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Abstract

Algorithms such as Latent Dirichlet Alloca-
tion (LDA) have achieved significant progress
in modeling word document relationships.
These algorithms assume each word in the
document was generated by a hidden topic
and explicitly model the word distribution of
each topic as well as the prior distribution
over topics in the document. Given these pa-
rameters, the topics of all words in the same
document are assumed to be independent.

In this paper, we propose modeling the top-
ics of words in the document as a Markov
chain. Specifically, we assume that all words
in the same sentence have the same topic, and
successive sentences are more likely to have
the same topics. Since the topics are hid-
den, this leads to using the well-known tools
of Hidden Markov Models for learning and
inference. We show that incorporating this
dependency allows us to learn better topics
and to disambiguate words that can belong
to different topics. Quantitatively, we show
that we obtain better perplexity in model-
ing documents with only a modest increase
in learning and inference complexity.

1 Introduction

Extensively large text corpora are becoming abundant
due to the fast growing storage and processing capa-
bilities of modern computers. This has lead to a resur-
gence of interest in automated extraction of useful in-
formation from text. Modeling the observed text as
generated from latent aspects or topics is a prominent
approach in machine learning studies of texts (e.g.,
[8, 14, 3, 4, 6]). In such models, the ”bag-of-words”
assumption is often employed, an assumption that the
order of words can be ignored and text corpora can be

represented by a co-occurrence matrix of words and
documents. The probabilistic latent semantic analy-
sis (PLSA) model [8] is such a model. It employs two
parameters inferred from the observed words: (a) A
global parameter that ties the documents in the cor-
pora, is fixed for the corpora and stands for the prob-
ability of words given topics. (b) A set of parameters
for each of the documents that stand for the proba-
bility of topics in a document. The Latent Dirichlet
Allocation (LDA) model [3] introduces a more consis-
tent probabilistic approach as it ties the parameters
of all documents via a hierarchical generative model.
The mixture of topics per document in the LDA model
is generated from a Dirichlet prior mutual to all doc-
uments in the corpus.

These models are not only computationally efficient,
but also seem to capture correlations between words
via the topics. Yet, the assumption that the order of
words can be ignored is an unrealistic oversimplifica-
tion. Relaxing this assumption is expected to yield
better models in terms of the latent aspects inferred,
their performance in word sense disambiguation task
and the ability of the model to predict previously un-
observed words in trained documents.

Markov models such as N-grams and HMMs that cap-
ture local dependencies between words have been em-
ployed mainly in part-of-speech tagging [5]. Models
for semantic parsing tasks often use a “shallow” model
with no hidden states [9]. In recent years several prob-
abilistic models for text that infer topics and incorpo-
rate Markovian relations have been studied. In [7] a
model that integrates topics and syntax is introduced.
It contains a latent variable per each word that stands
for syntactic classes. The model posits that words are
either generated from topics that are randomly drawn
from the topic mixture of the document or from the
syntactic classes that are drawn from the previous syn-
tactic class. Only the latent variables of the syntac-
tic classes are treated as a sequence with local depen-
dencies while latent assignments of topics are treated



similar to the LDA model, namely topics extraction
is not benefited from the additional information con-
veyed in the structure of words. During the last couple
of years, a few models were introduced in which con-
secutive words are modeled by Markovian relations.
These are the Bigram topic model [15], the LDA collo-
cation model and the Topical n-grams model [16]. All
these models assume that words generation in texts
depend on a latent topic assignment as well as on the
n-previous words in the text. This added complexity
seem to provide the models with more predictive power
compared to the LDA model and to capture relations
between consecutive words. We follow the same lines,
while we allow Markovian relations between the hid-
den aspects. A somewhat related model is the aspect
HMM model [2], though it models unstructured data
that contains stream of words. The model contains
latent topics that have Markovian relations. In the as-
pect HMM model, documents or segments are inferred
using heuristics that assume that each segment is gen-
erated from a unique topic assignment and thus there
is no notion of mixture of topics.

We strive to extract latent aspects from documents by
making use of the information conveyed in the division
into documents as well as the particular order of words
in each document. Following these lines we propose in
this paper a novel and consistent probabilistic model
we call the Hidden Topic Markov Model (HTMM). Our
model is similar to the LDA model in tying together
parameters of different documents via a hierarchical
generative model, but unlike the LDA model it does
not assume documents are “bags of words”. Rather
it assumes that the topics of words in a document
form a Markov chain, and that subsequent words are
more likely to have the same topic. We show that the
HTMM model outperforms the LDA model in its pre-
dictive performance and can be used for text parsing
and word sense disambiguation purposes.

2 Hidden Topic Markov Model for

Text Documents

We start by reviewing the formalism of LDA. Figure 1a
shows the graphical model corresponding to the LDA
generative model. To generate a new word w in a doc-
ument, one starts by first sampling a hidden topic z
from a multinomial distribution defined by a vector
θ corresponding to that document. Given the topic z,
the distribution over words is multinomial with param-
eters βz. The LDA model ties parameters between dif-
ferent documents by drawing θ of all documents from
a common Dirichlet prior parameterized by α. It also
ties parameters between topics by drawing the vector
βz of all topics from a common Dirichlet prior param-

eterized by η.

In order to make the independence assumptions in
LDA more explicit, figure 1b shows an alternative
graphical model for the same generative process. Here,
we have explicitly denoted the hidden topics zi and
the observed words wi as separate nodes in the graphs
(rather than summarizing them with a plate). From
figure 1b it is evident that conditioned on θ and β, the
hidden topics are independent.

The Hidden Topic Markov Model drops this indepen-
dence assumption. As shown in figure 1c, the topics
in a document form a Markov chain with a transition
probability that depends on θ and a topic transition
variable ψn. When ψn = 1, a new topic is drawn from
θ. When ψn = 0 the topic of the nth word is identical
to the previous one. We assume that topic transitions
can only occur between sentences, so that ψn may only
be nonzero for the first word in a sentence.

Formally the model can be described as:

1. for z=1...K,
Draw βz ∼ Dirichlet(η)

2. for d=1...D,
Document d is generated as follows:

(a) Draw θ ∼ Dirichlet(α)

(b) Set ψ1 = 1

(c) for n=2 . . .Nd

i. If (begin sentence) draw ψn ∼ Binom(ǫ)
else ψn = 0

(d) for n=1. . .Nd

i. if ψn == 0 then zn = zn−1

else zn ∼ multinomial(θ)

ii. Draw wn ∼ multinomial(βzn
)

where K is the number of latent topics and Nd is the
length of document d. Note that if we force a topic
transition between any two words (i.e. set ψn = 1 for
all n) we obtain the LDA model [3]. At the other
extreme, if we do not allow any topic transitions and
set ψn = 0 between any two words, we obtain the
mixture of unigrams model in which all words in the
document are assumed to have the same topic [11].

Unlike the LDA and mixture of unigrams models, the
HTMM model (which allows infrequent topic transi-
tions within a document) is no longer invariant to a
reshuffling of the words. Documents for which succes-
sive words have the same topics are more likely than
a random permutation of the same words. The input
to the algorithm is the entire document, rather than a
document-word co-occurrence matrix. This obviously
increases the storage requirement for each document,
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Figure 1: a. The LDA model. b. The LDA model. The repeated word generation within the document is
explicitly drawn rather than using the plate notation. c. The HTMM model proposed in this paper. The hidden
topics form a Markov chain. The order of words and their proximity plays an important role in the model.

but it allows us to perform inferences that are simply
impossible in the bag of words models. For example,
the topic assignments calculated during HTMM infer-
ence (either hard assignments or soft ones) will not
give the same topic to all appearances of the same
word within the same document. This can be useful
for word sense disambiguation in applications such as
automatic translation of texts. Furthermore, the topic
assignment will tend to be linearly coherent - subsec-
tions of the text will tend to be assigned to the same
topic, as opposed to “bag-of-words” assignments which
may fluctuate between topics in successive words.

3 Approximate Inference

Due to the parameter-tying in LDA type models, cal-
culating exact posterior probabilities over the parame-
ters β, θ is intractable. In recent years, several alterna-
tives for approximate inference have been suggested:
EM [8] or variational EM [3], Expectation propaga-
tion (EP) [10] and Monte-Carlo sampling [13, 7]. In
this paper, we take advantage of the fact that con-
ditioned on β and θ the HTMM model is a spe-
cial type of HMM. This allows us to use the stan-
dard parameter estimation tools of HMMs, namely
Expectation-Maximization and the forward-backward
algorithm [12].

Unlike fully Bayesian inference methods, the standard
EM algorithm for HMMs distinguishes between la-
tent variables and parameters. Applied to the HTMM
model, the latent variables are the topics zn and the
variables ψn that determine whether the topic n will
be identical to topic n− 1 or will it be drawn accord-
ing to θd. The parameters of the problem are θd , β
and ǫ. We assume the hyper parameters α and η to
be known.

E-step:

In the E-step the probability

Pr(zn, ψn|d, w1 . . . wNd
; θ, β, ǫ) is computed for

each sentence in the document. We compute this
probability using the forward-backward algorithm
for HMM. The transition matrix is specific per
document and depends on the parameters θd and ǫ.
The parameter βz,w induces local probabilities on the
sentences. After computing Pr(zn, ψn|d, w1 . . . wNd

)
we compute expectations required for the M-step.
Specifically, we compute (1) the expected number of
topic transitions that ended in the topic z and (2)
The expected number of co-occurrence of a word w
with a topic z.

Let Cd,z denote the number of times that topic z was
drawn according to θd in document d. Let Cz,w denote
the number of times that word w was drawn from topic
z according to βz,w.

E(Cd,z)=

N∑

n=1

Pr(zd,n=z, ψd,n=1|w1 . . . wNd
) (1)

E(Cz,w)=
D∑

d=1

N∑

n=1

Pr(zd,n=z, wd,n=w|w1 . . . wNd
)(2)

M-step:

The MAP estimators for θ and β are found under
the constraint that θd and βz are probability vec-
tors. Standard computation using Lagrange multipli-
ers yields:

θd,z ∝ E(Cd,z) + α− 1 (3)

ǫ =

∑
d

∑Nd

n=2
Pr(ψd,n = 1|w1 . . . wNd

)∑
d(N

sen
d − 1)

(4)

where θd,z is normalized such that θd is a distribution
and Nsen

d is the number of sentences in the document
d. After computing θ and ǫ the transition matrix is
updated accordingly.



Similarly, the probabilities βz,w are set to:

βz,w ∝ E(Cz,w) + η − 1 (5)

Again, βz,w is normalized such that βz forms a distri-
bution.

EM algorithms have been discussed for word document
models in several recent papers. Hofmann used EM to
estimate the maximum likelihood parameters in the
pLSA model [8]. Here, in contrast, we use EM to esti-
mate the MAP parameters in a hierarchical generative
model similar to LDA (note that our M step explicitly
takes into account the Dirichlet priors on β, θ). Grif-
fiths et al. [6] also discuss using EM in their HMM
model of topics and syntax and say that Gibbs sam-
pling is preferable since EM can suffer from local min-
ima. We should note that in our experiments we found
the final solution calculated by EM to be stable with
respect to multiple initializations. Again, this may be
due to our use of a hierarchical generative model which
reduces somewhat the degrees of freedom available to
EM.

Our EM algorithm assumes the hyper parameters α, η
are fixed. We set these parameters according to the
values used in previous papers [13] (α = 1+50/K and
η = 1.01).

4 Experiments

We first demonstrate our results on the NIPS dataset
1. The NIPS dataset consists of 1740 documents. The
train set consists of 1557 documents and the test set
consists of the remaining 183. The vocabulary con-
tains 12113 words. From the raw data we extracted
(only) the words that appear in the vocabulary, pre-
serving their order. Stop words do not appear in the
vocabulary, hence they were discarded from the input.
We divided the text to sentences according to the de-
limiters .?!;. This simple preprocessing is very crude
and noisy since abbreviations such as “Fig. 1” will ter-
minate the sentence before the period and will start a
new one after it. The only exception is that we omitted
appearances of “e.g.” and “i.e.” in our preprocessing
2.

On this dataset we compared perplexity with HTMM
and LDA with 100 topics. We also considered a vari-
ant of HTMM (which we call VHTMM1) that sets the
topic transition probability to be 1 between sentences.
This is a “bag of sentence” model (where the order of
words within a sentence is ignored): all words in the
same sentence share the same topic; topics of different

1http://www.cs.toronto.edu/∼roweis/data.html
2The data we used is available at:

http://www.cs.huji.ac.il/∼amitg/htmm.html
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Figure 2: Comparison between the average perplexity
of the NIPS corpus of HTMM, LDA and VHTMM1.
HTMM outperforms the bag of words (LDA) and
VHTMM1 models.

sentences are drawn from θ independently. In all the
experiments the same values of α, η were provided to
all algorithms.

The perplexity of an unseen test document after ob-
serving the first N words of the document is defined
to be:

Perplexity = exp(−
log Pr(wN+1 . . . wNtest

|w1 . . . wN )

Ntest −N
)

(6)
where Ntest is the length of the test document. The
perplexity reflects the difficulty of predicting a new
unseen document after learning from a train set. The
lower the perplexity, the better the model.

The perplexity for the HTMM model is computed
as follows: First θnew is found from the first N
words of the new document. θnew is found us-
ing EM holding β = βtrain and ǫ = ǫtrain

fixed. Second, Pr(zN+1|w1 . . . wN ) is computed
by inference on the latent variables of the first
N words using the forward backward algorithm
for HMM and then inducing Pr(zN |w1 . . . wN ) on
Pr(zN+1|w1 . . . wN ) (using the transition matrix).
Third, log Pr(wN+1 . . . wNtest

|w1 . . . wN ) is computed
using forward backward with θnew, βtrain, ǫtrain and
Pr(zN+1|w1 . . . wN ) that were previously found.

Figure 2 shows the perplexity of HTMM, LDA and
VHTMM1. with K = 100 topics as a function of
the number of observed words at the beginning of the
test document, N . We see that for a small number of
words, both HTMM and VHTMM1 have significantly
lower perplexity than LDA. This is due to combining
the information from subsequent words regarding the
topic of the sentence.

When the number of observed words increases, HTMM
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Figure 3: An example of segmenting a document according to its semantic and of word sense disambiguation.
Top Beginning of an abstract of a NIPS paper about support vector machines. The entire section is assigned
latent topic 24 that correspond to mathematical terms (see figure 4). The word “support” appears in this section
3 times as a part of the mathematical term “support vector” and is assigned the mathematical topic.
Bottom A section from the end of the same NIPS paper. The end of the discussion was assigned the same
mathematical topic (24) as the abstract, the acknowledgments section was assigned topic 15 and the references
section was assigned topic 9. Here, in the acknowledgements section, the word “support” refers to the help
received. Indeed it is assigned latent topic 15 like the entire acknowledgments section.

Topic #9 Topic #15

springer 0.03741
york 0.03626
verlag 0.02753
wiley 0.02151
theory 0.01854
analysis 0.01124
statistics 0.01109
berlin 0.009896
john 0.009662
sons 0.008996
press 0.008952
eds 0.008708
organization 0.008542
data 0.008175
vol 0.008063
vapnik 0.007849
statistical 0.007652
estimation 0.006906
learning 0.006597
neural 0.006126

research 0.04595
supported 0.03813
grant 0.03214
work 0.02919
acknowledgements 0.02036
foundation 0.01732
science 0.01544
national 0.01279
support 0.01271
acknowledgments 0.01264
office 0.01199
discussions 0.01197
part 0.01188
nsf 0.009757
acknowledgement 0.009486
center 0.008025
naval 0.007523
contract 0.0067
institute 0.00584
authors 0.005732

Topic #24 Topic #30

function 0.02476
functions 0.0169
set 0.0111
linear 0.01031
support 0.009224
problem 0.009067
space 0.008977
vector 0.00884
case 0.007578
theorem 0.007385
solution 0.006966
kernel 0.006489
approximation 0.005983
convex 0.005292
regression 0.005185
ai 0.004909
class 0.004766
algorithm 0.004686
error 0.004642
defined 0.004062

matrix 0.0347
function 0.01282
equation 0.01197
eq 0.01186
gradient 0.008769
diagonal 0.008462
vector 0.007473
form 0.007055
eigenvalues 0.005681
algorithm 0.00551
ai 0.005413
learning 0.005249
positive 0.005247
elements 0.005147
matrices 0.004917
terms 0.004876
space 0.004797
order 0.0046
covariance 0.004551
defined 0.004516

Topic #18 Topic #84

problem 0.07344
solution 0.05702
optimization 0.04136
solutions 0.02605
constraints 0.02465
problems 0.02122
constraint 0.02026
set 0.02006
equation 0.01766
function 0.01746
method 0.01478
optimal 0.0143
find 0.01359
equations 0.01219
solve 0.01211
linear 0.01183
solving 0.01115
quadratic 0.01099
minimum 0.01079
solved 0.01007

classification 0.06586
classifier 0.05646
class 0.05401
classifiers 0.03968
support 0.02245
classes 0.0215
decision 0.02121
margin 0.01798
feature 0.01777
kernel 0.01715
svm 0.01251
set 0.01218
training 0.01201
machines 0.01007
boosting 0.01007
adaboost 0.009486
algorithm 0.009237
data 0.00874
examples 0.007622
machine 0.007332

Topic #26 Topic #46

theorem 0.03941
set 0.02531
proof 0.02116
result 0.01805
section 0.01518
case 0.01451
defined 0.0139
results 0.01286
finite 0.01274
show 0.01245
bounded 0.01175
convergence 0.01152
condition 0.01088
class 0.01036
define 0.01022
denote 0.009954
assume 0.009113
exists 0.008967
positive 0.008677
analysis 0.008155

vector 0.2523
vectors 0.141
dimensional 0.01993
number 0.01854
distance 0.01715
quantization 0.01589
length 0.01463
class 0.01351
reference 0.01046
lvq 0.009336
section 0.009204
research 0.009005
function 0.008343
distributed 0.008078
desired 0.007681
chosen 0.007284
shown 0.007218
classical 0.007218
euclidean 0.007151
normal 0.00682

Figure 4: Twenty most probable words for 4 topics out of 100 found for each model. Top HTMM topics.
Bottom LDA topics. Aside each word is its probability to be generated from the corresponding topic (βz,w).



Abstract We give necessary and sufficient conditions for uniqueness of the support vector solution for the

problems of pattern recognition and regression estimation, for a general class of cost functions. We show that
if the solution is not unique, all support vectors are necessarily at bound, and we give some simple examples

of non-unique solu- tions. We note that uniqueness of the primal (dual) solution does not necessarily imply
uniqueness of the dual (primal) solution. We show how to compute the threshold b when the solution is unique,

but when all support vectors are at bound, in which case the usual method for determining b does not work.

recognition and regression estimation algorithms [12], with arbitrary convex costs, the value of the normal w will
always be unique. Acknowledgments C. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent
Tech- nologies for their support . References [1] R. Fletcher. Practical Methods of Optimization. John Wiley

and Sons, Inc., 2 nd edition, 1987.

Figure 5: Topics assigned by LDA to the words in the same sections as in figure 3. For demonstration, the four
most frequent topics in these sections are displayed in colors: topic 18 in green, topic 84 in blue, topic 46 in
yellow and topic 26 in red. In contrast to figure 3, LDA assigned all the 4 instances of the word “support” the
same topic (84) due to its inability to distinguish between different instances of the same word according to the
context.

and LDA have lower perplexity than VHTMM1.
HTMM is consistently better than LDA but the dif-
ference in perplexity is significant only for N ≤ 64 ob-
served words (the average length of a document after
our preprocessing was about 1300 words).

Figure 3 shows the topical segmentation calculated by
HTMM. On top the beginning of the paper is shown.
A single topic is assigned to the entire section. This is
topic 24 that corresponds to mathematical terms (re-
lated to support vector machines which is the subject
of the paper) and is shown in figure 4. On the bot-
tom we see a section taken from the end of the paper,
consisting of the end of the discussion, acknowledge-
ments and the beginning of the references. The end
of the discussion is assigned topic 24 (the same as the
abstract), as it addresses mathematical issues. Then
the acknowledgments section is assigned topic 15 and
the references section is assigned topic 9.

Figure 5 shows the topics assigned to the words in the
same section by LDA. We see that LDA assigns differ-
ent topics to different words within the same sentence
and therefore it is not suitable for topical segmenta-
tion.

The HTMM model distinguishes between different in-
stances of the same word according to the context.
Thus we can use it to disambiguate words that have
several meanings according to the context. The word
“support” appears several times in the document in
figures 3 and 5. On top, it appears 3 times in the
abstract, always as a part of the mathematical term
“support vector”. On bottom, it appears once in the
acknowledgments section in the sense of help provided.

HTMM assigns the 3 instances of the word in the ab-
stract the same mathematical topic 24. The instance

in the acknowledgments section is assigned the ac-
knowledgments topic 15. LDA, on the other hand as-
signs all the 4 instances the same topic 83 (see figure
4.

Figure 4 shows 4 topics learnt by HTMM and 4 topics
learnt by LDA. In each topic the 20 top words (most
probable words) are shown. Each word appears with
its probability to be generated from the corresponding
topic (βz,w).

The 4 topics of each model were chosen for illustra-
tion out of 100 topics because they appear in the
text sections in figures 3 and 5. The complete list-
ing of top words of all the 100 topics found by HTMM
and LDA is available at: http://www.cs.huji.ac.il/∼
amitg/htmm.html

The 4 topics shown in figure 4 for both models are easy
for interpretation according to the top words (among
the 100 topics some topics are “as nice” and some are
not). However, we see that the topics found by the two
models are different in nature. HTMM finds topics
that consist of words that are consecutive in the doc-
ument. For example, topic 15 in figure 4 corresponds
to acknowledgements. Figure 3 shows that indeed the
entire acknowledgements section (and nothing but it)
was assigned to topic 15. On the other hand no such
topic exists among the 100 topics found by LDA. An-
other example for a topic that consists of consecutive
words is topic 9 in figure 4 (that corresponds to ref-
erences as it consists of names of journals, publishers,
authors etc.). The value learnt for ǫ by HTMM and
reflects the topical coherence of the NIPS documents
was ǫ = 0.376278.

Figure 7 shows the value of ǫ learnt by HTMM as a
function of the number of topics. It shows how the
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Figure 6: Perplexity of the different models as a func-
tion of the number of topics for N = 10 observed
words.
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Figure 7: MAP values for ǫ as a function of the number
of topics for the NIPS train set. When only few topics
are available, learnt topics are general and topic transi-
tions are infrequent. When many topics are available
topics become specific and topic transitions become
more frequent.

dependency between topics changes with the granu-
larity of topics. When the dataset is learnt with a few
topics, these topics are general and do not change of-
ten. As more topics are available, the topics become
more specific and topic transitions are more frequent.
This suggests a correlation between the different top-
ics ([1]). Having learnt always values smaller than 1
means that the likelihood of data is higher when con-
secutive latent topics are dependent.

The picture of perplexity we see in figure 2 may sug-
gest that the Markovian structure exists in real docu-
ments. We would like to eliminate the option that the
perplexity of HTMM might be lower than the perplex-
ity of LDA only because it has less degrees of freedom
(due to the dependencies between latent topics). We
created two toy datasets with 1000 documents each,
from which 900 formed the train set and the other 100
formed the test set for each case. The vocabulary size

was 200 words and there were 5 latent topics. The first
data set was generated using HTMM with ǫ = 0.1 and
the second dataset was created using LDA.

In table 1 we compare LDA and HTMM in terms of
perplexity using the first 100 words (the average num-
ber of words in a document in this dataset is 600),
in terms of estimation error on the parameters β (i.e.
how well the true topics are learnt) and in terms of
erroneous assignments of latent topics to words.

As a sanity check, we find that indeed HTMM recov-
ers the correct parameters and correct ǫ for data gen-
erated by a HTMM. We also see that when the data
indeed deviates from the “bag of words” assumption
- HTMM significantly outperforms LDA in all three
criteria. However, when the data is generated with
the “bag of words” assumption - the HTMM model
no longer has better perplexity. Thus the fact that we
obtained better perplexity on the NIPS dataset with
HTMM may reflect the poor fit of the “bag of words”
assumption to the NIPS documents.

5 Discussion

Statistical models for documents have been the focus
of much recent work in machine learning. In this pa-
per we have presented a new model for text documents.
We extend the LDA model by considering the under-
lying structure of a document. Rather than assuming
that the topic distribution within a document is con-
ditionally independent, we explicitly model the topic
dynamics with a Markov chain. This leads to a HMM
model of topics and words for which efficient learn-
ing and inference algorithms exist. We find that this
Markovian structure allows us to learn more coher-
ent topics and to disambiguate the topics of ambigu-
ous words. Quantitatively we show that this leads to
a significant improvement in predicting unseen words
(perplexity).

The incorporation of HMM into the LDA model is or-
thogonal to other extensions of LDA such as integrat-
ing syntax [7] and author [13] information. It would
be interesting to combine these different extensions to-
gether to form a better document analysis system.
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