using directly the GP as a component of
a mixture model would be impractical since the GP is
zero below the threshold that determines its location.
Besides, we bypass the need of selecting a threshold
inherent in the PoT methodology. The threshold is
embedded in the component of the mixture having the
heaviest tail and is thus determined implicitly through
inference of the whole mixture.

5 Conditional mixture models

We build a conditional density estimator ¢p(z,y)
based on the mixture model by modeling the mixture
parameters for the density of y as functions of the in-
put z. The estimator is given in equation 5 when using

hybrid Pareto components.
m

¢o(r,y) = Zm(x)h(y;&(w),m(w% oi(z))  (3)

Neural networks and linear or log-linear models are
convenient classes of functions to compute the param-
eters of the output density, that is to implement the
functions m;(-), &(-), pi(-), and o;(+), given an x, and
they have been used successfully for similar tasks [9].
However any parametrized class of functions which can
be trained using the gradient with respect to parame-
ters can be used. This is because the estimation of this
function is obtained through maximizing the mixture



conditional log-likelihood. By increasing the number
of hidden units, neural networks can in principle ap-
proximate any continuous function. The neural net-
work output formulae are given in equations 6 and 7
and the resulting architecture is depicted in Figure 5.
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Figure 5: Conditional Mixture Model: A feed-forward
neural network with one hidden layer and hyperbolic
tangent activation function is used to predict input
dependent mixture parameters. Appropriate transfer
functions at the network outputs are used to impose
range constraints.

The outputs of the neural network, the a; in Figure 5,
are linear combinations of the hidden unit outputs:

h
a;(x) =b; + ijizi<x)a (6)

where d
zi(z) = tanh (ci + Z vikxk) (7
k=1
are hidden unit activations. The number of hidden
units h controls the capacity (the number of parame-
ters and the flexibility of the model) and d is the di-

mension of the input . By convention, setting h = 0
results in a linear model (a;(z) = b; + 22:1 WjiTh)-

The transfer function at the output of the neural net-
work is chosen so as to impose range constraints on
the parameters of the mixture. The mixture weight
7i(r) = P(i|X = z) is the probability that the i‘h
component is responsible for generating y given z. It
must therefore be positive and all the m;(-)’s must
sum to one. This is ensured by a softmax function:
mi(x) = exp(a;(x))/ 3, exp(a;(z)), where the a;(-)’s,
7 = 1...m are the neural network outputs dedicated
to the priors 7;(-)’s. A softplus function is used to
guarantee the positivity of the o;(-)’s:

softplus(z) = log(1 + €%).

The softplus has been introduced by [10]; like the expo-
nential, the softplus has a positive range but it grows
slower than the exponential which makes numerical op-
timization more stable'. In the experiments we have
also constrained the &;(-)’s to be positive with a soft-
plus. The p;(-)’s are unconstrained a;(-)’s.

The free parameters of the conditional mixture model
are thus the neural network parameters 8 = (b, ¢, v, w).
These are determined by minimizing the empirical neg-
ative log-likelihood:

100) = —Zlog¢9($i,yi)~ (8)

We use a conjugate gradient descent algorithm for the
optimization. For each example, we obtain the gra-
dient of the empirical negative log-likelihood with re-
spect to 0 in two steps:

1. First compute derivatives of | with respect to a;,
j=1,...,4m, (the outputs of the neural network
before the output transfer function, see Figure 5).

2. Back-propagate gradients as usual through the
neural network in order to obtain %. Implic-
itly, the resulting gradient is therefore obtained

th h
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Since the derivative in step 2 is standard in neu-
ral network applications (see [9]), we describe only
the derivative in step 1. Let | = —log(¢g(x,y)) =
—log(¢g(z)(y)) be the value of the error function for
example (z,y) where ¢g(z,y) is given in equation 5
and 6(z) = (w(x),&(x), p(x),o(x)) are the mixture

'Note that if > 0, we have softplus(z) =
z + log(l + e ®) and asymptotically we have that
lim,_. + o softplus(z) — z where 1 denotes the positive
part of x



parameters for input = where, for instance, 7 (z) de-
notes the vector of length m of mixture weights. From
Figure 5, we see that the derivative a‘% can be sepa-
rated into two different cases depending on the value

of j:

- If 1 < j < m, a; is one of the outputs controlling
the priors and its derivative can be expressed as:

8CL]' 8¢>9(x)(y) el 87Tk 8aj '

- On the other hand, if m+1 < j < 4m, a; governs
one of the hybrid Pareto component parameter
0;(x) and its derivative is simpler:

G A dew(y) 96,(2)
daj  Odo(r)(y) 00;(x) da;
Each partial derivative in equations 9 and 10 is de-
veloped next. In both equations we have W =

(10)

When the derivative is taken with respect

¢9(;)(y
to one of the mixture weights, we have, for 1 < j < m:
a¢0 x (y)
P = h(y: (), 1y (@), 05 (2)).
Ty

Differentiating with respect to the hybrid Pareto pa-
rameters 0;(z), for m+1<j <4mand i=j mod 3,

8¢9(w)( ) _ 0 .
T00,(x) Wi(x)mh(yvﬁj(m)’uj(-f)’Uj(l‘))-

The derivative of the priors and of the mixture param-
eters with respect to the network outputs are
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6 Experiments

The Student t and Log-Normal distributions are ro-
bust alternatives to the Gaussian distribution. The
Student t distribution is a symmetric distribution
whose tail heaviness is controlled by a parameter v
called the number of degrees of freedom. The tail
of the Student t can be modeled by a GP with tail
parameter £ = 1/v. The Log-Normal distribution is
asymmetric with an upper tail slightly heavier than
the Gaussian tail. However, the Log-Normal tail, like
the Gaussian tail, can be modeled by a GP with tail
parameter £ = 0. Based on those considerations, we
compared our conditional mixture of hybrid Paretos
CMM-H with conditional mixture models (also with

a neural network to predict parameters) with different
types of components CMM-G  for Gaussian, CMM-
T for Student t and CMM-L for Log-Normal. We
also compared CMM-H with multivariate models

n (X,Y) : Gaussian mixture MM-G and Parzen
window estimator MM-P , transformed to estimate
p(Y[X) = p(X,Y)/p(X).

The conditional mixture models are all trained by con-
jugate gradient descent to minimize the negative log-
likelihood. The multivariate mixture of Gaussians is
trained by the EM algorithm. Since the optimization
for all models may lead to local minima, during learn-
ing, each model is re-initialized randomly 5 times and
the optimization is re-started accordingly (this is done
only on the real data sets). We keep the parameters
that gave the smallest training error.

The conditional mixture models (regardless of the type
of components), have two hyper-parameters: the num-
ber of hidden units n;, for the neural network and the
number of components m of the mixture. The multi-
variate mixture of Gaussians has one hyper-parameter,
the number of components. The variance-covariance
matrix is chosen to be diagonal except for the ex-
periments on the artificial data sets where the ma-
trix is full. The variance-covariance matrix for the
multivariate Parzen window estimator has two hyper-
parameters, A, which controls the input variance and
Ay which controls the target variance. We use a valida-
tion set, independent of the training set, to select the
optimal values for the hyper-parameters of each model.
The complexity of each model is thus optimized fairly.

6.1 Artificial data sets

We generated data from a conditional Fréchet distri-
bution whose parameters are made conditionally de-
pendent on the input by using either a linear (f(X) =
aX + b) or a sine-shaped (f(X) = csin(aX + b) + d)
functional. To easily control the range of the Fréchet
parameters, we chose X scalar and uniform on [0, 1].
The tail index of the Fréchet was chosen to be either
in the interval [1/6,1/4] to allow for moderately heavy
tails or in the interval [1/2, 2] to allow for heavier tails.
We have thus four distinct generative models.

For this experiment, the training and the test set both
had 500 observations. To capture the performance rel-
ative to the generative model, we measure the perfor-
mance with the out—of—sample relative log-likelihood:

yz|1'z)
log < >
Z ®o xwyz)
where p(-) is the den51ty function of the generative
model, ¢g(-) is the density function of the estima-

tor and the sum is over the test set D. The smaller
the RLL criterion is, the better the estimator is per-

RLL(D



forming. We generated 20 pairs of training and test
sets. Table 1 presents a sample overview of the re-
sults; it shows the average out-of-sample RLL along
with its standard error over the 20 test sets. The
generative model is the conditional Fréchet with lin-
early dependent parameters and moderately heavy tail
(€ € 1/6,1/4]). All conditional mixture models have
one hidden unit (which theoretically should be suffi-
cient since the functional dependence is linear) and
the number of components is allowed to increase.

Table 1: Average out-of-sample RLL (standard err.)
between predicted density of the estimators and the
generative model - conditional Fréchet distribution.
Smaller values mean better estimators.

m CMM-H CMM-G

1 10.0 (6.6) 161.6 (28.3)

2 11.0 (6.0) 53.9 (20.7)

4 9.8 (54) 36.8 (21.7)

8 11.9 (5.3) 29.6 (13.5)

m CMM-T CMM-L

1 134.9 (36.8) 112.7 (18.1)

2 37.3(14.5) 37.6 (25.9)

4 304 (16.8)  19.3 (9.0)

8 30.8 (15.8)  20.1(8.3)

m  MM-G (Azs Ay) MM-P

1 179.1(28.9) (1073,107%) 292.3 (53.8)
2 202.8(96.8) (1073,1072) 130.8 (37.1)
4 1879 (68.1) (1072,1073%) 307.0 (52.4)
8 221.0 (86.0) (1072,1072) 228.2 (34.7)

Table 1 shows that the conditional mixture with hybrid
Pareto components has the smallest RLL even with
only one component in the mixture. The complete
results for all four data sets give a similar insight.

6.2 Insurance data set

In a second set of experiments we used real insur-
ance data graciously provided by an anonymous in-
surance company. The complete distribution of the
claims include a mass point at 0. One way to deal
with this is to use a probabilistic classifier that pre-
dicts, given a client profile X, the most probable class
(claim = 0,claim > 0). For the second class, we
need to estimate p(claim|X, claim > 0) and this is the
part of the problem we addressed here. This is why
the records used in the experiments are only for poli-
cies that had a non-zero claim. Data from one year,
containing 54119 records with positive claims, were
used for training, hyper-parameter selection, testing
and model comparison. The dependent variable Y is
the claim amount divided by the duration of the pol-
icy. The input variable X is a vector of 140 numbers,
mostly binary indicators, describing the client profile.
The numeric inputs have been standardized. Princi-

pal component analysis has been applied on the input
variable to reduce dimensionality: enough components
(between 61 and 69 depending on the training set size)
were retained to explain 90% of input variance. The
histogram of the positive claims smaller than 5000%
of Figure 6 illustrates the unconditional distribution;
it shows that the distribution has at least two modes.
This distribution is strongly skewed: more than 75% of
the claim amounts are smaller than the average claim
amount.
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Figure 6: Histogram of the positive claims smaller than
5000% for the insurance data set.

The performance is measured by comparing how a
competing estimator performs relative to the proposed
conditional mixture of hybrid Paretos. Let (z,y) be a
particular data point, the relative performance mea-
sure is then written as:

R(z,y) = log(¢s(x, y)) — log(ds(z,y)),
where ¢g(-) is the density function of the conditional
mixture of hybrid Paretos and ég(-) is the density func-
tion of a competing estimator. Positive values indicate
that the conditional mixture of hybrid Paretos per-
formed better than the competing estimator.

Increasing sizes of training sets were used; the vali-
dation set was fixed as the quarter of the size of the
training set and was used for hyper-parameters selec-
tion. The remaining data was used for testing and
model comparison. The average relative performance
on the test set with its standard error in parentheses
are given in table 2 for all training set sizes. The hyper-
parameters selected on the validation set are given in
table 3.

We see in table 2 that the performance of the condi-
tional mixture with Gaussian components and of the
multivariate Parzen window estimator is really poor
in two instances. This is because these two algorithms
are greatly affected by the presence of previously un-
seen extremes in the test set (target values in the range



Table 2: Average relative performance (standard err.)
in test with respect to CMM-H for the insurance data
set, n being the training set size. Positive values indi-
cate that the CMM-H performed better.

n CMM-G CMM-T CMM L
400 93 (43) 0.73 (0.0057) 0.037 (0.018)
800 246 (90) 0.58 (0.005)  0.021 (0.0043)
1600 46 (19) 0.68 (0.0043)  0.0014 (0.0068)
3200 21 (9.8) 0.59 (0.0039) 0.059 (0.011)
6400 72 (30) 0.44 (0.0034) 0.027 (0.013)
n MM-G MM-P
400 0.67 (0.081) 67 (38)
800  0.69 (0.069) 67 (58)
1600  0.85 (0.082) 69 (59)
3200 0.92 (0.082) 698 (594)
6400 0.96 (0.063) 5.3 (4.5)

Table 3: Hyper-parameters selected on the validation
set for the insurance data set.

n CMM-H CMM-G CMM-T
(nh; m) (nhv m) (nh> m)
400 (1, 14) (1, 10) (1, 14)
800 (1, 10) (1, 12) (1, 12)
1600 (1, 16) (1, 10) (1, 14)
3200 (1, 12) (1, 8) (1, 18)
6400 (1,18)  (1,10) (L, 8)
n CMM-L. MM-G MM-P
(np,m) —m (Azs Ay)
100 (1,14 4 (100, 1000000)
800 (1, 18) 4 (100, 1000000)
1600 (1, 14) 4 (100, 1000000)
3200 (1, 16) 6 (100, 100000)
6400 (1,14) 4 (100, 10000000)

of 10° whereas the maximum value seen in training is
in the range of 10°). The conditional mixture with
hybrid Pareto components is steadily outperforming
the competing algorithms although, in some cases, its
performance is not significantly better than the con-
ditional mixture with Log-normal components. This
could be explained by the fact that the Log-normal
tail is a particular case of generalized Pareto tail.

6.3 KDD cup 98 data set

In the last set of experiments, we used the data set
provided by the Fourth International Conference on
Knowledge Discovery and Data Mining (KDD Cup
98). The dependent variable Y is the amount do-
nated to a national veterans organization. The input
variable X has 479 fields describing the donor profile.
A binary variable indicates whether or not a person
responded to the promotion; the donation amount is
only observed when this variable is on. Just like for
the insurance data set, a probabilistic classifier could
be used to predict, given X, the probability that the

person will make a positive donation. However, we ad-
dressed only the problem of estimating p(Y|X,Y > 0).
We thus have a total of 9716 positive records. We note
that 75% of the donations are less or equal to 20$ al-
though some donations go all the way up to 5008. The
target variable takes value in a discrete set containing
mainly integer numbers; the amounts corresponding
to multiple of 5§ are especially frequent as can be seen
from the bar plot of Figure 7.
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Figure 7: KDD cup 98 data set: bar plot displaying
the frequency of each donation amount smaller than
508.

We followed [11] for preprocessing, yielding five input
variables. We used the same procedure as for the in-
surance data set regarding the performance criterion,
the training, validation and test sets. The average per-
formance on the test set along with its standard error
is given in table 4 for each competing algorithm and
each training set size. The selected hyper-parameters
are given in table 5.

Table 4: Average relative performance (standard err.)
in test with respect to CMM-H for the KDD cup 98
data set, n being the training set size. Positive values
indicate that the CMM-H performed better.

n CMM-G CMM-T CMM-L
400 2.3 (0.2) 0.5 (0.021) 1.2 (0.048)
800 1.5 (0.56)  0.37 (0.055) 1.1 (0.056)
1600 0.88 (0.45)  0.26 (0.029) 0.35 (0.043)
3200 0.37 (0.092) 0.31 (0.052) 1 (0.052)
6400 0.015 (0.1)  0.24 (0.08)  0.72 (0.099)
n MM-G MM-P

400 3.1 (0.2) 1515 (2068)

800 2.4 (0.13) 8.3 (12)

1600 1.9 (0.14) 3.1 (0.25)

3200 2.3 (0.098) 3.9 (2.5)

6400 2.2 (0.11) 1.2 (0.17)

The results in table 4 show that for this data set as



Table 5: Hyper-parameters selected on the validation
set for the KDD cup 98 data set.

n CMM-H CMM-G CMM-T
(nh,m)  (nn,m)  (np,m)
400 (1,18) (1,8 1, 4)
800 (1,18)  (1,18) (1, 8)
1600 (1, 4) (2,16) (1, 8)
3200 (1, 4) (1,18)  (1,18)
6400 (1,16) (2,16) (1, 8)
n CMM-L. MM-G  MM-P
(nh,m) —m (Aas Ay)
400 (1,16) 16 (100, 0.01)
800 (2,16) 18 (100, 1)
1600 (1,18) 20 (1, 100)
3200 (4,18) 22 (1, 0.01)
6400 (1, 8) 20 (100, 0.01)

well, the conditional mixture with hybrid Pareto com-
ponents outperforms the other algorithms consistently.
However, in this case, the closest competitor is the
conditional mixture of Gaussians which gives a perfor-
mance not significantly distinguishable from the con-
ditional mixture of hybrid Paretos when the training
set gets larger. This could also be explained by the
fact that the Gaussian tail is well approximated by a
generalized Pareto tail of index £ = 0.

7 Conclusion

Fat tailed data are prominent in several commercial
applications of statistical machine learning, such as fi-
nance and insurance. Research on extreme events has
been mainly concerned with unconditional density es-
timation whereas in many such applications it is re-
quired to consider a conditioning variable, which can
be very high dimensional. On the other hand, exist-
ing tools for representing conditional densities are not
always appropriate in the presence of fat tail varia-
tions, multi-modal and asymmetric conditional densi-
ties. The main contributions of this paper are thus the
following.

1. We have introduced a new fat-tailed density,
the hybrid Pareto, which combines the generalized
Pareto with the Gaussian distribution. This density
can be used within a mixture model that allows for
multi-modal and arbitrarily shaped conditional densi-
ties. Such a mixture circumvents the clagsical problem
with the Peaks over Thresholds methodology of de-
termining the appropriate threshold above which the
samples are considered to be in the tail.

The hybrid Pareto tail includes as particular cases, the
tail of the Gaussian, the Log-Normal and the Student
t. By using the hybrid Pareto, we avoid making a
specific assumption regarding the heaviness of the tail

of the underlying distribution. Also, the asymmetric
shape of the hybrid might be more suited for the shape
of the generative distribution we are looking at.

2. Second, we have proposed a conditional density
model based on such a mixture, whose parameters are
learned functions of the conditioning variable. These
functions can be parametric or nonparametric and we
have worked with a simple neural network formulation,
which is flexible enough for many applications.

3. Third, we have shown through a series of experi-
ments on artificial and real data sets that the proposed
conditional density modelling provides significant ad-
vantages over competing algorithms based on mixtures
and nonparametric density estimation.
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