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Abstract interventions are “stochastic”, meaning that they induce
a distribution over states rather than a specific state
We show how to app|y the dynamic program- [KHNAO4] A further relaxation is to assume that the ef-
ming algorithm of Koivisto and Sood [KS04, fect of an intervention does not render the node indepen-
Koi06], which computes the exact posterior dent of its parents, but simply changes the parameters of
marginal edge probabilities(G;; = 1|D) of a the local distribution; this has been called a “mechanism
DAG G given dataD, to the case where the data change” [TPO1b, TPO1a] or “parametric change” [EGS06].
is obtained by interventions (experiments). In For many situations, this is a more realistic model than per-
particular, we consider the case where the targets ~ fectinterventions, since it is often impossible to forceva
of the interventions are a priori unknown. We ables into specific states.

show that it is possible to learn the targets of in-
tervention at the same time as learning the causal
structure. We apply our exact technique to a bio-
logical data set that had previously been analyzed
using MCMC [SPP 05, EW06, WGHO08].

In this paper, we propose a further relaxation of the notion
of intervention, and consider the case where the targets of
intervention are uncertain. This extension is motivated by
problems in molecular biology, where the effects of various
chemicals that are added are not precisely known. In par-
ticular, each chemical may affect a hidden variable, which
1 Introduction can in turn affect multiple observed variables, often in un-
known ways. We model this by adding the intervention
The use of Bayesian networks to represent causal modef®des to the graph, and then performing structure learning
has become increasingly popular [Pea00, SGS00]. In pain this extended, two-layered graph.
ticular, there is much inter.est in Iearning the structure OfOur contributions are three-fold. First, we show how to
these modgls frqm data. Given observational datq, Itis Ol mpine models of intervention — perfect, imperfect and
possible to identify the structure up to Markov equ'valenceuncertain — with a recently proposed algorithm for effi-
E{oLii(imZ‘) |:|'| t:ﬁctg(;iet&og:ﬁ:z;g{i g; ;}i;:ezp ’eirglncyciently determining the exact posterior probabilitiestus t
statementX | Z|Y. To distinguish between such models, edges in a graph [KS04, Koi06]. Second, we show em

. . . pirically that it is possible to infer the true causal graph
we need interventional (experimental) data [EGS03]. structure, even when the targets of interventions are uncer

Most previous work has focused on the case of “perfecttain, provided the interventions are able to affect enough
interventions, in which it is assumed that an interventionnodes. Third, we apply our exact methodology to a biologi-

sets a single variable to a specific state (as in a randontal dataset that had previously been analyzed using MCMC
ized experiment). This is the basis of Pearl’s “do-calctulus [SPP"05, EWO06].

(as in the verb “to do”) [Pea00]. A perfect intervention

essentially “cuts off” the influence of the parents to the in-5  Models of intervention

tervened node, and can be modeled as a structural change

by performing "graph surgery” (removing incoming edgesWe will first describe our probability model under the as-

from the intervened node). Although some real-world . : . .

. . . . sumption that there are no interventions. Then we will de-

interventions can be modeled in this way (such as gené_ . ; . .
.Scribe ways to model the many kinds of interventions that

knockouts), most interventions are not so precise in the'have been proposed in the literature, culminating in our

effects. model of uncertain interventions. This will serve to situ-
One possible relaxation of this model is to assume thaate our model in the context of previous work.



2.1 Nointerventions
Xé,
For the intervention-free case, we will assume that the l
conditional probability distribution (CPD) of each node in [P —— X'+ R"
the graph is given by(X;|Xs,,0,G) = fi(Xi|Xa,,0:), N n
whereG,; are the parents afin G, 6; are:’s parameters, 07 0}
and f;() is some probability density function (e.g., multi- f f
nomial or linear Gaussian). For the parameter pr{6tG), af o i

we will make the usual assumptions of global and local in-

dependence, and parameter modularity (see [HGC95] foFigure 1: Model of mechanism changeX is nodes in case

details). We will further assume that eagf®;) is conju-  n, X¢, are its parents./;" acts like a switching variable: If
gate tof;, which allows for closed form computation of the /i = 1 (representing an intervention), theéfy uses the param-
marginal likelihoodp(X N |G) = [ p(X V|G, 8)p(6)do, etersd); If I = 0, thenX; uses the parametet§. o /' are

. he hyper-parameters. We can optionally add another swide
where N is the number of data cases. For example, fortR?, which can be used to model the degree of effectiveness of the

multinomial-Dirichlet, the marginal likelihood for a fafgi  jntervention (see text for details).
(a node and its parents) is given by [HGC95]

LN LN N . [TPO1b, TPO1a] refer to this as a “mechanism change”: see
plz; "V zg, ) = /[H p(z}' |z, . 0;)|p(0:)do; Figure 1. A special case of this is a perfect intervention,
n=1 inwhichp(X;| X¢q,,l; = 1,0,9) = I(X; = 7). To sim-
ﬁ I(aj) - ey, + Niji)  plify notation, we assume every node has its own interven-
iy Tl

+Ni;) T(aije) tion node; if a nodé is not intervenable, we simply clamp
Y7 k=1 t
I = 0forall n.

whereN;;;, = ZT’LlI(x? = k,ag, = j) are the counts, When we have interventional data, we modify the local
and N;; = >, Nyjx. (I(e) is the indicator function in marginal likelihood formula by partitioning the data into
which I(e) = 1 if evente is true and/(e) = 0 otherwise.) those cases in whick; was passively observed, and those
Also, «;;i, are the pseudo counts (Dirichlet hyper param-in which X; was set by intervention:

eters),a;; = >, aijk, i iS the number of discrete states

for X;, andg; is the number of states foXq,. We will  p(z/V|zgN, I}*Y) = /[ I »Gplec,, 69)]p(6?)d6?

usually use the BDeu priat;;j;, = 1/¢;r; [HGC95]. (An n: =0

analogous formula can be derived for the normal-Gamma

case [GHO02].) The marginal likelihood of all the nodes is x /[ I p@}lze.,60)p(6))do;

then given byp(X'N|G) = [T, p(XFN|XEN), where nl=1

d is the number of nodes. In the case of perfect interventions, this second factdr eva
) ) uates to 1, so we can simply drop cases in which rioues

22 Perfectinterventions set by intervention from the computation of the marginal

. . . likelihood of that node [CY99].
If we perform a perfect intervention on node data case
n, then we setX” = ¥, wherez is the desired “tar- We can also model the case where the interventions are
get state” for node (assumed to be fixed and known). unreliable, by introducing a latent indicatdt}’, where

We modify the CPD for this case to hgX;|Xs,,0) = R} = 1 means the intervention succeeded, &jd= 0
I(X; = x}). We see thafX; is effectively “cut off” from  meansitfailed. In this casg(X;| X¢,, 0, I; = 1) becomes
its parentsXg, . a mixture model. The prior mixture weightR, = 1) is

the “effectiveness” of the intervention [KHNAO4].

2.3 Imperfect interventions . . . : .
Another way to model imperfect interventions is as “soft

A simple way to model interventions is to introduce inter- iINterventions, in which an intervention just increases the
vention nodes, that act like “switching parents”:Jjf =  likelihood that a node enters its target stafe Markowetz
1, then we have performed an intervention on nede  ©t @l [MGROS] suggest using the same model of

casen and we use a different set of parameters than i?(XilXc.. i, 0, G) as before, but now the parametéfs
I* = 0, when we use the “normal” parameters. Specifi-andeil havedependenhyper-parameters. In particular, for
cally, we setp(X;|X¢,, I = 0,0,G) = fi(Xi|Xg,,0?)  the multinomial-Dirichlet case@?j/_l ~ Dir(a?j/.l), they
andp(X;|Xq,, i = 1,0,G) = fi(Xi|Xg,,0;). (Note assume the deterministic relatiofy = oy, +w;é;, where
that the assumption that the functional forfndoes not j indexes states (conditioning cases)yef , t = z} is the
change is made without loss of generality, sificean en-  target value for nodg ¢; = (0,...,0,1,0,...,0) witha 1

code within it the specific type of function.) Tian and Pearlin the ¢'th position, andw; is the strength of the interven-
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Figure 2: An example of “fat hand” interventions. Intervention 1
affects nodes 2 and 3, intervention 2 affects node 3. Thenmra
ters for node 3 aréfju(k, £), wherel; =4, I, = j, Xo = k and
X3 =L

n
12

tion. Asw;— o0, this becomes a perfect intervention.

2.4 Uncertain interventions
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Figure 3: Top left: the “cancer network”, from [FMR98]. (a-d)
are Markov equivalent. (c-g) are equivalent under an ierv
tion on B. (h) is the unigue member under an intervention4n
Based on [TPO1b].

[CY99, MS03, TPOla, TPO1b, WGHO06]. Specifically, each
intervention determines the direction of the edges between
the intervened nodes and its neighbors; this in turn may
result in the direction of other edges being “compelled”
[Chi95].

Finally we come to our proposed model for representingror example, in Figure 3, we see that there are 4 graphs
interventions with uncertain targets, as well as uncertainhat are Markov equivalent to the true structure; given ob-

effects. We no longer assume a one to one corresponden
between intervention noddsand “regular” nodesy;. In-
stead, we assume that each intervention nideay have

€€rvational data alone, this is all we can infer. However,
given enough interventions (perfect or imperfect)®nve
can eliminate the fourth graph (d), since it has the wrong

multiple regular children. (Such interventions are some-parents forB. Given enough interventions a#i, we can

times said to be due to a “fat hand”, which “touches” many

uniquely identify the graph, since we can identify the arcs

variables at once.) If a regular node has multiple intervenout of A by intervention, the arcs into D since it is a v-

tion parents, we create a new parameter vector for each po

Structure, and th€’— E arc since it is compelled. In gen-

sible combination of intervention parents: see Figure 2 foferal, given a set of interventions and observational data,

an example.

we can identify a graph up to intervention equivalence (see

We are interested in learning the connections from the inITPOla] for a precise definition).

tervention nodes to the regular nodes, as well as betwedn Section 4.1, we will experimentally study the question
the regular nodes. We do not allow connections betweenf whether one can still learn the true structure from un-
the intervention nodes, or from the regular nodes back t@ertain interventions (i.e., when the targets of interiamt
the intervention nodes, since we assume the interventioare a priori unknown), and if so, how much more data one

nodes are exogeneous and fixed.

To explain how we modify the marginal likelihood func-
tion, we need some more notation. ¢, be the regular

parents of node, and/q, be the intervention parents. Let
0¢ be the parameters for nodeiven that its intervention

parents have statt Then the marginal likelihood for a
family becomes

p(a; N el 1EY)
- 11 [ L wteriet, 00| sotiast
il =t

2.5 The power of interventions

The ability to recover the true causal structure (assum-=
ing no latent variables) using perfect and imperfect in-

terventions has already been demonstrated both theorgfpn:

ically [EGS05, EGS06, TP01a, TP0O1b] and empirically

needs compared to the case where the intervention targets
are known.

3 Algorithmsfor structure learning

The Bayesian approach to structure learning avoids many
of the conceptual problems that arise when trying to com-
bine the results of potentially inconsistent conditiomalie-
pendency tests performed on different (“mutated”) models
[Ebe06]. In addition, it is particularly appropriate whéret
sample sizes are small, but “soft” prior knowledge is avail-
able, as in many molecular biology experiments.

However, we are left with a computational problem. Com-
puting the full posterior is intractable, since there are
O(d'2(g)) DAGs (directed acyclic graphs) od nodes

[Rob73] So all one can realistically hope to do is to

The exact formula is given by the following recurrence equa-
r(d) = 2O (-1)"FH (D2 Dr(d — 4). This gives
r(2) = 3, r(3) = 25, r(4) = 543, r(5) = 29,281, r(6) =



compute the posterior probability of certain features ef th graphs as follows
graph using Bayesian model averaging:

1 d
p(<,G) = = ||@U)pi(G;i) x I(<,G consistent
p(fID) =Y p(G|D)f(G) Z 71;[1
G

where the last term checks th@ltis consistent with<, and
. that< is a total order (and henc@ is acyclic). 7 is a nor-
wheref(G) = 1 if graph G has the feature (e.g., an edge malization constant which will cancel out when computing

fror_nz t0), andf(G) = D otherwise. (In the small sample osterior features. By marginalizing over, we induce a
regime, the posterl_or over_models (_then has many moqegﬁrior over graph®(G). The induced prior is highly non
S0 't, would_be unwise tc_) pick any single model, assumin niform, but favors sparse graphs, since parent sets that ar
one’s goalis scientific discovery.) smaller are consistent with more orderings and therefore
Standard MCMC methods for sampling from the posteriormore probable.

(see e.g., [MY95]) are very slow and do not mix well, due The reason the prior is defined in this indirect way is that

to trt1e .S'ZT m:jthe sear;h ;pa_;:_e ar:d fjhe peakiness gf tgﬁe dynamic programming algorithm relies on the fact that
posterior fandscape. signincant advance was made by,o .o, compute the score for certain parent sets without

Friedman and KoIIer[FK(.)3],Wholsuggested sampling 0Verknowing what the order of those parents are; hence we
the space of node orderings, which “only” has sizef!). can re-use that score for all orderings of the parents. See

Koivisto and Sood_[KSO4, Koi06] made another significant KS04, FKO3, EW06] for a more detailed discussion of the
advance, by showing that one can compute the exact post Glationship between priors on orders and graphs.
rior probabilities of all edges using dynamic programming

(DP) inO(d2) time, essentially by summing over all node 35 | ikelihoods

orderings instead of sampling them. While still expondntia

in d, this is significantly better tha®(d!2¢"), and allows  The final inputs to the algorithm are the local conditional
exact analysis of models with up to abaiut= 20 variables.  marginal likelihoodsp(z}*™ [#&N, 1Y), which must be

The DP algorithm is rather complex, and we do not havecOmPputed for every nodeand every possible parent set

) . dy __ k
space to explain it here. For the purposes of this paper, @' (tqutO S'Zekt?' Ther(:l ?re(k)d_ O(Cé ) Sufhh tferms. ;[Ee |
suffices to know that the input to the algorithm is a priorCOS of compulting €ach term depends on the form ot the 1o-

over node orderingsg;(U;), a prior over possible parent cal CPDs/; and the prioip(f;). We have already given

sets,p;(G;), and a local marginal likelihood function for the formula for the muItinomiaI-I_Di_richIet case. It takes
every node and every possible parent seX;| Xc, ). We O(N) time to compute the sufﬁmgm statistics (counts)
discuss each of these in turn below. We then discuss exterﬁ\—fij’“’ WhereJ\g is the number of tra.unlng. cases. We have
sions to the algorithm to handle interventions. ou_nd that 95% of the overall algor_lthm time Is spent com-
puting these terms, even for relatively small (~ 5000)
datasets. Fortunately, one can use AD-trees [ML98] to

3.1 Priors speed this up.

A node ordering< may be specified by the vector 33 | ayering

(Uy,...,Uq), whereU; = {j : j < i} are the set of nodes

that preceed. Following [KS04], we will assume a uni- In the case where we include the intervention nodes in the
form prior over orderingsy; (U;) o 1. graph, we use a two layered graph structlife= X U Z,

e here X’ are the regular nodes afdare the intervention
A parent set may be specified by the vecthrC V, where w )
P Y P y 10des. The prior ensures there are no edges between the

V is the set of nodes. Note that this is an unordered sef?
the ordering of the elements is specified By Follow- 1 nodes, and no e_dges fr°’f’“ back toZ. Letd; = [I|

, d-1y -1 be the number of intervention nodes, ahd = || be
ing [KS04], we selp;(Gi) o (\Gil) i |G| < k, and the number of regular nodes. The time complexity of the
pi(Gi) = 0 otherwise, wheré is a fan-in bound for each  pp aigorithm in this case i9(d2%x + d*+1C(N)), where
node. (By setting: = d — 1, we can eliminate the fan-in g — 4, 1 4, andC(IN) is the cost of computing each local
restriction.) marginal likelihood term. Note that layering is crucial for
Of course,G; and U; are not independent, since we re- effici(_antly handling uncertai_n interventions, oth_erwibet
quire G; C U;. Henceg:(U;) and p;(G;) should not be  algorithm would taked(d2?) instead 0fO(d2~) time.
thought of as probabilities, but rather as potential flordi .

or factors, which jointly define the prior over orderings and4 EXperimental results

We first present some results on synthetic data generated
3,781,503, 7(7) = 1.1 x 10°, etc. from a Bayes net of known structure, and then present re-



Ground Truth N =20 N =50 N=500  N=2000
ABCDE H=631 H=5.40 H=1.86 H=149

A
B
C
D
E

ABCDE H =565 H=429 H=134 H=1.16

ABCDE I* H=653 H=5.58 H=1.73 H=173

ABCDE H=4.11 H=253 H=045 H=0.09

sults on a real biological data set.

Observation Only

4.1 Synthetic data

In this section, we experimentally study the question of
whether one can still learn the true structure, even when
the targets of intervention are a priori unknown, and if so,
how much more data one needs compared to the case where
the intervention targets are knownWe assessed this us-

ing the following experimental protocol. We considered
the graph structure in Figure 3, and then generated random
multinomial CPDs by sampling from a Dirichlet distribu-
tion with hyper-parameters chosen by the method described
in [CM02]. This ensures that there are reasonably strong
dependencies between the nodes. (We used binary nodes
for simplicity.) We then generated data using forwards
sampling; the first 2000 casd®, were from the original
model, the second 2000 cases from a “mutated” model,  Figyre 4: Results of structure learning on the cancer network
in which we performed a perfect intervention either&n  (Figure 3). Left column: ground truth. Subsequent columns:

or B, forcing it to the “off” state in each case. posterior edge probabilities G;; = 1| D) for increasing sample
] ) ) sizesN, where dark red denotes 1.0 and dark blue denotes 0.0.
Next we tried to learn back the structure using varying sam4 is the entropy of the factored posteridl;; p(Gi;| D). See text

ple sizes ofN € {100,500,2000}. Specifically we used for details. This figure is best viewed in colour.

N observational samples andl interventional samples,

D = (D§N, DN). We ran the algorithm using dafa

and under increasingly vague prior knowledge: (1) usingrhis suggests that our proposed mechanism is easily able

the perfect interventions model; (2) using the softinterve 4 |earn causal structure even from uncertain intervestion

tions modet; (3) using the imperfect (mechanism change)
model; and (4) using the uncertain interventions model. In42 Bioloaical data
the latter case, we also learned the children of the interven™ g

tion node. As a control, we also tried just using observas . :
. ' We now apply our methodology to a real biological data
tional data,D = D2V, bRl 9y g

set, which had previously been analyzed using MCMC by
Our results are shown in Figure 4. We see that with ob-Sachs et al [SPFO5] (who used multiple restart simulated
servational data alone, we are only able to recover the vannealing in the space of DAGs), Werhli et al. [WGHO0G6]
structureB— D+C, with the directions of the other arcs (who used Metropolis Hastings in the space of node order-
being uncertain (e.gR(C—FE) ~ 0.75.) With perfectin-  ings), and Ellis and Wong [EWO06] (who used equi-energy
terventions onB, we can additionally recover tha—B  sampling in the space of node orderings). The purpose
arc, and with perfect interventions oh, we can recover of our experiment is to determine the exact posterior over
the graph uniquely, consistent with the theoretical result edges, and hence to assess the quality of the MCMC tech-
in Section 2.5. With imperfect and soft interventions, we niques, and also to learn the effects of the interventioais th
need somewhat more data, but results are otherwise veryere performed.

similar to the perfect case, and are omitted due to lack Ofrhe dataset consists of 11 protein concentration levels mea

space. With uncertain interventions, we see that the ®Sured under 6 different interventions, plus 3 unperturbed

tropy of the posterior on the regular edges is higher thar]!neasurements. The proteins in question constitute part of

when using perfect interventions, but it too reduces W|ththe signaling network of human T-cells, and therefore play

sample size. Eventually the posterior converges to a de]tg vital role in the immune system. See Figure 6(a) for a de-

function on the intervention equivalence class. We obtain

similar results with other experiments on random gra| hspiction of the commonly accepted "ground truth” network,
P grap including hidden nodes.

moN®m>

Uncertain B Perfect B

FMON®w>

ABCDE I H=6.06 H=3.62 H=0.76 H=0.38

Uncertain A Perfect A

0 02 04 06 08 1

2Tian and Pearl [TP01a] briefly mention the case of “unknown The data in question were gathered using a technique called
focal variables” (which we are calling uncertain targetsnbér- flow cytometry, which can record phosphorylation levels
vention) in the context of constraint based learning methodt  of individual cells. This has two advantages compared to
do not present any algorithms for identifying focal varal\We 1o measurement techniques: first, it avoids the informa-

are not aware of any other papers that address this question. ion i db . bl
3[MGRO5] do not discuss how to set the pushing strength tion loss commonly incurred by averaging over ensembles

We set it equal td).5N, so that the data does not overwhelm the Of cells; second, it creates relatively large sample siaes (
hyper-parametet; .. haveN = 5400 data points in total, 600 per condition).



to the graph and learned their children, rather than pre-
specifying them. The results are shown in Figure 6(d). We
successfuly identified the known targets of all but one of
the 6 interventions. (We missed the G06967kc edge.)
However, we also found that the interventions have multi-
ple children, even though they were designed to target spe-
cific proteins. Upon further investigation, we found that
each intervention typically affected a node and some of its
immediate neighbors. For example, from the ground truth
network in Figure 6(a), we see that Psitect (designated 8
oo ™ in that figure) is known to inhibit pip2; in our learned net-
work (Figure 6(d)), we see that Psitect connects to pip2,
but also to plcy, which is a neighbor of pip2. This is bi-
Figure 5: Discretized biological data from [SPR5]. Columns  gjggically plausible, since some of these interventions ac

are the 11 measured proteins, rows are the 9 experimental co : . ; ; ~
ditions, 3 of which are “general stimulation” rather tharesific ?ually work by altering hidden variables, which can there

interventions. The name of the chemical that was added in eacfOr€ cause changes in several neighboring visible varsable
case is shown on the right. The intended primary target is ind Also, although we missed the G06967 pkc edge, the

cated by an E (for excitation) or | (for inhibition). This figuis  other children of GO6967 (plcy, pka, mek12, erk and p38)
best viewed in colour. seem to be strongly affected by G06967 when looking at
the data in Figure 5.

B2cAMP

Data Point

e also tried analysing the continuous data using linear-
[Saussian Bayes nets [GHOZ]. Following [EWO06], we took

a log transform of each variable and then standardized
them. Our results (omitted due to lack of space) are sim-
ilar to [EWO06], but our graph is much denser, suggesting
We tried two different analyses. In the first version, we as-that their MCMC scheme failed to visit sufficiently many

sumed that the targets of intervention were known, and wenodes. (Although once again our results are not directly
modeled these using perfect interventions (as did Sachs ebmparable due to the different prior.) The graphs inferred
al). The results are shown in Figure 6(c). These should b@sing the Gaussian and multinomial models have much in
compared with the results of the MCMC analysis of Sachscommon, but they also differ in many of the details. A dis-

et al, which are shown in Figure 6(b), and the ground truthcussion of which model is more appropriate is beyond the
network, which is shown in Figure 6(a). scope of this paper.

The raw data was discretized into 3 states, representing lo
medium and high activity. We obtained this discretized dat
directly from Sachs; see Figure 5 for a visualization. This
constituted the input to our algorithm.

While there is substantial agreement between the threg is difficult to rigorously assess the quality of our result
models, there are also many differences. For exampléyhen there is no ground truth. (The biological model in
the ground truth shows no edge from jnk to p38, or fromFigure 6(a) is unlikely to be the “true” model that generated
mek12 to jnk, yet both inference methods detect such athe data in Figure 5. Also, it contains hidden variables, so
edge. This may be due to the presence of various hidde not directly comparable to what we are learning.) The
variables. Looking at the data in Figure 5, mek12 and jnkapproach taken by Ellis et al [EW06] was to compare the
seem quite highly correlated, although this is obviously no predictive log-likelihood in a cross-validation framewor
enough evidence to suggest there should be an edge behis can also be done using the DP algorithm, by com-
tween them (as shown in [SPB5], nearly all of the vari-  putingp(z|D) = p(z, D)/p(D); these normalization con-
ables are significantly pairwise correlated!). stants can be obtained by running the “forwards” algorithm
t% [KS04] using the “dummy” featur¢g = 1. We are cur-

There are also several edges in our model that seem to ; . i o .
absent in the MCMC analysis of Sachs et al. (denoted b);ently performing this experiment. However, this is quite
low, since we need to rerun the algorithm for every test

dashed edges). This is possibly because Sachs et al on?)P_
perform model averaging over a “compendia of high scorPoINtz.

ing networks”, as found by 500 restarts of simulated an4.3 Runningtime

nealing, whereas our method averages over all graphs, and

hence may detect support for many more edges. (Note th&tor the 3-state biological data, with= 11 nodes (using
averaging over many sparse, but different, graphs cantresuperfect interventions) and’ = 5400, our Matlab imple-
in a dense set of marginal edge probabilities.) Also, the twgnentation only took 30 secondsFor the case where we
methods use different graph prigr&s), and hence cannot learned the effects of interventions (do= 17), it took

be directly compared. — _
Experiments were performed on a laptop with a 2 GHz Intel

In the second experiment, we added the intervention nodeSore Duo Processor and 2GB RAM running under Windows XP.
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Figure 6: Models of the biological data. (a) A partial model of the Trpathway, as currently accepted by biologists. The snuaihd
circles with numbers represent various interventionsg(gre activators, red = inhibitors). From [SPE5]. Reprinted with permission
from AAAS. (b) Edges with marginal probability above 0.5 asimated by [SPP05]. (c) Edges with marginal probability above 0.5
as estimated by us, assuming known perfect interventioash@&l edges are ones that are missing from the union of (dbanthese
are either false positives, or edges that Sachs et al migdpHEdges with marginal probability above 0.5 as estimateds) assuming
uncertain, imperfect interventions, and a fan-in bound ef 2. The intervention nodes are in red, and edges from the ie¢ion
nodes are light gray. Dashed edges are ones that are missinghfe union of (a) and (b). This figure is best viewed in colou
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