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Abstract

We introduce the Laplacian Eigenmaps La-
tent Variable Model (LELVM), a probabilis-
tic method for nonlinear dimensionality re-
duction that combines the advantages of
spectral methods—global optimisation and
ability to learn convoluted manifolds of high
intrinsic dimensionality—with those of la-
tent variable models—dimensionality reduc-
tion and reconstruction mappings and a den-
sity model. We derive LELVM by defining a
natural out-of-sample mapping for Laplacian
eigenmaps using a semi-supervised learning
argument. LELVM is simple, nonparametric
and computationally not very costly, and is
shown to perform well with motion-capture
data.

Consider the problem of dimensionality reduction,
where we observe data y € R assumed to lie on a
manifold of dimension L < D, and want to model
this data using latent variables x € RY. One class of
dimensionality reduction methods are continuous la-
tent variable models (LVMs; see Carreira-Perpifidn,
2001 for review); examples include factor analysis (lin-
ear) and the generative topographic mapping (GTM,
nonlinear; Bishop et al., 1998). LVMs have two im-
portant properties: (1) they define a joint probability
density p(x,y), thus densities p(x) and p(y) for the la-
tent and observed variables, respectively. This means
they can deal with missing data naturally, they can
be used to model prior distributions (e.g. in tracking),
and they can also be combined into mixtures of LVMs.
(2) They define mappings for dimensionality reduction
x = F(y) and reconstruction y = f(x) which can be
applied to unseen data. However, they also have two
important practical problems: (1) it is difficult to use
more than 2 latent variables if using nonlinear models
because the computational cost grows exponentially
with L (or, if using mixtures of local linear models,

aligning the component spaces is difficult). (2) Pa-
rameter estimation (by maximum likelihood) can eas-
ily result in bad local optima which yield entangled
mappings. For some important applications, for exam-
ple tracking 3D articulated pose from monocular video
(Urtasun et al., 2005), it is crucial to have nonlinear,
global, differentiable mappings and densities that use a
latent (state) space of dimension possibly quite higher
than 2.

Another class of dimensionality reduction methods of
interest in recent years are spectral methods, such
as Isomap (Tenenbaum et al., 2000), LLE (Roweis
and Saul, 2000) or Laplacian eigenmaps (Belkin and
Niyogi, 2003). These methods provide a set of corre-
spondences (x,,y,) of latent and observed points for
points in the training set, and this correspondence is
often able to learn complex manifolds that are very
challenging for LVMs. Their estimation (by solving
an eigenproblem) has no local optima and can easily
yield latent spaces of dimension more than 2. How-
ever, they define neither mappings for out-of-sample
points nor a probability density.

Thus, LVMs and spectral methods have somewhat
complementary advantages and disadvantages, so it
would be desirable to combine them to get the best
of both worlds. Omne way of partially doing this is
to use the correspondences produced by a spectral
method to initialise a LVM, or to fit a dimensionality
reduction or reconstruction mapping (sec. 4). How-
ever, up to now there has not been a formal relation
between both types of methods. We address this ques-
tion in this paper by proposing a natural extension
of Laplacian eigenmaps to out-of-sample points that
yields both dimensionality reduction and reconstruc-
tion mappings, and a joint density p(x,y), thus defin-
ing a LVM that we call Laplacian eigenmaps latent
variable model (LELVM). Before describing this ex-
tension in section 3, we first review LVMs (in particu-
lar GTM) and spectral methods (in particular Lapla-
cian eigenmaps) in sections 1-2. We demonstrate the



method in toy problems and real-world problems (in
particular motion-capture data) in section 4, and dis-
cuss related work in section 5.

1 Latent variable models: GTM

A LVM is defined by a prior distribution p(x) in latent
space (x € RL), a (reconstruction) mapping f : x —
y, and a noise model p(y|x) = p(y|f(x)) in observed
space (y € RP, D > L). The density in observed
space is then obtained by marginalising the joint den-
sity p(x,y) in latent space: p(y) = [ p(y|x)p(x)dx.
A dimensionality reduction mapping can be defined
from the posterior distribution in latent space p(x|y)
as either the mean or, for multimodal distributions,
the modes. Estimating the parameters in p(x), f and
p(y|x) is achieved by maximum likelihood given a sam-
ple {y.}X_; in observed space, often by an EM algo-
rithm (where the latent variables are the missing data).
Mixtures of LVMs p(y|m) for m = 1,..., M are read-
ily defined as Z%Zl p(m)p(y|m). A linear example of
LVM is factor analysis, where p(x) is Gaussian, f is lin-
ear and p(y|x) is diagonal Gaussian; other linear LVMs
include probabilistic PCA and independent compo-
nent analysis. A nonlinear example is GTM (Bishop
et al., 1998), where p(x) = Zszl d(x — xp) (discre-
tised uniform with points xj, arranged on a square grid
for visualisation), f = W®(x) is a radial basis function
mapping (with fixed basis functions ® = (¢1,...,¢r)
and tunable weights W), and p(y|x) = N (f(x), o%1I) is
isotropic Gaussian. The observed density p(y) is then
a Gaussian mixture with centres constrained by f. The
discretisation of x is a computational device to obtain
a closed-form marginal p(y) in observed space, but the
number of grid points K grows exponentially with the
latent dimension L, limiting it in practice to L < 3.
When modelling complex, convoluted manifolds such
as a spiral, initialising GTM’s training from either ran-
dom parameter values or the PCA solution almost al-
ways results in a tangled manifold (see fig. 1). The
problem is not one of modelling ability but of search:
the log-likelihood function is full of bad optima.

The recently proposed Gaussian Process Latent Vari-
able Model (GPLVM) (Lawrence, 2005) marginalises
over functions f rather than over latent variables x.
Essentially, it yields a Gaussian process reconstruc-
tion mapping f and a conditional probability p(y|x),
but neither a joint density p(x,y) nor a posterior dis-
tribution p(x|y) in latent space. Unlike in GTM, in
GPLVM the latent points {x,, })__, associated with the
data points are tunable parameters, which makes ini-
tialisation from a LE solution direct (and so can suc-
ceed with convoluted mappings), and also allows prac-
tical use of L > 2. However, its log-likelihood function

also has many bad local optima and training is compu-
tationally very costly: each gradient iteration is O(N3)
(since the covariance matrix involved is not sparse),
though approximations based on using few points and
so small N exist to accelerate it.

2 Spectral methods: Laplacian
eigenmaps (LE)

Define a neighbourhood graph on the sample data
{yn})_,, such as a k-nearest-neighbour or e-ball
graph, or a full mesh, and weigh each edge y, ~ ym
by a symmetric affinity function K(y,,¥m) = Wnm,
typically Gaussian: wy, = exp (=3 || (yn — ym)/o|?).
Given this weighted graph, in Laplacian eigenmaps
(LE) (Belkin and Niyogi, 2003) we seek latent points
{x,})_, C RL that are the solution of the optimisa-
tion problem:

mintr (XLXT) st. XDX"=I, XD1=0 (1)

where we define the matrix Xp«y = (x1,...,Xx), the
symmetric affinity matrix Wy« y, the degree matrix
D = diag (271:[:1 wnm), the graph Laplacian matrix
L=D-W,and 1 = (1,...,1)T. The objective
function can be rewritten as ) wpy, [|[xn — X%,
which discourages placing far apart latent points that
correspond to similar observed points. The constraints
eliminate the two trivial solutions X = 0 (by setting
an arbitrary scale) and x; = .-+ = xpy (by remov-
ing 1, which is an eigenvector of L associated with
a zero eigenvalue). The solution is given by the lead-
ing ug,...,ury1 eigenvectors of the normalised affinity
matrix N = D_%WD_%, namely X = VTD~2 with
Vnxr = (Va,...,vr11) (an a posteriori translated,
rotated or uniformly scaled X is equally valid).

Other spectral methods result from optimisation prob-
lems like (1) but defining matrices different from L in
the objective, and possibly different constraints. For
example, metric multidimensional scaling uses the ma-
trix of Euclidean squared distances an a full mesh (all
point pairs), Isomap uses instead geodesic distances
(approximated as shortest-path distances in a neigh-
bourhood graph) and LLE uses reconstruction weights
W and an objective matrix (I—W)T(I—-W). The re-
sult is a set of latent points {x, }__; in correspondence
with the observed points {y, }_; which often succeeds
in learning complex manifolds. However, they do not
provide a mapping for out-of-sample points (see sec-
tion 5), let alone a density in the latent or observed
space.



3 The Laplacian Eigenmaps Latent
Variable Model (LELVM)

Assume we have obtained a LE embedding Xy =
(x1,...,xn) of seen points Ys = (y1,...,yn), and
consider a set of unseen (out-of-sample) points in ob-
served space Yy = (Yn+1,---,YN+am)- The natural
way to embed the new points would be to recom-
pute the whole embedding (X X,,) for (Y Y,) from
eq. (1). This is computationally costly and does not
lead to defining a mapping for the new points; we seek
a way of keeping the old embedding fixed and embed
new points based on that. Then, the next most nat-
ural way is to recompute the embedding but keeping
the old points fixed:
T

(oo i) () @
We need not use the constraints from (1) because the
trivial solutions X = 0 and X = constant were al-
ready removed in the old embedding!. The solution is
X, = —XLg, L. This point of view can also be con-
sidered as semi-supervised learning, where we consider
the embedding Xy as (real-valued) labels for Y and
want to label Y, by using a graph prior (Zhu et al.,
2003; Ham et al., 2005; Yang et al., 2006). If we now
consider a single out-of-sample point (i.e., M = 1) and
write y = Y, € R? and x = X, € R, and recalling
that L = D—W so that Ly, = —~Wg, = —K(y) € RV
and lyy = dy — Wy = 1TK(y), the previous argument
allows us to derive an out-of-sample dimensionality re-
duction mapping x = F(y) applicable to any point y
(new or old), namely:

XK(y)

1
X = F(y) = *EXSLSU = m

N
_ Z K(%Yn) x
n=1 Zvjj’:l K(yaYn’)

This mapping is formally identical to a Nadaraya-
Watson estimator (kernel regression; Wand and Jones,
1994) using data {(x,,y,)}2Y_; and kernel K. We can
take this a step further by defining a LVM that has as
joint distribution a kernel density estimate (KDE):

3)

N
1
p(X,Y) = N Z Ky(yuyn)Kx(Xv Xn)
n=1

where Ky is proportional to K so it integrates to 1,
and K is a pdf kernel in x—space. Consequently, the
marginals in observed and latent space are also KDEs:

1 N 1 N
P) =5 D Eyviyn)  p(x) = 5 D Kx(x %)
n=1

n=1

'For the case M = 1 considered later, the constraints
would trivially determine X, and the formulation would
be nonsensical anyway.

and the dimensionality reduction and reconstruction
mappings are given by kernel regression:

N

Fy)=) Bolyyn) ZN:p(nl.V)X
n=1 27]:]/:1 Ky(}’a Yn’) ! n=1 "
N N

f) = 3 Xy Sy,

N
n=1 Zn/:1 KX(X, Xn’) n=1

(4)

which are the conditional means E {x|y} and E {y|x}.
In other words, we have augmented the mapping F
of (3) with a probability model p(x,y) that is con-
sistent with F (since F(y) = E {x|y}) and symmet-
ric wrt x and y. The equations are valid if we as-
sume that K(y,y,) is proportional to a pdf with
mean y,, which holds for the Gaussian affinity; they
may be valid under more general assumptions on K.
The kernel Ky need not be the same as K, and in
particular will usually have a different bandwidth.
We call this model the Laplacian Figenmaps Latent
Variable Model (LELVM), and for simplicity consider
in the rest of the paper that both K, and Ky are
isotropic Gaussian (consistent with Gaussian affini-
ties), i.e., Kx(X,X,) o exp (—3 ||(x — x,)/0x]%) and
Ky (y.yn) cexp (=3 [[(y — yn)/oyl>)-

Note that, under the mappings defined in (4), the cor-
respondences from LE are not respected anymore un-
less ox, oy — 0: %, # F(y,) and y,, # f(x,) (though
the error is small; see also sec. 5). This is not incon-
sistent: the role of the model should be to smooth the
training data rather than interpolate it, so as to gen-
eralise well. As seen in sec. 4, lower error for small
bandwidths is achieved at the cost of smoothness.

The LELVM has several attractive properties. It de-
fines both dimensionality reduction and reconstruction
mappings applicable to any new point; both mappings
are continuous (even infinitely differentiable if Ky, Ky,
are), nonlinear and based on a global coordinate sys-
tem (unlike in mixtures of local models). It defines a
probability model that can represent multimodal dis-
tributions and deal with missing data by marginali-
sation. It can use a continuous latent space of arbi-
trary dimension L (unlike GTM) by simply choosing
L eigenvectors in the LE embedding. It has no local
optima since it is based on the LE embedding. Be-
sides being useful as a general-purpose dimensional-
ity reduction method, these properties make it attrac-
tive for representing priors in tracking in a Bayesian
framework—in particular, in articulated pose tracking
from monocular video, where a high-dimensional state
space of joint angles can be represented by a nonlinear
manifold whose intrinsic dimension may exceed 2.

The densities are defined over the whole Euclidean
space, however since the mappings in (4) are convex



sums, the ranges of f and F are the convex hulls of
the training data Y and the latent points X, respec-
tively. Thus, for visualisation purposes it makes sense
to focus attention on a bounding box of the convex
hull. The prior density in this convex hull need not be
uniform though, because the centres are not uniformly
distributed (compare with GTM’s latent space, given
by a square, discretised uniform grid). If the posterior
distributions x|y or y|x are multimodal, it may make
more sense to define multivalued mappings given by
their modes (Carreira-Perpifidn, 2000b). Iterative al-
gorithms exist for locating all modes of a Gaussian
mixture (Carreira-Perpindn, 2000, 2007), in particular
the mean-shift algorithm. For isotropic Gaussian mix-
tures, the modes (in fact all stationary points) also lie
within the convex hull of the centres. Interestingly,
note how the noise model y|x is a Gaussian mixture
and can thus represent skewed or even multimodal dis-
tributions, unlike most usual LVMs where it is taken
as a Gaussian.

So far we have implicitly assumed that the graph used
to obtain the LE embedding is a full mesh. For a
neighbourhood graph such as a k-nearest-neighbour
or e-ball graph, the graph Laplacian L in problem (1)
is sparse (with nonzero weights corresponding to the
graph edges). The out-of-sample dimensionality re-
duction mapping is still given by x = —X Lg, /l,u but
now it involves only the points adjacent to y:

x=Fy)= )

YnYy

Ky(YaYn) <. (5)
v~y Ky (¥, yn)

The points in Yy adjacent to y are determined using
the same graph construction, e.g. the k nearest neigh-
bours of y, or the points at distance € or less from y.
Note that only the edges adjacent to y matter—edges
between points in Y (even if they were to be updated
after adding y to the graph) contribute to the matrix
Ly which affects only the constant term tr (XSLSSXST)
in the optimisation problem. In practice, neighbour-
hood graphs are crucial for the success of LE and also
reduce the computational complexity of the eigenprob-
lem from O(N?3) to O(N?). However, computing the
graph costs O(DN?).

Just as a KDE is a nonparametric density estimate, a
LELVM is a nonparametric LVM. The only parameters
to be fit or set by the user are the graph parameters
for the LE embedding (affinity width o, and k or €),
and the bandwidths for the KDE (o, oy). And as
with a KDE, multiple criteria seem possible to select
ox and oy, (Wand and Jones, 1994), e.g.:

e equal to ¢ in the affinity function (o only)

e maximum likelihood estimator (the usual objec-
tive function for LVMs)

e average of distances to k nearest neighbours (also
useful to define adaptive KDEs, i.e., a different
bandwidth for each centre)

e cross-validation of the log-likelihood logp(y) or
the reconstruction error |ly — f(F(y))||*

e minimising the embedding error on a test set.

We explore some of these in section 4. It is also pos-
sible to use a different bandwidth per dimension (di-
agonal covariance), or a different bandwidth per point
(adaptive KDE). Note that, given a fixed LE embed-
ding, trying different bandwidths takes O(N) with
sparse graphs or O(N?) with full mesh, which is N
times faster than redoing the embedding.

4 Experiments

In our experiments, we selected LE parameters (k, o)
that produced a good embedding X. Figure 1 shows
results using the spiral data set (with added Gauss-
ian noise), whose convoluted manifold is difficult to
disentangle for GTM (we obtained similar results with
the Swiss roll). To obtain the LELVM, we ran LE with
k = 10 and Gaussian affinity width o = 0.4. We tested
different values for o and oy, which affect the smooth-
ness of p(x) and f(x), and of p(y) and F(y), respec-
tively (panels A, B). We find that the cross-validation
rules tend to give small bandwidths (o ~ 1.3 - 107%)
that result in relatively jagged mappings; better map-
pings result for larger bandwidths (e.g. o ~ 2.5-107%
with the average neighbour distances), while very large
bandwidths bias the mapping excessively. An interest-
ing smoothing effect of the bandwidth is that, if large
enough, it can unfold loops (partially visible in the
plots for small ox) mistakenly produced by the LE
embedding (i.e., points x,, locally disordered wrt y,,).
A noticeable effect is the shortening of the manifold
at the boundaries; this is caused by the fact that the
KDE is a convex sum of the centres. Good mappings
may be obtained for small datasets (panel C), at a
lower computational cost. Predictably, GTM fails to
recover the manifold if initialised from the PCA (or
random) solution, but succeeds if initialised from the
LE embedding. The latter is tricky, though: by de-
sign, the GTM mapping f has its RBF centres dis-
tributed on a square grid, which may not match well
(even after a rigid transformation) the convex hull of
the X points from LE. Another possibility (not ex-
plored here) could be to give up GTM’s square grid
and use directly the LE embedding X to define GTM’s
prior p(x) = 2712/:1 d(x — x,) (and suitably choosing
the RBF centres); this would allow use of latent di-
mension > 2. The GTM mapping f does not shorten
at the boundaries because it is not a convex sum but a
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Figure 1: Results for the spiral dataset (N = 400 points in 2D). A-B show LELVM results obtained from the
LE embedding using a k-nearest-neighbour graph (k = 10) and Gaussian affinities (0 = 0.4). A shows the latent
density p(x) and dimensionality reduction mapping f(x) for different values of ox; B shows the observed density
p(y) for different values of oy. C: LELVM mapping f(x) obtained for different numbers of training samples N
(appropriate k, o, ox were used in each case). D: GTM results (N = 400 points) for different numbers F of
RBFs (the width of each RBF equals the separation between grid points in latent space). The right plot was
initialised from the PCA solution, while the others were initialised from the LE embedding.

RBF; its smoothness depends on the number of RBFs is enough for this problem and the LELVM manifold
F and their width (note the loops for high F). reveals a cyclic pattern where the initial points (at
the top; start of motion) quickly converge on a closed
loop that is repeatedly travelled by subsequent cycles.
This loop can be used to characterise this particular
running pattern. We also tried a 3D space, where the
loop merely bends; higher L (e.g. for more complex
motion data) would be simple to achieve by simply
adding more eigenvectors to the embedding. The prior
density p(x) is higher where the latent points pile up,
i.e., where the runner changes pose more slowly. The
loop is not circular because the pose changes at differ-
ent velocities depending on its position in the cycle.

Figure 2 shows results using motion-capture data
recorded from several cycles of a running sequence.
This data is important for articulated pose tracking,
and difficult because of the nonlinear constraints of
body motion and its high dimensionality (Urtasun
et al., 2005). We used the same data and preprocessing
as Lawrence and Quinonero-Candela (2006), resulting
in a sequence of 217 points in 102D (corresponding
to 34 3D markers), normalised for translation (i.e.,
zero-mean) but not for rotation. A 2D latent space



Panels A(right, bottom) show how the continuous re-
construction mapping F(x) can smoothly interpolate
between poses by travelling around the latent space.
None of the reconstructed poses are in the training set
(except the first and last ones) but they do interpolate
the motion in a realistic way. Since spectral methods
lack mappings, interpolating in them requires select-
ing exemplars from the training set (and possibly av-
eraging them) in some ad-hoc way. Experiments (not
shown) with faces and digits data (Tenenbaum et al.,
2000) also confirm the ability to interpolate smoothly
in image manifolds.

Panel B shows the ability of LELVM to reduce dimen-
sion and reconstruct when part of the observed vari-
ables are missing. Here, we computed the posterior
latent distribution

fp(XJ) dY mis e ”2
PX|\Yobs) = —F 7~ 5, — a,e 2 ox
(xors) Jp(y) dymis Xn: "

with o, o exp (=3 [|(Yobs — Ynobs)/0y||”) (shown
as the contour), and used its mean if unimodal
or its modes otherwise (found with the algorithms
in Carreira-Perpingn, 2000, 2007). Then we recon-
structed with f. We could have operated directly
in the 102D observed space by using p(¥mis|Yobs) =
p(y)/p(yobs) (using f effectively turns p(x|yobs) into
a delta function). However, mode finding is more ef-
ficient and reliable in low dimensions, and reducing
dimensionality also has a beneficial denoising effect.

GTM (panel C left) fails even when started from the
LE embedding. The GPLVM latent space (panel C
middle, right) partly captures the periodic nature of
the motion but does not quite collect the loops, even
when back constraints on the distances are added.

5 Discussion and related work

We do not claim that our out-of-sample extension
(though natural) is the only possible one. Another
out-of-sample extension has been proposed for spec-
tral methods by Bengio et al. (2004), based on the
Nystrom formula (originally applied by Williams and
Seeger (2001) to approximate Gaussian process com-
putations in terms of a small subset of representative
vectors). The formula involves the L leading (except
the top one) eigenvalues A = diag (A2,...,Ar41) and
eigenvectors V yx of the normalised affinity matrix
N = D 2WD 2 (thus NV = AV), and requires
defining a kernel function that “generates” the ob-
served normalised affinities. For Laplacian eigenmaps,
the kernel choice of Bengio et al. (2004) yields the out-
of-sample mapping (in matrix notation):
K(y)

I _ -1
F(y) = VNA X—lTK(y) (6)

where X = VI'D~2 are the latent points defined by
LE (sec. 2). Bengio et al. (2004) use a different em-
bedding given by X = vV NV, for which one can show
that F(Y) = X so the mapping interpolates the pairs
(Xn,¥Yn). In the same matrix notation, the LELVM
dimensionality reduction mapping of (3) is:

_ Kly) _yr -1
7X1TK(y) =V'D

F(y)
which shows two differences with (6): (a) formula (6)
scales the points by the inverse eigenvalues A ™!
while (7) does not; this probably makes a small differ-
ence in practice, since the leading eigenvalues are very
close to 1 (= A1). (b) More importantly, formula (7) is
a convex sum (which allowed us to define the LELVM)
while (6) is not. For o, = o (the value used in the
affinities) we obtain for (7) that F(Y) = AX which
is different from X in general though again very close
in practice. However, LELVM allows to choose oy in
order to smooth more or less the mapping. As in Ben-
gio et al. (2004), experiments with the spiral show the
error to be comparable to the effect of small pertur-
bations in the training set. Incidentally, from a model
selection point of view this suggests that the latent
dimension L should be small enough not to reach an
eigenvalue Ay significantly smaller than 1. Finally,
Bengio et al. (2004) did not consider the case of a
neighbourhood graph, and did not give a mapping f
or a density model.

Meinicke et al. (2005) have proposed using the
Nadaraya-Watson estimator to represent the recon-
struction mapping f, trained to minimise the recon-
struction error over the latent points X = (x1,...,Xy)
and the bandwidth o, essentially turning the unsuper-
vised problem of dimensionality reduction into a super-
vised (regression) problem. However, the large num-
ber of parameters (for X) and the nonlinear nature of
the reconstruction error makes optimisation very un-
reliable. They propose several heuristics such as using
different initialisations (including the X from LLE or
LE), and using deterministic annealing. Memisevic
(2006) also considers a supervised view of dimension-
ality reduction where a mutual information objective
(equivalent to conditional log-likelihood) is optimised
over X and o using a KDE as plug-in estimator of the
entropy, again using deterministic annealing. This de-
fines mappings f and F but not in explicit form (rather,
as the solution of an optimisation problem).

Model selection for the latent dimension L is computa-
tionally simple in LELVM because the LE embedding
for L dimensions (which is uniquely defined) yields also
the embeddings for 1,...,L — 1 dimensions at a cost
only slightly larger than for L = 1 (as in PCA). This
allows to apply criteria (e.g. for model complexity) to



select the best L, or even the best subset of L eigen-
vectors (which may differ from the leading L). In con-
trast, GTM or GPLVM need to run a costly nonlinear
optimisation from scratch for each L, and the solution
found is one among the many existing local optima.

6 Conclusion and future work

We have proposed a natural way (derived from semi-
supervised learning arguments) to define out-of-sample
mappings for Laplacian eigenmaps that suggests an ex-
tension to latent variable models, the LELVM. It is a
very simple model: a kernel density estimate obtained
from one-shot spectral training followed by band-
width selection—thus a nonparametric LVM. Yet it is
very powerful, combining the advantages of LVMs—
continuous, global, nonlinear dimensionality reduction
mappings and joint density—and spectral methods—
training without local optima, and ability to use latent
spaces of dimension as high as desired, and to deal with
convoluted manifolds. This makes it suitable for tasks
that require learning complex priors from sparse high-
dimensional data, such as people tracking in video.
The only free parameters are the bandwidths in latent
and observed space (which control the mapping and
density smoothness), whose tuning is problem depen-
dent as is the case for kernel density estimation.

We are working on applying this approach to other
spectral methods such as LLE. A question of theo-
retical interest is the behaviour of LELVM for large
samples; consistency results for kernel density estima-
tors and (though incomplete at present) for Laplacian
eigenmaps suggest we might expect good approxima-
tion if the number of neighbours increases and the
bandwidths decrease as N — oc.

Acknowledgements

MACP thanks Chris Williams for valuable discussions.
Work funded by NSF CAREER award I1S-0546857.

References

M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural Computation, 15(6):1373-1396, June 2003.

Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement,
P. Vincent, and M. Ouimet. Learning eigenfunctions
links spectral embedding and kernel PCA. Neural
Computation, 16(10):2197-2219, Oct. 2004.

C. M. Bishop, M. Svensén, and C. K. I. Williams.
GTM: The generative topographic mapping. Neural
Computation, 10(1):215-234, Jan. 1998.

M. A. Carreira-Perpinan. Mode-finding for mixtures

of Gaussian distributions. IFEFE Trans. PAMI, 22
(11):131871323, Nov. 2000.

M. A. Carreira-Perpifidn. Reconstruction of sequential
data with probabilistic models and continuity con-
straints. In NIPS, volume 12, pages 414-420, 2000b.

M. A. Carreira-Perpifidn.  Continuous Latent Vari-
able Models for Dimensionality Reduction and Se-
quential Data Reconstruction. PhD thesis, Dept.
of Computer Science, University of Sheffield, UK,
2001. Available online at http://www.csee.ogi.
edu/"miguel/papers/phd-thesis.html.

M. A. Carreira-Perpifidn. Gaussian mean shift is an
EM algorithm. IEEFE Trans. PAMI, 2007.

J. Ham, D. Lee, and L. Saul. Semisupervised align-
ment of manifolds. In AISTATS, pages 120-127,
2005.

N. Lawrence. Probabilistic non-linear principal com-
ponent analysis with Gaussian process latent vari-
able models. Journal of Machine Learning Research,
6:1783-1816, Nov. 2005.

N. Lawrence and J. Quinonero-Candela. Local dis-
tance preservation in the GP-LVM through back
constraints. In ICML, pages 513-520, 2006.

P. Meinicke, S. Klanke, R. Memisevic, and H. Ritter.
Principal surfaces from unsupervised kernel regres-
sion. IEEE Trans. PAMI, 27(9):1379-1391, Sept.
2005.

R. Memisevic. Kernel information embeddings. In
ICML, pages 633-640, 2006.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290
(5500):2323-2326, Dec. 22 2000.

J. B. Tenenbaum, V. de Silva, and J. C. Langford.
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319-2323,
Dec. 22 2000.

R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua.
Priors for people tracking from small training sets.
In ICCYV, pages 403-410, 2005.

M. P. Wand and M. C. Jones.
Chapman & Hall, 1994.

C. K. I. Williams and M. Seeger. Using the Nystrom
method to speed up kernel machines. In NIPS, vol-
ume 13, pages 682-688, 2001.

X. Yang, H. Fu, H. Zha, and J. Barlow. Semi-
supervised nonlinear dimensionality reduction. In
ICML, pages 10651072, 2006.

X. Zhu, 7Z. Ghahramani, and J. Lafferty. Semi-

supervised learning using Gaussian fields and har-
monic functions. In ICML, pages 912-919, 2003.

Kernel Smoothing.



o L L L L L L L
o o0 ote 005 001 0005 0.005 0.015 o0 o0% 00z 0015 001 0005 0 0005 001 0015 002

. . . . . . , . . . . ~ . . . . . . ) . . f .
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
R " ted Reconstructed Reconstructed
. nstr :
Yobs econstructed y Yobs y (mode 1) y (mode 2)
N 2 2
= 22 . . &2

0 o
-1 -1
P -2
2 2

0 1 0 1 0 1

o o 0
2 -1 -2 - 2

-1 -0.5 0 0.5 1

06 -04 -02 0 02 04 06 08

Figure 2: Results for the motion capture dataset (N = 217 points in 102D). A-B show LELVM results obtained
from the LE embedding using a k-nearest-neighbour graph (k = 40) and Gaussian affinities (¢ = 1.5), and with
ox = 0.005 and o, = 0.3. A(left) shows the latent space; we connect data points x,, in the sequential order
of their corresponding data points y,, and for some of those we plot y, as a stick man; the loop is travelled
clockwise. The contours indicate p(x). A(right) shows 3 trajectories in latent space (containing 30 equispaced
samples) and uses the mapping f(x) to reconstruct the corresponding trajectory in observed space (lower plot).
For each trajectory, only the initial and final points were in the dataset; the rest are smoothly produced by
the mapping. B: reconstruction of missing data with LELVM. Given a partially observed stick man (black:
observed, red: missing) we show the contours of p(x|yons) and the reconstructed stick men. When the legs are
missing, p(x|yobs) is unimodal, but when only the forearm is observed, it is multimodal. C(left): latent space
using GTM initialised from the LE embedding (K = 40 x 40 grid, F' = 100 RBFs of unit width wrt the grid
constant). C(middle)/C(right): latent space using GPLVM without/with back constraints (from Lawrence and
Quinonero-Candela, 2006); note that, unlike the contours in panels A-B, the greyscales do not represent p(x|y).



