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Abstract

We propose a framework for dealing with
binary hard-margin classification in Banach
spaces, centering on the use of a supporting
semi-inner-product (s.i.p.) taking the place
of an inner-product in Hilbert spaces. The
theory of semi-inner-product spaces allows
for a geometric, Hilbert-like formulation of
the problems, and we show that a surpris-
ing number of results from the Euclidean case
can be appropriately generalised. These in-
clude the Representer theorem, convexity of
the associated optimization programs, and
even, for a particular class of Banach spaces,
a “kernel trick” for non-linear classification.

1 Introduction

The theory of classical Support Vector Machines hav-
ing attained an enviable apogee of mathematical com-
pleteness, empirical success and aesthetic coherence,
efforts in the Machine Learning community have re-
cently turned to possible extensions of its basic frame-
work. Perhaps the prime restriction in the standard
theory is the assumption that the training data (or its
features) lie in a Hilbert space. This choice is nat-
ural as an initializing point: the geometry of Hilbert
spaces is well understood, and the bilinearity of the in-
ner product makes a thorough-going analysis possible.
The simplicity of its structure also firmly marks its lim-
itations — most data, for instance, do not come with
any natural notion distance that can be induced from
an inner-product. Hilbert spaces are also somewhat
pedestrian: since all Euclidean spaces of the same ba-
sis cardinality are isometrically isomorphic [3], there
is, in a sense, only one inner-product space.

The search for generalizations is then a search for al-
gebraic/analytic structures more accommodating to

larger classes of data, and more representative of com-
plex distance relations. In the linear algebra hierarchy,
the normed spaces and their complete cousins, the Ba-
nach spaces, inhabit the niche one place removed from
the Hilbert spaces. These are spaces where lengths of
vectors have been defined (and hence distances), but
not angles. Research on large-margin classification in
Banach spaces has already been initiated [1, 13], and
even more generally in metric spaces [6, 10]; in an al-
ternative direction [11] considers classification in Krein
spaces, i.e. spaces with non-positive inner-products.
Arguably, the Banach space setting still occupies the
center-stage of scrutiny, for a number of reasons. First,
vector space structures come ready-equipped with a
number of convenient properties and objects; most im-
portantly for classification problems, that of linear op-
erators and functionals, and hence hyperplanes. Sec-
ondly, the introduction of a norm (and more generally,
metric) allows the preservation of the notion of mar-
gin. These two objects: hyperplane and margin, might
be construed as the minimal set of concepts required
to construct a geometric generalization of classification
in Hilbert spaces; if so assumed, the Banach space as-
sumption then becomes the natural choice of minimal
structure required to support these two notions. Fi-
nally, classification problems in cases where the data
do not possess linear structure may still be attacked via
normed-space ideas. For example, every metric space
can be isometrically embedded into a Banach space:
a number of constructions exist [6, 10]. Procedures
developed for normed spaces may lead directly to al-
gorithms for classification in the more general metric
spaces.

What can replace the inner-product in non-Hilbert Ba-
nach spaces? G. Lumer in [9] introduced the notion
of semi-inner product (s.i.p.) spaces: normed vector
spaces with a type of inner-product satisfying many,
but not all, of the axioms of a Hilbert inner-product.
Crucially, every Banach space can be represented by
a (not necessarily unique) s.i.p., a form with sufficient
structure to carry over to the Banach space setting



a number of Hilbert-space-type arguments. Indeed,
many concepts seemingly unique only to Hilbert spaces
find counterparts in normed spaces, via the semi-inner-
product machinery. To give a sample selection: the
Riesz Representation theorem and duality mappings,
orthogonality relations, and generalizations of special
concepts for Hilbert operators such as Hermiticity and
numerical range.

This paper outlines a theory of large-margin binary
classification in Banach spaces, where the central re-
sults are derived and couched in a semi-inner prod-
uct formalism. In particular, we focus on a certain
well-behaved class of Banach spaces: the uniformly
smooth and uniformly convex spaces. Roughly speak-
ing, these are structures possessing a type of Riesz
representation theorem and include, for example, the
Lp spaces, 1 < p < ∞. In such spaces, the entire in-
frastructure for linear classification so well-studied in
Hilbert spaces “goes over”, more or less with the s.i.p.
replacing the inner product. Indeed, we prove that
the maximum-margin problem becomes well-posed, we
establish a finite-dimensional linear Representer theo-
rem, and show that the coefficients of the classifier are
obtained through a convex (non-quadratic) optimiza-
tion problem; remarkable facts given that the support-
ing s.i.p.’s are not bilinear in general.

For a special class of Banach spaces, L2p, p an integer,
a complete theory, extending to the case of non-linear
classifiers, can be developed, as a parallel to kernel
methods for Hilbert space classification. Here, mo-
ment functions replace kernel functions to give a ver-
sion of the kernel trick. The available types of depen-
dency relations becomes significantly broadened in this
theory, utilising as it does 2p-th order statistics instead
of the second-order statistics of the inner-product.

We begin with a primer on s.i.p. spaces, collecting a
number of results culled from the mathematical lit-
erature. Section 3 discusses the application of these
results to classification in Banach space, by deriving,
from the geometric s.i.p. point of view, two formula-
tions of hyperplane classification, one an optimization
over the learning domain, and the other in the dual
of continuous linear functionals. The s.i.p. machin-
ery shows that the optimization in the dual space can
always be made a simple convex problem with affine
constraints. A Representer theorem is then proved,
demonstrating that it suffices to consider only linear
functionals on the space spanned by the data; this re-
sult allows us to formulate a finite-dimensional convex
program for the hyperplane coefficients using standard
ideas from Lagrange optimization. Finally, the latter
sections discuss how to obtain non-linear classifiers for
the case L2p, via moment functions, in an analagous
generalization of Hilbert SVM theory.

2 Semi-Inner-Product Spaces

Let us collect a number of important results on semi-
inner-products useful in the sequel. For simplicity of
discourse, and with a view toward applications, we
have not always provided the most general conditions
for each statement: for optimal assumptions the refer-
ences may be consulted.

Definition 1. Let (X , ‖ · ‖) be a real Banach space.
A semi-inner-product (s.i.p.) on X is a real function
〈x, y〉 on X × X with the properties1

1. (Linearity in second argument) 〈x, y1 + y2〉 =
〈x, y1〉 + 〈x, y2〉

2. (Homogeneity) 〈ax, y〉 = 〈x, ay〉 = a〈x, y〉

3. (Norm-inducing) 〈x, x〉 = ‖x‖2

4. (Cauchy-Schwartz) 〈x, y〉 ≤ ‖x‖‖y‖

Semi-inner-products are not usually linear in their first
argument, nor symmetric, unless the space is Hilber-
tian, in which case the s.i.p. coincides with the inner
product. The Hahn-Banach theorem gives the exis-
tence of a s.i.p. for every Banach space, without pro-
viding any explicit description for the possible sup-
porting s.i.p’s, nor conditions under which the s.i.p. is
unique. The special case of smooth Banach spaces (i.e.
where the norm is Gâteaux differentiable) suffices to
ensure uniqueness of the representation, as well as an
explicit form for the s.i.p. in terms of the norm:

Theorem 1. [4] A Banach space X has unique s.i.p.
if and only if it is smooth, in which case

〈x, y〉 = lim
λ→0

‖x + λy‖2 − ‖x‖2

2λ
(1)

The above result is highly apposite for the calculation
of s.i.p.’s, and shows that the semi-inner products are
essentially directional derivatives of the square norm.

It will be desirable to consider classes of Banach spaces
not only with differentiable norm, but which satisfy the
following uniform convexity property: for each ǫ > 0,
there exists δ > 0 such that ‖x+y‖/2 ≤ 1−δ whenever
‖x − y‖ > ǫ for all x, y in the unit ball. Such spaces
have several important characteristics; they are reflex-
ive, and the infimum distance between closed convex
sets C and a given point x0 is actually achieved by

1The notation 〈x, y〉 for the s.i.p. must not be confused
for the similar notation 〈x∗, y〉 ≡ x∗(y) sometimes em-
ployed for the evaluation of a linear functional x∗ in the
dual X ∗ at the point y ∈ X . See, however, the generalized
Riesz representation theorem of Theorem 2, where the two
notations become somewhat unified.



some vector c ∈ C [8]. We shall see that the uni-
form convexity assumption guarantees the existence
and uniqueness of a maximum-margin hyperplane so-
lution.

When a Banach space is both uniformly smooth and
uniformly convex, one obtains a set of satisfying
Hilbert-like duality properties:

Theorem 2. Let X be a uniformly smooth and uni-
formly convex Banach space with s.i.p. 〈·, ·〉 and dual
X ∗. Then:

i) [3] (General Riesz Representation) For each con-
tinuous linear functional f ∈ X ∗, there exists a
unique vector w ∈ X such that f(x) = 〈w, x〉

ii) [2] The dual X ∗ is a uniformly smooth and
uniformly convex Banach space supported by
the semi-inner-product defined by 〈fw1

, fw2
〉 =

〈w2, w1〉, where fwi
is the linear functional asso-

ciated with wi ∈ X .

Remark: We stress the alternation of positions of
variables in the dual s.i.p.

Examples: All of the foregoing theorems are instruc-
tively illuminated in the following concrete situations.

1. X = Lp(Ω, µ). For 1 < p < ∞, these Banach
spaces are readily confirmed to be uniformly smooth
and uniformly convex; this is not so for p = 1 or
p = ∞. Let ϕp : Lp(Ω, µ) → Lq(Ω, µ) be defined2

by ϕp(x) = x〈p−1〉

‖x‖p−2

p

, ϕp(0) = 0 through continuity,

and 1
p + 1

q = 1. Then ϕp is a norm-preserving

(‖x‖p = ‖ϕp(x)‖q) bijection, with inverse ϕq, and
〈x, y〉p ≡

∫

Ω ϕp(x)y dµ defines the unique semi-inner-
product on X = Lp(Ω, µ).

2. Stable Processes. Let S(x) be a symmetric α-stable
random process. The span of (S(x))x∈X is a vector
subspace B of the space of all stable random variables,
and can be endowed with a norm: the spread σ(S(x))
(cf. [12]). This Banach space has an s.i.p. representa-
tion as follows. Define the covariation between S(x1)
and S(x2) as

[S(x1), S(x2)] =

∫

S1

s
〈α−1〉
1 s2 dΓ (2)

where s1 and s2 are (x, y) coordinates on the unit-
circle, and Γ the spectral measure for the pair
(S(x1), S(x2)). Then the (unique) semi-inner-product

2We employ the notation for the signed power function
a〈b〉 = |a|bsgn(a) for a ∈ R and b > 0, and the natural
component-wise extension for a a vector or function.

on B is defined by

〈S1, S2〉 =
[S1, S2]

σα−2
S1

(3)

for S1, S2 ∈ B. The Gaussian case α = 2 gives
〈S1, S2〉 = 1

2Cov(S1, S2).

One also has the peculiar representation, from a for-
mula of Cambanis [12]:

〈S1, S2〉 =
σ2

S1
ES

〈p−1〉
1 S2

E|S1|p
, 1 < p < α (4)

Semi-inner products induce a notion of orthogonality
in normed linear spaces often helpful for geometric in-
tuition: we define x ⊥ y iff 〈x, y〉 = 0. Note that be-
cause of asymmetry of the s.i.p., this notion of orthog-
onality is not usually symmetric. Seen in this light,
the Riesz representation theorem of Theorem 3(i) is a
generalization of the observation that in R

d, a (d− 1)-
dimensional hyperplane passing through the origin is
parameterized by a given normal vector w (in the s.i.p.
sense) to the plane. It is not difficult to see from (1)
that s.i.p. orthogonality coincides with the following
notion of “minimum-distance” orthogonality in real
normed linear spaces introduced by R. James [7, 5]:
x ⊥ y iff ‖x + λy‖ ≥ ‖x‖ for all λ ∈ R. It follows
that many problems of best approximation in Banach
spaces are naturally formulated in terms of semi-inner-
products.

3 Hard-Margin Binary Classification

in Banach Spaces

Our aim is to develop a semi-inner-product formula-
tion of the maximal-hard-margin linear classification
problem in Banach spaces. The advantage of such an
approach over other developments, such as [1, 13], is
that s.i.p. arguments emulating the Hilbert case be-
come available. This allows us to go considerably far-
ther in the development of a parallel theory. Moreover,
the s.i.p. economically and clearly mediates between
two equivalent formulations: one in the learning do-
main and one in the dual space. We shall see that in
the general Banach space case, these two formulations
are rather different, whereas in the Hilbert case they
coincide since the dual of a Hilbert space is isometri-
cally isomorphic to itself (i.e. in some sense self-dual).

Henceforth let us assume that the learning domain X
is a uniformly smooth, uniformly convex Banach space
with s.i.p. 〈·, ·〉.

Lemma 1. Given w ∈ X , let H = {x ∈ X :
〈w, x〉 + b = 0} be a hyperplane in X . Then the dis-
tance between x0 and H is d = infx∈H ‖x0 − x‖ =
‖w‖−1|〈w, x0〉 + b|.



Proof. This is simply Theorem 1 of [5], recast in the
language of s.i.p.’s, via Theorem 3.

Now let training points {xi, yi}
m
i=1 ∈ X be given,

where yi = ±1. If the data are linearly separable,
then there exists a (continuous) linear functional f(x)
and an offset b ∈ R such that yi(f(xi)+b) > 0, for all i.
By Theorem 3, there exists a vector w ∈ X such that
f(x) = 〈w, x〉. By rescaling w and b, using homogene-
ity of the s.i.p., and Lemma 1, we may assume without
loss of generality that the point(s) closest to the hy-
perplane H = 〈w, x〉+ b satisfy |〈w, xi〉+ b| = 1. Thus
H may be placed in the canonical form H = (w, b),
with yi(〈w, xi〉 + b) ≥ 1, for all i. With this form, it
is also now immediate from Lemma 1 that the margin
of the hyperplane is ‖w‖−1. We have then derived:

Data Domain Optimization for Maximum-

Margin Banach Linear Classifier

inf
w∈X ,b∈R

‖w‖X (5)

s.t. yi(〈w, xi〉X + b) ≥ 1

The classifier is given by f(x) = sgn(〈w, x〉 + b).

This of course is the usual hard-margin formulation in
Hilbert spaces, with the inner product replaced by the
semi-inner-product. Posing the problem in the dual
space, through Theorem 3, we have

Dual Domain Optimization for Maximum-

Margin Banach Linear Classifier

inf
w∗∈X ∗,b∈R

‖w∗‖X ∗ (6)

s.t. yi(〈x
∗
i , w∗〉X ∗ + b) ≥ 1

It is instructive to compare the two problems (5)
and (6). The key difference lies in the nature of the
constraints: since the semi-inner product is linear in
the second variable but generally non-linear in the
first, one sees that the data-domain formulation gives
rise to an optimization problem non-linear in its con-
straints, and in general non-convex, whereas the dual-
form problem (6) gives rise to a convex optimization
with linear constraints. Put another way, there exists
an appropriate duality mapping (change of variables)
of the non-convex problem (5) to the convex problem
(6).

3.1 Existence and Uniqueness of the Solution

In general, there is no guarantee that the minimizer
to the program (6) is unique: indeed it may not even
exist. Simple counterexamples can be found in L1,
and the spaces of continuous functions, for instance.
However, the imposition of uniform convexity does

make the problem well-posed. Without loss of gen-
erality, assume b = 0. Define the sets Si = {w∗ :
yi(〈x

∗
i , w∗〉X ∗) ≥ 1}; these are closed, convex subsets

of X ∗ for each i. Problem (6) can now be viewed as
the task of finding the point in ∩iSi closest to 0. As
alluded to above, it is a standard fact from elementary
functional analysis (c.f. [8]) that, given a point z in a
uniformly convex Banach space X , and a closed convex
subset C of X , there exists a unique point c ∈ C such
that ‖z − c‖ = infc′∈C ‖z − c′‖. This fact immediately
produces

Theorem 3. The solution to (5) and (6) exists and
is unique, for uniformly smooth and uniformly convex
Banach spaces X .

3.2 Form of the solution: A Linear

Representer Theorem

The optimization problem (6) is posed, in general,
in an infinite-dimensional space. However, since the
number of data points is finite, one intuitively ex-
pects that the optimal solution should depend only
on the metric relations between the data points; in
other words, that one need only search in the space of
functionals on the finite-dimensional space spanned by
the data. Another way to put this is that the problem
should not depend on the ambient space in which the
data is embedded in. Such a theorem, in the Hilbert-
space case, is known as the Representer Theorem. We
shall prove this result now for uniformly smooth and
uniformly convex Banach spaces.

The proof is constructed in two steps. The first, of in-
terest in its own right, is the establishment of the ne-
cessity of a KKT-like condition for optimization prob-
lems with affine constraints in the generality of reflex-
ive Banach spaces. The second step involves the com-
putation of the associated Fréchet derivatives and an
application of the semi-inner-product formalism to de-
rive the required hyperplane representation.

For the moment, consider the more general setting of
a reflexive Banach space B, and a differentiable cost
function f : B → R. Suppose a solution to the linearly
constrained problem

min
x∈B

f(x) (7)

s.t. bi + gi(x) ≥ 0, ∀i = 1, . . . , n

is sought, where {gi}
n
i=1 are continuous linear func-

tionals in the dual B∗, and bi ∈ R shifting constants.
Denoting by Dxf ∈ B∗ the derivative of f at x, we
have:

Theorem 4. Any local minimum x⋆ ∈ B to the opti-
mization problem (7) satisfies Dx⋆f =

∑n
i=1 λigi, for

some λi ≥ 0.



Proof. Critical to the proof is an application of a sepa-
rating hyperplane theorem in the Banach space. Many
versions exist; one which more than suffices for our
purposes is:

Theorem 5. [3] Let A and B be two disjoint non-
empty convex sets in a real topological vector space X,
with A open. Then there is a continuous linear func-
tional f∗ ∈ X∗, and α ∈ R such that f∗(a) < α ≤
f∗(b), ∀a ∈ A, ∀b ∈ B.

Now we proceed via contradiction. Suppose that
Dx⋆f /∈ C, where C is the convex cone spanned
by {g1, . . . , gn}. Since C is closed in B∗, there ex-
ists an open ball about Dx⋆f not intersecting C; ap-
plying the separation theorem then gives an element
s∗∗ ∈ B∗∗, and a real α such that s∗∗(gi) − α ≥ 0
for all i, and s∗∗(Dx⋆f) − α < 0. Since s∗∗(0) = 0,
α ≤ 0; s∗∗(C) ≥ α then implies s∗∗(gi) ≥ 0 and
s∗∗(Dx⋆f) < 0. Reflexivity of the Banach space im-
plies there exists an s ∈ B such that s∗∗(x∗) = x∗(s),
for all x∗, hence we have found an s ∈ B satisfying
gi(s) ≥ 0 for all i and (Dx⋆f)(s) < 0.

Let δ > 0, and consider the point x⋆ + δs. Since
bi + gi(x

⋆ + δs) ≥ 0, x⋆ + δs is a feasible point. The
differentiability of f implies

f(x⋆ + δs) − f(x⋆) = (Dx⋆f)(δs) + o(‖δs‖) (8)

= δ · (Dx⋆f)(s) + o(|δ|) (9)

Thus there exists δ′ sufficiently small such that for all
0 < δ < δ′, f(x⋆ + δs) − f(x⋆) < 0, contradicting the
assumption that x⋆ is a local minimum.

Return now to (6), and let w∗
⋆ ∈ X ∗ be its unique

global minimizer. Let w⋆ ∈ B be such that 〈w⋆, ·〉X =
w∗

⋆ (it exists uniquely by Theorem 3).

Theorem 6. (A Representer Theorem). The
maximum-margin separating hyperplane solving (5)
admits the expansion

w⋆ =
m
∑

i=1

αixi (10)

for some αi ∈ R

Proof. Uniform smoothness and convexity of B implies
the same for its dual B∗. Let f(w∗) = ‖w∗‖2, differen-
tiable because the space is smooth. Theorem 1 shows
2〈w∗

⋆ , a∗〉X ∗ = (Dw∗
⋆
f)(a∗). Every uniformly convex

Banach space is reflexive; Theorem 4 then states there
exists λi ≥ 0 such that

2〈w∗
⋆ , a∗〉X ∗ −

m
∑

i=1

λiyi〈x
∗
i , a

∗〉X ∗ = 0 (11)

〈a, w⋆ −

m
∑

i=1

λi

2
yixi〉X = 0 (12)

The last line holds for every a ∈ B, hence in par-
ticular for a = w⋆ −

∑m
i=1

λi

2 yixi; this gives ‖w⋆ −
∑m

i=1
λi

2 yixi‖
2 = 0, the sought-after result with αi =

λi

2 yi.

For the special case of X = Lp(Ω, µ) spaces, we have
established:

Corollary 1. (Representer Theorem for Lp Classi-
fier) The maximum-margin hyperplane w∗

⋆ ∈ X ∗ ad-
mits the expansion (with equality in the Lq sense)

w∗ =

(

m
∑

i=1

αixi

)〈1/(q−1)〉

=

(

m
∑

i=1

αixi

)〈p−1〉

(13)

Equivalently, if w⋆ ∈ X is the unique representer for
w∗

⋆,

w⋆ = ϕq(w
∗
⋆) =

1

C

∑

i

αixi (14)

for a real constant C; equality holding in the Lp sense.

3.3 Lagrange Dual S.i.p. Formulation

Direct substitution of the representation of Theorem 6
into (5) gives a finite-dimensional optimization prob-
lem, but one with non-convex constraints. Instead, we
use Theorem 6 to assume that, without loss of gen-
erality, X = span {x1, . . . , xm} and apply standard
finite-dimensional convex optimization theory to the
dual-space problem (6).

Form the Lagrange function to an equivalent convex
problem of (6):

L(λ, w∗) =
1

2
‖w∗‖2

X ∗ +

m
∑

i=1

λi(1 − yi (b + 〈x∗
i , w

∗〉X ∗))

Fixing λi ≥ 0, infw∗∈X ∗ L(λ, w∗) is a convex prob-
lem with differentiable cost. It achieves its unique
minimum when ∂w∗L = 0 and ∂bL = 0. The for-
mer has actually already been computed in (11), and
implies w =

∑m
i=1 λiyixi; the latter derivative implies

∑m
i=1 λiyi = 0. The Lagrange dual function, using

the Riesz Theorem to revert back to data variables
becomes

L(λ) =
1

2
‖w‖2

X +

m
∑

i=1

λi(1 − yi〈w, xi〉X ) (15)

=
1

2
‖w‖2

X +

m
∑

i=1

λi − 〈w,

m
∑

i=1

λiyixi〉X (16)

= −
1

2
‖

m
∑

i=1

λiyixi‖
2
X +

m
∑

i=1

λi (17)

The convex dual optimization problem now has the
structure:



Lagrange-Dual Optimization for Maximum-

Margin Banach Linear Classifier

max
λ∈Rm

−
1

2
‖

m
∑

i=1

λiyixi‖
2
X +

m
∑

i=1

λi (18)

s.t. λi ≥ 0,

m
∑

i=1

λiyi = 0

Since the primal dual-space problem (6) is convex with
affine constraints, strong duality is achieved through
the Lagrange dual, by standard theorems in finite-
dimensional convex analysis [2]. A solution to (18)
then gives the solution also to the problem (5), with
the large-margin classifier attaining the final form
f(x) = sgn(〈

∑m
i=1 λiyixi, x〉X + b). The offset may

be computed via the standard KKT condition that
the product of dual variables and constraints must
vanish [2], i.e. for any i for which λi > 0, b =
1/yi − 〈

∑m
j=1 λjyjxj , xi〉X . As in the Hilbert case,

certain identities hold true: e.g. by summing over
the aforementioned condition, the property

∑

i λi =
‖w‖2 = 1/(margin)2 holds for the optimal hyperplane.

One observes then, that the usual SVM Lagrange dual
optimization for Hilbert spaces generalizes naturally
and directly to the Banach space case; the crucial dif-
ference being that the resulting classifier inhabits the
structure of a semi-inner-product rather than an in-
ner product, and hence exhibits a non-linear depen-
dence with respect to the dual coefficients λ. Fig-
ure 1 displays a simple configuration of three labelled
points, and the resulting large-margin classifiers com-
puted with respect to the p-norms p = 1.5, 2, 3 and 4.

−3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2 p=1.5 p=4

Figure 1: Maximum-margin separating hyperplanes in
(R2, ‖ · ‖p).

3.4 Non-Linear Classifiers in Lp, p ∈ 2Z
+

One of the most arresting ideas in standard SVM the-
ory consists in the kernel trick : the procedure where
inner-products in a learning domain X are replaced

by bivariate functions K(·, ·) having the effect of im-
plicitly mapping a problem into a (usually) higher-
dimensional Hilbert space H, through a feature map
Φ : X → H. The “trick” consists in selecting a kernel
whose calculation does not involve explicit knowledge
of the map Φ, nor an inner-product evaluation in H. In
this way, classification may be performed in the high-
dimensional, even infinite-dimensional feature space H
without incurring the expected additional cost of a di-
mensionality increase.

Having developed an s.i.p. formalism for the Banach
space binary classification problem, we are led imme-
diately to the question of whether a similar “kernel
trick” is available for semi-inner-products. An initial
idea is, in emulation of the Hilbert counterparts, to de-
fine bivariate s.i.p. kernels. Two crucial aspects, how-
ever, become profound obstacles to the establishment
of a similar “kernel” theory for Banach spaces along
this route: (1) lack of bilinearity of the s.i.p. prevents
the classifier 〈

∑m
i=1 λiyixi, x〉 from being written as a

function of s.i.p.’s between data points and test points,
and (2) the s.i.p. does not prescribe the structure of
a Banach space in as total a way as an inner product;
for example, an inner product defined on a vector basis
extends uniquely to the whole space: this is false for
s.i.p.’s.

While there may thus appear to be little hope of es-
tablishing a general kernel theory for Banach spaces,
nevertheless there is one special class of Banach spaces
which appear highly amenable to a type of kernel the-
ory: the Lp spaces for even integer p. We shall see
that a certain type of p−variate multi-linear moment
function can take the place of the bivariate kernel func-
tion for Hilbert spaces; this theory, which we begin to
delineate here, coupled with the linear theory of the
previous section combine to give classification tools as
powerful as the ones for Hilbert spaces.

Reconsider the X = Lp(Ω, µ) spaces, for even inte-
gers p. It will be more convenient to use the follow-
ing equivalent optimization program to (18) for these
spaces:

max
λ∈Rm

−
1

p

∫

Ω

(

m
∑

i=1

λiyixi

)p

dµ +

m
∑

i=1

λi (19)

s.t. λi ≥ 0,

m
∑

i=1

λiyi = 0

with the classifier now having type f(x) = sgn(b +
∫

Ω(
∑m

i=1 λiyixi)
p−1xdu).

Now we apply the non-linear extension. Let
the data-points xi belong to an abstract set
M, and pre-process via a map Φ : M → X
from the data-domain into an Lp feature space.



The quantities
∫

Ω
(
∑m

i=1 λiyiΦ(xi))
p

dµ and
∫

Ω(
∑m

i=1 λiyiΦ(xi))
p−1xdu) may be respectively writ-

ten as p-th and (p − 1)-th order polynomials in λiyi,
with coefficients of the form

∫

Ω Φ(xi1 ) · · ·Φ(xip
) dµ

— p-th order moment functions in the feature space.
The optimization may then proceed without explicit
knowledge of Φ, but simply via moment functions
M(x1, . . . , xp) =

∫

Ω
Φ(x1) · · ·Φ(xp) dµ. The choice

of different moment functions implicitly provides
a selection of non-linear map into an Lp space, in
absolute analogy to the L2 case, restricting the search
to a small hypothesis space of possible non-linear clas-
sifiers induced by M . The even-order Lp non-linear
classifier, given a moment function M(x1, . . . , xp), is
then the solution of the convex program:

Optimization for Maximum-Margin Lp Mo-

ment Classifier

−
1

p
max

λi

m
∑

(i1,...,ip)=1

λi1yi1 · · ·λip
yip

M(xi1 , . . . , xip
)

+
∑

i

λi

s.t. λi ≥ 0,

m
∑

i=1

λiyi = 0 (20)

resulting in the non-linear classifier f(x) = sgn(b +
∑m

(i1,...,ip−1)=1 λi1yi1 · · ·λip−1
yip−1

M(xi1 , . . . , xip−1
, x)).

The offset b is once more computed with b = 1/yk −
∑m

(i1,...,ip−1)=1 λi1yi1 · · ·λip−1
yip−1

M(xi1 , . . . , xip−1
, xk))

for any k satisfying λk > 0.

3.5 Construction of Moment Functions

To specify a moment function M in an Lp space is
to give not only its semi-inner product 〈x, y〉, but
in fact the general p-th order statistic. Moment
functions therefore contain significantly more infor-
mation than the s.i.p. representation of the Banach
space, specifying the Lp structure in a way simi-
lar to kernel functions for L2. Such moment func-
tions will satisfy certain properties: multi-linearity
in the feature space, exchangeability in its p vari-
ables, positivity (M(x, . . . , x) ≥ 0), as well as vari-
ous Hölder-like inequalities; to illustrate in the case
p = 4: M4(x, x, x, y) ≤ M3(x, x, x, x)M(y, y, y, y) and
M4(x, x, y, y) ≤ M2(x, x, x, x)M2(y, y, y, y).

A rich and general source of feature spaces consist of
spaces of random variables — as a familiar example,
Gaussian feature maps Φ. Let k(x, y) be a positive-
definite kernel on the data-domain M = R

d, and G(x)
the associated zero-mean Gaussian random process on
R

d with covariance k; define the feature map Φ by
x → G(x). The higher-order moments in this case are

easily calculable in terms of the second-order structure:

M(x1, . . . , xp) = E(G(x1) · · ·G(xp))

=
∑

π

(k(xi, xj) · · · k(xw, xz)) (21)

over permutations π ∈ Sp, for a total of
(p − 1)!/(2p/2−1(p/2 − 1)!) terms, each a prod-
uct of p/2 kernel terms. For example, p =
4 gives M(x1, . . . , x4) = k(x1, x2)k(x3, x4) +
k(x1, x3)k(x2, x4) + k(x1, x4)k(x2, x3).

Observe p = 2 gives the usual SVM classifier with
kernel k. The interpretation for p > 2 is that one
uses the same feature map Φ into the space of Gaus-
sian random variables, but with the geometry in that
space induced by the p-norm rather than the 2-norm.
In general, one class of feature spaces arise from the
probability measure P of a random process Φ(x) on
R

d; the moment functions M are then functions of
the measure P . However, by using statistics of or-
der higher than 2, we allow dependency structures not
available to Gaussian processes. In the Hilbert-space
case, every inner-product kernel can be achieved by a
Gaussian feature map — this follows from the spectral
theorem. Not so with the non-linear Banach classifiers.
Indeed, one may imagine different feature mappings
Φ1 and Φ2 into spaces of random variables sharing the
same second-order kernel structure, but with different
p-order statistics; here the Hilbert classifiers agree, the
Banach classifiers differ.

Many other moment functions can be generated from
kernel functions by using feature maps of the type
Φ : x → f(G(x), for f : R → R. For example, with
f = exp(·) one obtains a log-normal random process
parameterized by kernel k. Using characteristic func-
tions, trite calculations show that

M(x1, . . . , xp) = exp





p
∑

i=1

p
∑

j=1

k(xi, xj)



 (22)

is an admissible moment function for any kernel k.

Other easy facts concerning the combination proper-
ties of moment functions can be derived with basic
probability, assuming finite-measure feature spaces.
We shall include only a brief listing here of the un-
countable variations. Let Φ1 and Φ2 be two indepen-
dent Lp random processes on R

d with moment func-
tions M1 and M2. Then the product Φ1 · Φ2 defines
a feature map with moment function M = M1 · M2,
and is hence admissible. If Φ is the map taking
each x to a constant m(x) ≡ mx : Ω → R, then
M(x1, . . . , xp) =

∏p
i=1 m(xi) is an admissible moment

function. Let M1 and M2 be two Gaussian 4-th order
moment functions generated from kernels k1 and k2.



Then

M1(x, y, z, w) + k2(x, z)k1(y, w) + k2(y, z)k1(x, w)

+ k2(x, y)k1(z, w) + k2(w, z)k1(x, y)

+ k2(w, x)k1(y, z) + k2(y, w)k1(x, z)

+ M2(x, y, z, w)

is admissible. This last result is one 4-th order gener-
alization of the second-order fact that kernels form a
cone.

4 Discussion

We have developed a semi-inner-product formulation
of the binary classification problem in Banach spaces.
The main message might be said to be that all of
Hilbert linear classification theory carries over neatly
to the case of Banach spaces (at least well-behaved
ones). The resulting optimization programs are no
longer quadratic, but remain convex. Finally, even
kernel theory has its appropriate generalization in the
spaces L2p, where moment functions replace kernel
functions. In our presentation of this non-linear classi-
fication framework, we have made no claims to having
constructed the complete story, but merely illustrated
by way of calculations that an analogous theory and
practice to the Hilbert case exists, and should be fur-
ther studied. Certain apposite questions still beg to be
answered. What characterizations exist for moment
functions, in the vein of Mercer’s theorem for kernels?
Is there a way to produce spectral decompositions of
the moment tensors? Is there a corresponding notion
of Reproducing Kernel Banach Space (RKBS), and, if
so, how does one construct an RKBS given an s.i.p.
(or stronger, a moment function)? What generaliza-
tion error bounds can be established for Banach clas-
sifiers, and how does one choose the moment functions
relative to the data? Can non-linear classification be
extended to general Lp spaces, for fractional values of
p, for instance, by approximating the semi-inner prod-
uct with polynomials of moment functions?

These and similar points will be addressed in future
work.
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