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Abstract

We introduce a novel method for estimating
the partition function and marginals of distri-
butions defined using graphical models. The
method uses the entropy chain rule to obtain
an upper bound on the entropy of a distribu-
tion given marginal distributions of variable
subsets. The structure of the bound is deter-
mined by a permutation, or elimination or-
der, of the model variables. Optimizing this
bound results in an upper bound on the log
partition function, and also yields an approx-
imation to the model marginals. The opti-
mization problem is convex, and is in fact
a dual of a geometric program. We evalu-
ate the method on a 2D Ising model with a
wide range of parameters, and show that it
compares favorably with previous methods in
terms of both partition function bound, and
accuracy of marginals.

Graphical models are a powerful tool for representing
multivariate distributions, and have been used with
considerable success in numerous domains from cod-
ing algorithms to image processing. Although graph-
ical models yield compact representations of distribu-
tions, it is often very difficult to infer simple properties
of these distributions, such as the marginals over sin-
gle variables, or the MAP assignment. This difficulty
stems from the fact that these problems involve enu-
meration over an exponential number of assignments,
and has motivated extensive research into approximate
inference algorithms. Another problem, which turns
out to have a key role in developing inference algo-
rithms, is the calculation of the partition function. Re-
cent works (Wainwright & Jordan, 2003; Yedidia et al.,
2005) have illustrated that a variational view of parti-
tion function estimation can be used to analyze most
of the previously introduced approximate inference al-
gorithms, such as mean field, belief propagation (BP)

and the tree re-weighting (TRW) framework (Wain-
wright et al., 2005).

The above analyzes emphasize that a key ingredient
in most approximate inference algorithms is the es-
timation of the entropy of a graphical model given
marginals over subsets of its variables. This approxi-
mation may be an upper bound on the true entropy,
as in the TRW framework, or one which is not guaran-
teed to be a bound as in the Kikuchi entropies used in
Generalized Belief Propagation (GBP) (Yedidia et al.,
2005). Another important property of entropy approx-
imation is convexity. The TRW entropies are convex
whereas those of GBP are not necessarily convex.

In the current work, we introduce a novel upper bound
on graphical model entropy, which results in a convex
upper bound on the partition function. The bound
is constructed by decomposing the full model entropy
into a sum of conditional entropies using the entropy
chain rule (Cover & Thomas, 1991), and then discard-
ing some of the conditioning variables, thus poten-
tially increasing the entropy. This entropy bound is
then plugged into the variational formulation, result-
ing in a convex optimization problem that yields an
upper bound on the partition function. As with previ-
ous methods (Yedidia et al., 2005; Wainwright et al.,
2005), a byproduct of this optimization problem is a
set of pseudo-marginals which can be used to approx-
imate the true model marginals.

We evaluate our Conditional Entropy Decomposition
(CED) method on a two dimensional Ising grid, and
show that it performs well for a wide range of parame-
ters, improving on both TRW and belief propagation.

1 Definitions and Notation

We shall be interested in multivariate distributions
over a set of variables * = {z1,...,2,}. Consider
a set C of subsets C' C {1,...,n}. Denote by z¢ an
assignment to the variables z; such that i € C. A dis-



tribution over x will be parameterized using functions
O(xc). We denote by 6 the vector of all parameters
for C € C. These can be used to define an exponential
distribution over @ given by

1 x
p(w;e) = meZCec 0(zc) ,

where Z(0) is the partition function defined as Z(6) =

>ow eZCGC #¢) " When the sets C' are pairs of nodes
connected by edges in a graph G, the model is referred
to as a pairwise Markov random field.

The marginals of the variables x¢ turn out to have
a key role in the theory of inference. Specifically, we
shall be interested in the set of marginals that can be
achieved under some distribution.

M(C) ={p|3p() st. > p(@)=p(zc) YC zc}

T:To=xC
(1)

The set M(C) is known to as the Marginal Polytope.
The notation p indicates a vector comprised of the
marginals for all C' € C.

The definition of M(C) does not restrict the form of
the distribution p(-). However, it turns out that any
point p in the relative interior of M(C) can actually
be achieved using an exponential distribution of the
form in Eq. 1 for some parameter vector 8(u) (Wain-
wright & Jordan, 2003)!. We shall be specifically in-
terested in the entropy of the exponential distribution
corresponding to a given u. Following (Wainwright &
Jordan, 2003), we define the following function

vy ) —H(p(z;0(p))) if p € 1i(M(C))
A(w) —{ 50 it pg ame) @

where ri(M) denotes the relative interior of M, cl(M)
is its closure and H is the entropy functional. The
function A*(p) returns the negative entropy for points
in ri(M(C)) and is infinite otherwise. The next section
will discuss its importance in approximate inference.

2 A Variational View of Inference

The goal of inference algorithms is to calculate
marginals of variables for a given distribution p(x;0).
The estimation of the partition function turns out to
have a key role in such algorithms. In (Wainwright &
Jordan, 2003) the authors show how most known in-
ference algorithms can be analyzed using a variational
view of partition function estimation. We review their

In the general case there will be infinitely many pa-
rameter vectors that yield a given exponential distribution
and therefore achieve a given p. Thus the notation @(u)
should be understood as some 6 in this set.

formalism here, and later use it to introduce our new
inference algorithm.

The log partition function can be shown to be the so-
lution of an optimization problem, as described in the
following theorem, which results from the convex dual
of the partition function (see e.g., (Wainwright & Jor-
dan, 2003; Yedidia et al., 2005))

Theorem 1 For a given parameter vector 0, the log
partition function is given by
logZ(0) = sup 6 -p—A"(pn) (3)
HEM(C)
Furthermore, the marginals p that achieve the opti-
mum are the marginals of the distribution p(x; ).

There are two key difficulties in solving the above prob-
lem. One is that the polytope M(C) does not typically
have an explicit description, e.g. in terms of a poly-
nomial number of linear constraints. Notable excep-
tions to this case are when the set C corresponds to
edges of a tree structured graph, and for restricted
classes of functions on planar graphs (see (Deza &
Laurent, 1997) page 434). A common approach to ad-
dressing this problem is to define a set M’ such that
M D M(C), i.e., it is an outer bound on M(C). One
way of constructing this set is by considering proper-
ties that any point p € M(C) must satisfy, such as
consistency between marginals on overlapping sets of
variables. Another approach is to use an inner bound
of M(C) by considering a subset of the exponential
distributions, for example those in the factored form,
as in naive mean field approximations.

The second difficulty is the estimation of the function
A*(p). The mapping from p € M(C) to O(p) is usu-
ally hard to state explicitly (again, with the exception
of tree graphs). This seems to be true even in cases
where the log-partition function can be calculated in
polynomial time, such as planar graphs (with binary
variables and no field). Also, even if 6(u) is known,
evaluating H (p(x; 6(w))) is typically as hard as calcu-
lating the partition function. A common approach to
the problem of expressing A*(p) is to use approxima-
tions which become exact in the tree structured case.

Note that if one replaces M(C) and -A*(u) in Eq. 3 by
an outer bound and an upper bound respectively, the
resulting optimization problem yields an upper bound
on log Z(0). This is the case in the TRW method, and
also in the approach we present here.

3 The Conditional Entropy
Decomposition Approach

We are now ready to describe our new approximate
inference algorithm. Our approach builds on an upper



bound on —A*(p) which we describe below. Consider
an elimination order on the variables x1,...,x,, i.e.
a permutation on the set {1,...,n}. We denote the
permutation by e and its i*" element by e(i). By the
chain rule for entropy (Cover & Thomas, 1991) we
have

H(X,...,X,)= Z H(X (| Xeitn)s - -+ Xegm))
i

Since conditioning reduces entropy (Cover & Thomas,
1991) removing some of the conditioning variables
(e.g., removing Y in H(X]|Y)) cannot decrease
the entropy, thus yielding an upper bound on
H(Xq,...,X,). To construct such a bound that is
also efficient to compute, we would like to restrict the
number of variables conditioned on. This can be done
by defining a subset C; C {1,...,n} for each i, and
restricting the conditioning variables to be in this set.
Formally, for a given elimination order e define the re-
stricted elimination neighborhood of X; to be the set
of indices?

N(e,i)={j:5eCin{e(i+1),...,e(n)}}

The resulting upper bound on the full joint entropy is

H(X1,..., X,) Y H(Xe) | Xn(e) (4

7

The key property of the above bound is that it only re-
quires the marginals of the sets p(z¢(;), Tn(e,i)). Since
the size of these is exponential in |Cy;)| the bound is
tractable when |C, ;)| is reasonably small. We intro-
duce a notation C;” = {4, C;} for the set which includes
both C; and 7 itself, since it is the marginals over this
set which are relevant for estimating the entropy

Next, we wish to incorporate the above entropy bound
in the variational problem in Theorem 1, for a given
6 defined over a set C. A simple way of doing so is
to define the clusters C;" such that for every subset
C; € C there exists a Cf such that C;” D C;. The
parameter vector @ can be redefined over the clusters
Cj to yield the same distribution as the original one
in Eq. 1. From now on, we thus consider distributions
over the clusters C;". A natural outer bound on M(C)
in this case is the set of all marginals over C;" that
agree on the marginals of variables in their intersection

Mp(C) = {H “Her (zcjmcj) = Nc;f (xcjmc;f) Waj}

Clearly Mr(C) 2 M(C) since every set of achiev-
able marginals must satisfy the above consistency con-
straints. Since the bound in Eq. 4 depends only on

2The use of C; do define N (e, i) may appear redundant
for a single elimination order, since we can define N (e, 1)
directly. However this will become useful in Section 3.1
where we consider multiple elimination orders.

marginals of the clusters C;r , we may interpret it as a
function of these marginals

sle.w) =Y Hiuw(laxes) ()

Note that this function is well defined even for p €
M, (C) that do not correspond to any distribution. It
is easy to see that the function g(e,p) is an upper
bound on —A*(u): for p € M(C) we have g(e, u) >
—A* () due to the entropy inequality in Eq. 4, and for
© ¢ M(C) the function —A*(p) is —oo so the bound
trivially holds.

Since we have an outer bound on M(C) and an upper
bound on the entropy we can define an optimization
problem whose optimum is always an upper bound on
the partition function. Define

f(@,e)= sup O-p+g(e p) (6)
REML(C)
Then
logZ(@) = sup 0 -p—A"(p)
HEM(C)
< sup O-p+glep)
HEM(C)
< sup O-ptglepu)=f(6,e)
HEML(C)

Thus for all 8 and e we have f(6,e) > log Z(6). The
above optimization problem in fact maximizes a con-
cave function over a convex set, and thus local optima
are global ones (Bertsekas, 1995). The constraint set
is linear and hence defines a convex set. The objective
is a sum of conditional entropies and is therefore con-
cave. This follows from the fact that the conditional
entropy H(X|Y) is a concave function of the joint dis-
tribution p(z,y). We provide a proof of this concavity
in the appendix.

3.1 Multiple Elimination Orders

The previous section considered a bound based on a
single elimination order. However, since the bound is
true for any elimination order, we may extend it to use
multiple orders. Consider a set of elimination orders
£, and a distribution g(e) on this set. Now consider
the convex combination of the bounds g(e, )

9(m.q) = _qle)gle, p) (7)

e

Again we have a bound g(p,q) > —A*(w). since
g(p,e) > —A*(p) for all e, and we take their convex
combination using g(e). Since the function g(e, p) de-
pends only on subsets of the variables x1, ..., x, it will



not depend directly on g(e) but rather on the proba-
bilities of these subsets appearing in a given elimina-
tion order. Denote by p(S|i) the probability that a set
S C C; satisfies S = N(e,q) for a permutation drawn
from £. The notation p(S|é) is justified by the fact
that > g p(S|i) = 1 since every elimination order
corresponds to some choice of a subset of C;. Then

g, p) = > p(SIi)H(p(xilzs))  (8)
i=1 SCC;

We can therefore introduce the following optimization
problem as another bound on the log partition function

f(@,p)= sup
HEML(C)

0-p+g(p,p) 9)

The above bound only holds if the distributions p in-
deed correspond to some distribution g(e) over elim-
ination orders. One way of obtaining a valid p is by
considering some finite set of elimination orders and
calculating p for a distribution over those (e.g., uni-
form).

We conclude with a specific example of setting the
values of p. Consider a distribution over four vari-
ables x1,...,x4, with clusters C7 = {2,4},Cy =
{1,3},C5 = {2},Cy = {3}. We assume that the dis-
tribution ¢(e) is uniform over two elimination orders
e; = {1,2,3,4} and e; = {1,2,4,3} ie. q(i) = 3
for i = 1,2. The elimination order e; contributes %
to p(2,4|1), p(3]2), p(0]3), p(0]4), where @ is the empty
set. Similarly, for e; we have a contribution of % to
p(2,4]1), p(3[2), p(3]4) and p(0]3). Thus p(2,4]1) =
1,p(32) = 1,p(0[3) = 1,p(3|4) = L,p(0]4) = } and
zero probability for all the other subsets.

4 Exact Decompositions

We now study the conditions under which our ap-
proximation procedure becomes exact. Recall that
the approximation is generated by deleting variables
from the conditional entropy decomposition of Eq. 4.
Such deletion would usually result in an increase in
entropy. However, it will be exact as long as the vari-
ables that are not deleted provide all the relevant in-
formation about the eliminated variable X¢(;. More
formally, consider the conditional entropy H(X1|Xg)
where X g is some set of variables. Denote the Markov
blanket of X; by Xy. The condition for Xy be-
ing a Markov blanket is that X; and Xg\py are
conditionally independent given Xy, or equivalently
p(z1|ry, rr\v) = p(r1]zy). The above condition im-
plies that H(X1|Xr) = H(X;1|Xy). This is also true
for any U’ such that U’ D U. Thus as long as we do
not delete variables that are in the Markov blanket of
X, our entropy decomposition is exact. It is important

to stress that Xy needs to be a Markov blanket for X;
under the distribution for p(x1,zr) which is already
a marginal of the complete distribution. The Markov
blanket of X; may thus be larger than its blanket un-
der the full distribution p(z1,...,z,).

The discussion above suggests a scenario where the de-
composition is exact. Assume the original set C corre-
sponds to edges in a graph G. Consider a given elimi-
nation order e, w.l.o.g e = {1,...,n}. Now proceed by
triangulating the graph using e: i.e., eliminating vari-
ables according to e and after eliminating a variable,
connecting all its neighbors in G to each other. Set
the cluster C; to be the set of neighbors of X; in this
process. The C; constructed in this fashion are clearly
a Markov blanket for the variable X;. Thus, as long as
we use marginals such that g € M(C) the decomposi-
tion is exact. In order to enforce p € M(C) it suffices
to require that the cliques corresponding to clusters
in the junction tree corresponding to G are consistent.
The clusters C; are necessarily subsets of these cliques
so marginals over C; will also be in M(C). Thus, CED
is similar to other inference algorithms (e.g., general-
ized belief propagation (Yedidia et al., 2005)) in that it
becomes exact when constructed over a junction tree.

5 A Dual Geometric Program

The optimization problem in Eq. 9 is convex and there-
fore has an equivalent convex dual. It is known that
such problems of maximum conditional entropy are
duals of convex optimization problems known as geo-
metric programs (GP) (Chiang, 2005). Large scale ge-
ometric programs can be solved very efficiently?, and
it is thus worthwhile to explore their duality to the
current problem. A geometric problem in convex form
is given by

min log 25:01 0K T+bok
So that log Zle e tbi <0 j=1... ,m
alTa:+bl:O l=1,....M

where optimization is over the variable @, and a;; and
a; are vectors of the size of  and b;, are scalars. To
define the GP dual of CED we introduce the following
dual variables

e Variables f3;,t; fori =1,... n.

e Subset variables \!(z;,z5) for every i = 1,...,n
and S C C; (note that the full set is not included),
and every assignment to the variables x;, zg.

30ne efficient
the commercial
www.mosek.com).

implementation is available in
MOSEK optimization package (see



e Overlap variables v¢(xg) for any subset S that is
the intersection of C;r and some other Cj-*, and

every assignment to zg. We also denote by O°
the set of overlap subsets for cluster C;' .

Define the following factor for every variable z; and an
assignment t0 .+

Mrgr) =0(xcs) + Z v (xs) + Z Nz, m5) + B

Se0? ScC;
The dual problem is then*®
min 50+ 5, o0
“H(Cili)h(x
So that: Zm,ep ( ‘)(Cfr)<1

Zz e—pfl(S\i)/\i(wuwsi) <1 ScCi,S#0
S e—P LOION (i) —ti <1
Zi:SCC:r Fyz(xs) =0
(10)
The above dual yields some insight into the structure
of the primal solution as we show below. By deriving
the primal Lagrangian the following characterization
of the conditional u(z;|zc,), u(x;|zs) is obtained
P~ H(Cilih(w 1)
alac,) = e

wzilrs) = =P (SIDA (zi,25)

These characterizations hold as long as the correspond-
ing marginals u(xc,), u(xs) are not zero. The first
two constraints of the dual may thus be interpreted
as sub normalization constraints for the above condi-
tional distributions. Complementary slackness implies
that as long as the marginals are not zero, these con-
straints hold with equality, but when marginals are
zero the constraints may not be active. Comparing
the number of constraints to the number of variables,
it becomes evident that not all equalities can be sat-
isfied in the general case, and indeed we empirically
observed that the primal solution has zero marginal
probabilities for some assignments.

6 Optimization Issues

The variational problem described above may be
solved by optimizing either the primal (Eq. 9) or the
dual (Eq. 10). One shortcoming of the dual formula-
tion is that it requires variables for all assignments to
all subsets, and thus may become quite large, albeit
sparse. The primal problem is considerably smaller
since it has variables only for assignment to the sets

“We use p(@|i) to denote the probability of the elim-
ination neighborhood of X; being empty. Note that for
a single elimination order this is always one for the last
eliminated variable

®Note that the objective is in fact linear

C;". Thus in the experimental section we chose to solve
via the primal. There are many different algorithms
for solving convex problems. Here we used the condi-
tional gradient method (Bertsekas, 1995), which uses
linear programming to find feasible search directions.

Another approach to optimization may be via a mes-
sage passing algorithm as in GBP. Since the primal
objective may be written as a weighted sum of en-
tropies (see Eq. 12) one may derive message passing
algorithms similar to the GBP ones. Such updates are
designed so that their fixed point is a local optimum
of the Lagrangian. Since the current problem is con-
vex, convergence of such an algorithm would therefore
guarantee a global optimum. However, as in GBP and
TRW, such algorithms are not guaranteed to converge.
Since in this work we are primarily interested in the
quality of the approximation, we defer further study
of message passing algorithms to future work.

7 Related Methods

The CED method presented above constructs an ap-
proximation of the free energy and uses it to estimate
the partition function. It is thus a variational based
approach, and as such is related to previously intro-
duced variational methods. The key difference be-
tween these methods is in the way they approximate
the entropy term A*(p). We next highlight the differ-
ence between our approach and previous ones.

7.1 The Tree Re-weighting Framework

Wainwright et al. (2005) construct an upper bound
on —A*(u) using spanning trees of the graph G. For
a spanning tree T, define the function

9w, T) = > H(X,|Par(X;)) (11)
=1

where Pap(X;) is the parent of variable X; in the tree
T, and the entropy is calculated using . Then §(u, T')
is the entropy of a distribution on the tree T with
marginals g and can be shown to be an upper bound
on —A*(p). A convex combination of such bounds
is then used to obtain an upper bound on log Z(8).
Interestingly, the above bound may be viewed as an
instance of the bound in Eq. 4 if one considers an elim-
ination order where children in the tree T are always
eliminated before their parents. The CED bound is
however more general, since it does not require a tree
property, and can condition on nodes that do not cor-
respond to a tree (or a junction tree). Importantly,
the bound in Eq. 4 does not necessarily correspond to
an entropy of any distribution in the general case, and
thus generalizes the TRW approach.



An elegant property of TRW is that one can consider
a distribution p over all spanning trees, and find the
p that yields the optimal bound. For CED, we can
also optimize p for a fixed and small enough set of
elimination orders. However, it seems hard to optimize
over all possible elimination orders (see Discussion).

7.2 Generalized Belief Propagation

Yedidia et al. (2005) observed that the belief prop-
agation algorithm is closely related to the variational
problem in Theorem 1 with A*(u) given by the Bethe
entropy. This motivated the use of higher order ap-
proximations such as the one introduced by Kikuchi.
Such approximations are weighted combinations of en-
tropies that generally neither upper or lower bound the
true entropy. The bound in Eq. 8 can also be viewed
as a sum over entropies by rewriting it as °

g(w.p) = > > p(SI)(H(X;, Xs) — H(Xs))

i=1 SCC;

As in (Yedidia et al., 2005), we also have positive
and negative entropy contributions. However, un-
like Kikuchi approximations, the current expression
yields an upper bound on the entropy, and is also a
convex function of its parameters. Convex variants
of the Kikuchi entropy were also studied by Heskes
et al. (2003) in the context of optimizing a non-convex
Kikuchi entropy more efficiently. The entropy decom-
position in Heskes et al. (2003) is not necessarily
an upper bound on the true entropy. Furthermore,
the convexity of the entropy approximation in (Hes-
kes et al., 2003) holds only for consistent marginals
whereas the entropy decomposition presented here is
convex over all marginals, consistent or not.

8 Experiments

To evaluate the performance of our conditional entropy
decomposition method we apply it to an Ising model
on a two dimensional grid. A grid of size 10 x 10
is used to allow comparison with the exact partition

function and marginals. The distribution has the form

p(x) ezweE ORI where 65, 0; are param-

eters, x; € {£1}, and E are edges of the 2D grid.
The clusters C; were chosen as all the neighbors of
node ¢ in the graph, so that |C;| < 4. The subset
probabilities p(S|i) were constructed by considering a
uniform distribution over elimination orders shown in
Figure 1. We considered these four elimination orders,
all their cyclical orderings, and their reverse orderings
and cyclical reverse orderings. The rationale behind

SHere we take both entropies w.r.t the distribution
:U'(xc’_*)

this choice is that those elimination orders yield clique
trees with width equal to the tree width of the grid.
We also experimented with other elimination distribu-
tions but these yielded inferior results.

The parameters 6; were drawn uniformly from
U[—dys,dy] where df € {0.05,1} The parameters 0;;
were drawn from U[—d,, d,] or U[0, d,] to obtain mized
or attractive interaction potential respectively. The in-
teraction levels were d, € {0.2,0.4,...,4}. The follow-
ing algorithms were used to estimate both the partition
function of the distribution and its singleton marginals

e The conditional entropy decomposition (CED)
method with the clusters and elimination orders
defined above. Marginals are given by the g which
maximizes the CED optimization problem.

e A variant of the conditional entropy method,
where p is not a legal vector, but rather is de-
fined as p(C;|i) = 1 for the full cluster, and zero
otherwise. We denote this variant by CEDF. Here
the optimization is still convex, but does not nec-
essarily give a bound on the partition function.

e The TRW method of Wainwright et al. (2005)7,
using a uniform distribution over spanning trees
(denoted by TRWUNTI in the results). TRW pro-
vides an upper bound on the partition function
and a set of estimated (pseudo) marginals.

e Loopy belief propagation (BP).® The marginals
obtained by the BP algorithm were used to cal-
culate the Bethe free energy, which approximates
the partition function. For some settings of the
parameters BP did not converge.®

For each setting of the parameters and each algorithm
we calculated the following measures: 1) The normal-
ized error in the log partition function %| log Z#9 —
log Zt™¢|. For TRW and CED Z9 is always larger
than the true one. For BP,CEDF this does not nec-
essarily hold. To emphasize this difference, the re-
sults for BP,CEDF are shown with a negative sign in
the figures. 2) The mean L1 error in the marginals

2 [P (@ = 1) = plr (@ = 1))

Since CED is essentially a cluster based method, we
were also interested in comparing it with GBP. When
running GBP with the same clusters Ci'" that were
used for CED, convergence was reached only for very
low interaction levels, and therefore we do not report
these results here. However, GBP with square clusters
had good convergence and marginals performance. In
order to incorporate such square clusters into CED one

"We used M. Wainwright’s TRW implementation.

8We used the inference package by Talya Meltzer avail-
able at http://www.cs.huji.ac.il/~talyam/.

9Results are not shown in these cases.



Figure 1: Tllustration of the elimination orders considered
in generating the distribution p(S|i), shown here for a 3 x
3 two dimensional grid. The four basic orderings shown
eliminate rows or columns in a sequential fashion.

should include them in the description of M(C). We
expect this to improve CED results further, but have
not performed this evaluation yet.

Results for the partition function are shown in Figure 2
and those for marginals in Figure 3. It can be seen that
CED yields a much better partition function bound
than TRW, and also results in improved marginals.
BP yields good marginal estimates for low interaction
levels, but breaks down at higher ones, even when it
does converge. The performance of CEDF, which is
not a upper bound, is good for dy = 1 but deteriorates
at high interaction levels for d; = 0.05.

9 Discussion

The CED method provides an intuitive way of generat-
ing entropy bounds by relating them to elimination or-
ders of variables. The quality of the approximation is
governed by the fraction of the Markov blanket that is
preserved in the conditional entropy. Since the neigh-
bors of a node in the graph are clearly a subset of its
Markov blanket this constitutes a natural choice for
clusters, and indeed the one we followed in the exper-
imental evaluations. However, choosing a larger set
would result in a tighter bound. It should be noted
however, that one can in fact choose a subset of these
neighbors and the bound would remain valid. Such a
choice may be reasonable for nodes with high degree.

In the current evaluations we considered a uniform dis-
tribution over a set of elimination orders. An improved
bound may be obtained by optimizing over this distri-
bution. The main difficulty in such an optimization is
that one needs a characterization of which vectors p
are valid subset probabilities. While it is easy to spec-
ify properties which these p must satisfy, it is not im-
mediately clear how to obtain a complete description of
this set. Interestingly, Grotschel et al. (1985) obtained
results which characterize this elimination polytope if
one only considers subsets of size two (i.e., edges) and
the graph is planar. It will be interesting to further
study the relation between their work and ours.
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A Concavity of Conditional Entropy

Consider the function H(X|Y') as a function of p(z, y).
We want to show it is a concave function. Define
u(zx) = ﬁ as the uniform distribution over X. Write

H(X]|Y) as a KL divergence (up to a constant)

Drrp(z,y)p(y)u(z)] = —H(X]Y) +log |X| (12)

Since Dgp[plg] is convex in (p,q) (Cover & Thomas,
1991), we can use it to address the convexity of
H(X|Y). Given two distributions pi(z,y), p2(z,y),
define two factored distributions g;(z,y) = p;(y)u(z).
For 0 < A <1 define

p)\(mu y) = )\pl(%y) + (1 - )\)pQ(xu y)
(T, y) = A1 (z,y) + (1 = Ngz(z,y)

By the definition of ¢; we have qx(z,y) = (Ap1(y) +
(1 = Np2(y))u(x) = pr(y)u(z) To establish concav-
ity we need to show that H,, (X|Y) > AH,, (X[|Y) +
(1 —=X)Hp,(X]Y). From Eq. 12 we have H,, (X|Y) =
—Dxrlpalgy] + log | X|, and convexity of D, yields

H, (X]Y) > —ADgrlpi(z,y)lq(z,y)] —

(1 =X Dkrlp2(z,y)lg2(z,y)] + log | X|
= AHp, (X[Y)) + (1 = A)Hp, (X]Y)
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