
Fast Low-Rank Semidefinite Programming
for Embedding and Clustering

Brian Kulis∗

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78759 USA
kulis@cs.utexas.edu

Arun C. Surendran
Microsoft adCenter Labs

1 Microsoft Way
Redmond, WA 98052 USA
acsuren@microsoft.com

John C. Platt
Microsoft Research
1 Microsoft Way

Redmond, WA 98052 USA
john.platt@microsoft.com

Abstract

Many non-convex problems in machine learn-
ing such as embedding and clustering have
been solved using convex semidefinite relax-
ations. These semidefinite programs (SDPs)
are expensive to solve and are hence limited
to run on very small data sets. In this pa-
per we show how we can improve the qual-
ity and speed of solving a number of these
problems by casting them as low-rank SDPs
and then directly solving them using a non-
convex optimization algorithm. In partic-
ular, we show that problems such as the
k-means clustering and maximum variance
unfolding (MVU) may be expressed exactly
as low-rank SDPs and solved using our ap-
proach. We demonstrate that in the above
problems our approach is significantly faster,
far more scalable and often produces better
results compared to traditional SDP relax-
ation techniques.

1 Introduction

A recent trend in machine learning research has been
to use semidefinite programming for a number of learn-
ing tasks. Semidefinite programs (SDPs) seek to opti-
mize a linear objective with linear constraints as well
as a semidefinite constraint. The standard primal form
for an SDP is:

min
Z∈Rn×n

tr(CZ) (1)

subject to tr(ZAi) = bi, 0 ≤ i ≤ m

Z º 0,

where the C and Ai matrices are given, as well as the
bi values. The constraint Z º 0 requires that Z be
positive semi-definite.

∗ Work done while at Microsoft Research

Examples of applications that use SDPs include sparse
PCA [6], maximum variance unfolding [17], robust Eu-
clidean embedding [4], minimizing normalized or ratio
cuts in a graph [14, 18], kernel matrix learning [9], and
many others. Typically, off-the-shelf techniques are
used for solving these problems, which severely limits
scalability. Many of these methods scale as O(n3) or
worse, where n is the number of rows (or columns)
of the semidefinite matrix. Furthermore, they require
O(n2) memory to store the semidefinite matrix. Thus,
they are rarely used for problems when n is more than
a few thousand. Despite the computational and mem-
ory restrictions inherent in SDPs, semidefinite pro-
gramming is a standard technique for solving many
problems.

In many machine learning problems, e.g. in embedding
via maximum variance unfolding (MVU), the original
non-convex problem is transformed into a convex one
by semidefinite relaxation in the original dimension of
the data. Once a solution to this large SDP is found,
the final solution to the original problem is obtained
using low-rank embedding of the semidefinite solution.
A similar process exists for SDP relaxations to clus-
tering problems; after solving a large SDP, the final
clusters are obtained using rounding, usually by find-
ing the low rank projection of the data onto the top
few eigenvectors of the SDP solution.

Since the final goal in many of these problems is the
low-rank solution, it is often wasteful to solve the
original full-rank problem. In this paper, we take a
different approach to optimizing these objective func-
tions. We show that, for several embedding and clus-
tering problems, the original (non-convex) objective
function can be recast directly without relaxation as a
low-rank SDP : an SDP with an additional rank con-
straint. Because of the rank constraint, we can directly
solve for low-rank factorizations of the semidefinite
matrix, treating the problem as a non-linear optimiza-
tion problem. Rather than being seduced by convex-
ity, we appeal to nonlinear programming techniques

to solve exact reformulations of the original problems.
This notion of forgoing convexity to gain speed and
scalability is beginning to gain popularity in machine
learning, notably in the recent work of [5].

To solve the low-rank SDP problems, we generalize a
recent algorithm by Burer and Monteiro [3] that uses
low-rank factorizations to optimize full-rank SDPs.
We perform all computations in the low-rank space,
leading to dramatic improvements in speed and mem-
ory requirements. Moreover, the results we obtain
are often significantly better than the results of the
standard relaxation technique. We apply this algo-
rithm to embedding and graph clustering problems,
demonstrating improved results as compared to exist-
ing methods. For MVU, we compare our algorithm to
the semidefinite relaxation method, and for our clus-
tering experiments we compare it to other state-of-the-
art graph clustering algorithms.

2 Low-Rank SDPs for Clustering and
Embedding

As mentioned above, the general idea is to convert
a variety of problems into low-rank semidefinite pro-
grams. In Sections 2.1 and 2.2, we demonstrate how to
achieve this for a clustering and an embedding prob-
lem. In Sections 2.1 and 4 we will briefly show how to
extend this approach to other clustering and embed-
ding problems.

2.1 Low-Rank SDPs for Clustering

We first consider low-rank SDPs for clustering. Specif-
ically, we establish that the k-means objective func-
tion can be expressed equivalently as a low-rank SDP
problem. Later, in section 3, we develop a general al-
gorithm for directly optimizing low-rank SDPs. This
algorithm minimizes the k-means objective function
and has running time of O(zk) per iteration, where z is
the number of non-zero elements of the Gram matrix
(or the number of edges in a graph, for graph clus-
tering). Unlike spectral methods for optimizing this
objective, there is no relaxation involved in expressing
the k-means objective function as a low-rank SDP, so
post-processing or rounding of the resulting solution
is not required to obtain a discrete clustering of the
data.

2.1.1 The k-means objective function

Given a set of data points {xi}n
i=1, and the number

of desired clusters, k, the k-means objective function
attempts to minimize the sum of squared Euclidean
distances between each point and its corresponding

cluster centroid:

D({πc}k
c=1) =

k∑
c=1

∑
xi∈πc

‖xi −mc‖2,

where mc =
1
|πc|

∑
xi∈πc

xi.

It has been established (for example, in [19]) that the
above problem can be recast as a trace maximization
problem, which leads to a spectral relaxation for k-
means. Peng [14] introduced a different but equivalent
reformulation for this objective, yielding the following
optimization problem:

max
Z∈Rn×n

tr(KZ) (2)

subject to tr(Z) = k

Z ≥ 0 elementwise
Ze = e

Z2 = Z, Z = ZT .

where K is the Gram matrix (or kernel matrix) of the
data points (i.e. if X is the matrix whose rows are the
xi vectors, then K = XXT).

We can make two observations about the problem as
formulated in (2). First, it is known that solving this
problem is equivalent to finding a global solution to
the integer programming problem for k-means [14].
Second, (2) is related to the generic SDP formulation
in (1), except that the semidefinite constraint Z º 0
is replaced by Z2 = Z and Z = ZT . These con-
straints force all the eigenvalues of Z to be 0 or 1 (i.e.,
λ(Z) ∈ {0, 1}), hence this is a special form called a 0-1
SDP [14]. This integer constraint on the eigenvalues
makes it intractable to directly optimize the problem
in (2). As a result, relaxation methods are often em-
ployed to obtain approximations of the original prob-
lem: one can relax the constraint Z2 = Z to a weaker
constraint such as λ(Z) ∈ [0, 1] or Z º 0. Depending
on the relaxation, spectral methods or semi-definite
programming are then employed to find a globally op-
timal solution to the relaxed problem. For example,
Xing and Jordan [18] considered a weighted form of
this objective (i.e., normalized cut), and solved it ap-
proximately via semidefinite programming using such
a relaxation.

2.1.2 Equivalence to Low-Rank SDPs

We now show how we can convert (2) explicitly into a
low-rank SDP problem. The first step is to replace the
constraints Z2 = Z and Z = ZT with a rank constraint
on Z and a positive semi-definite constraint. The fol-
lowing theorem explains why this rank constraint is
meaningful, and will also show us how to do this re-
casting:

Theorem 1. Given

a) tr(Z) = k

b) Z ≥ 0 elementwise
c) Ze = e

d) Z = ZT ,

then rank(Z) = k if and only if Z2 = Z.

Proof. First we show rank(Z) = k ⇒ Z2 = Z. Since
rank(Z) = k, Z has n− k eigenvalues equal to 0. Re-
call that a matrix is reducible if and only if it can be
put into block upper-triangular form with simultane-
ous permutations of rows and columns, and a square
matrix that is not reducible is irreducible. If Z were
irreducible, we could conclude that Ze = e and Z ≥ 0
imply (by the Perron-Frobenius Theorem [15]) that
all but the top eigenvalue are strictly less than 1. But
since there are only k non-zero eigenvalues, this would
make it impossible to satisfy tr(Z) = k. Thus, Z is re-
ducible, and because it is symmetric, it is permutation-
similar to a block-diagonal matrix. Each block Zi sat-
isfies Zie = e, and hence each block has an eigen-
value of 1. The Perron-Frobenius theorem applies to
these block-diagonal, irreducible matrices, and thus
each block has the property that it has a leading eigen-
value of 1, and all other eigenvalues are strictly less
than one. We must therefore have k blocks, each with
a single positive eigenvalue of 1; otherwise it would be
impossible to satisfy tr(Z) = k. Therefore, each of
the k non-zero eigenvalues equals 1, so λ(Z) ∈ {0, 1},
and hence Z2 = Z. In the other direction, Z2 = Z is
equivalent to λ(Z) ∈ {0, 1}. Thus, tr(Z) = k implies
that rank(Z) = k.

It follows from the above result that we can rewrite
the k-means objective function in (2) as an SDP with
an additional rank constraint:

max
Z∈Rn×n

tr(KZ) (3)

subject to tr(Z) = k

Z ≥ 0 elementwise
Ze = e

rank(Z) = k

Z º 0.

We have shown that Z permutes to a block-diagonal
matrix that captures the disjoint clustering of the data
and has rank k. We also know that Z is an orthogonal
projection matrix, so it follows that Z can be factored
as Z = Y Y T , where Y is an n× k matrix. The entries
of Y are discrete-valued and give the cluster assign-
ments; in particular, Yij = 0 if point i is not in cluster

j, and is equal to 1/
√

kj otherwise, where kj is the
number of points in the cluster to which j is assigned.
Thus, the optimal Y gives the optimal clustering for
the k-means objective.

The final piece in the solution is to explicitly factor
Z as a low-rank matrix Z = Y Y T , and solve for Y
instead. We later discuss a method for solving this
low-rank SDP directly in Section 3.

2.1.3 Implications

Surprisingly, the solution to the continuous optimiza-
tion problem (3) produces a feasible point for the 0-1
optimization problem, without requiring the 0-1 con-
straint. That is, the problem (3) returns a solution
that encodes a discrete cluster indicator matrix. Thus,
unlike standard relaxation techniques for k-means, we
require no post-processing of the solution.

Furthermore, problem (3) can easily be extended to
solve a number of graph partitioning problems. As dis-
cussed in Dhillon et al. [7], if we introduce a weighted
form of the k-means objective function, there exists an
equivalence to graph clustering objectives such as nor-
malized cut, ratio cut, and ratio association for an ap-
propriate choice of weights. For example, we perform
graph clustering using the ratio association objective:

max
k∑

i=1

links(Vi,Vi)
|Vi| ,

where Vi refers to the set of nodes in cluster i, and
links(Vi,Vi) gives the sum of all the edges from nodes
in cluster i to other nodes in cluster i. The ratio asso-
ciation objective is a natural generalization of k-means
to graphs, since optimizing the k-means objective func-
tion over a set of vectors is equivalent to optimizing
the ratio association objective over the Gram matrix
of those vectors.

Additional graph clustering objectives are possible in
this framework as well. For example, by introducing
a cluster size constraint as discussed in Peng [14] (in
particular, the constraint diag(Y T Y) ≥ 1

se, where s is
the minimum size of a cluster), we can easily encode
balancing constraints for the clusters. Thus, various
clustering objective functions can be encoded as low-
rank SDPs.

2.2 Low-Rank SDPs for Embedding

We now turn our attention to the problem of embed-
ding a set of high-dimensional vectors into a lower-
dimensional space, while retaining characteristics of
the original data. Embedding is a natural application
of low-rank semidefinite programming since the rank

constraint corresponds to the desired dimensionality
of the embedding in various embedding problems.

In maximum variance unfolding, we seek to find low-
dimensional representations of our input data that
have maximum possible variance, while preserving lo-
cal distances of the input data. The underlying opti-
mization problem can be expressed as [17]:

max
Y ∈Rn×r

∑

i

‖yi‖2 =
1
2n

∑

i,j

‖yi − yj‖2 (4)

subject to
∑

i

yi = 0

‖yi − yj‖2 = Dij ∀(i, j) ∈ E .

The set E contains the nearest neighbors of the input
data, and Dij gives the distance between neighbors i
and j in the input space. The above problem is non-
convex, but by relaxing the problem to be convex, it
can be expressed as the following SDP [17]:

max
Z∈Rn×n

tr(Z) (5)

subject to eT Ze = 0
Zii + Zjj − 2Zij = Dij ∀(i, j) ∈ E
Z º 0.

The standard method for computing the embedding
is to solve the above SDP for Z, and then to project
the data onto the first few eigenvectors of Z. Note
that when projecting the data onto the top eigenvec-
tors of Z, we are longer guaranteed that the resulting
embedding satisfies the given constraints.

However, by adding an explicit rank constraint to
(5) for the desired dimensionality of the embedding,
it is easy to show that we are directly optimizing
the original problem (4). This follows by factoriz-
ing Z = Y Y T and rewriting the problem in terms
of Y : tr(Z) = tr(Y Y T) =

∑
i ‖yi‖2. The con-

straint eT Ze = 0 maps to
∑

i yi = 0 and the dis-
tance constraints Zii + Zjj − 2Zij = Dij map to
yT

i yi + yT
j yj − 2yT

i yj = ‖yi − yj‖2. Thus, adding
the constraint rank(Z) = r to (5) leads to a low-rank
SDP that is equivalent to the original MVU problem.
Furthermore, because we work directly in the embed-
ded space, convergence of the low-rank SDP guaran-
tees that all constraints are satisfied, whereas project-
ing a solution to (5) to a lower dimension can cause
the constraints to be violated.

3 Solving the Low-Rank Semidefinite
Programs

In the previous sections we showed how we can formu-
late two problems as low-rank SDPs. In this section,

we discuss a general technique for optimizing the low-
rank formulations.

Recently, Burer and Monteiro [3] considered a method
for solving the standard (full-rank) SDP (1) using a
change of variables. Since there exists an optimal solu-
tion to (1) whose rank satisfies r(r+1)/2 ≤ m (proven
independently by Barvinok [1] and Pataki [13]), Bu-
rer and Monteiro introduce a change of variables Z =
Y Y T , where Y ∈ Rn×r and r satisfies the inequal-
ity above. Rewriting the optimization over Y , the
problem can be expressed as a quadratic program with
(generally non-convex) quadratic constraints:

max
Y ∈Rn×r

tr(Y T CY) (6)

subject to tr(Y T AiY) = bi, 0 ≤ i ≤ m.

A key aspect of this formulation is that it avoids the
positive semidefinite constraint, since Z = Y Y T au-
tomatically enforces the constraint. A disadvantage
to this formulation is that the problem has gone from
convex to non-convex, so we have given up the guar-
antee of converge to the globally optimal solution.

Burer and Monteiro proposed to solve this quadratic
programming problem using the augmented La-
grangian technique. The augmented Lagrangian for
(6) is given by:

L(Y, λ, σ) = tr(Y T CY)−
m∑

i=1

λi(tr(Y T AiY)− bi)

+
σ

2

m∑

i=1

(tr(Y T AiY)− bi)2.

The third term is the penalty term for the augmented
Lagrangian, introducing a variable σ. To minimize the
augmented Lagrangian, we alternate minimizing this
function with respect to Y and with respect to λ and σ.
To optimize with respect to Y , Burer and Monteiro use
a limited-memory BFGS algorithm, which has the ad-
vantage of maintaining O(nr) memory overhead, but
also has the speed of a quasi-Newton method. This
requires computation of the gradient of L with respect
to Y , ∇Y L(Y, λ, σ), given by:

2CY − 2
m∑

i=1

(λi − σ(tr(Y T AiY)− bi))AiY.

To update λ and σ (assuming equality constraints),
the standard augmented Lagrangian technique up-
dates apply: set λi = λi − σ(tr(Y T AiY) − bi), and
update σ by a multiplicative factor. On several test
problems, Burer and Monteiro demonstrated that this
technique always empirically converges to the globally
optimal solution, despite the fact that the quadratic
programming problem is non-convex. Furthermore,

they showed that their algorithm is significantly faster
than existing SDP solvers.

We propose to apply the same technique to our low-
rank SDPs.1 We differ from Burer and Monteiro in
that we solve SDPs with explicit rank constraints, so
the size of the matrix Y is precisely determined by the
rank constraint. Note that the rank of our solution
does not in general satisfy the inequality r(r + 1)/2 ≤
m; however, empirically this does not in general lead
to poor solutions.

As an example, the low-rank SDP for k-means dis-
cussed earlier (3) can be recast as an optimization
problem over the factorization Z = Y Y T , where Y
is Rn×k:

max
Y ∈Rn×k

tr(Y T KY) (7)

subject to ‖Y ‖2F = k

Y Y T e = e

Y ≥ 0 elementwise,

where we have replaced the constraint Y Y T ≥ 0 ele-
mentwise with the stronger constraint Y ≥ 0 element-
wise, which is easier to enforce in the low-rank setting.
Any feasible solution to this problem yields a discrete
cluster indicator matrix Y .

The main computational cost involved in running
the low-rank SDP algorithm is in computing the La-
grangian and the gradient of the Lagrangian. In the
case of k-means, the most expensive step in comput-
ing the Lagrangian is the computation of tr(Y T KY),
which can be done in O(zk) time, where z is the num-
ber of non-zero entries of the matrix K. For comput-
ing the gradient of the Lagrangian, the most expensive
step is in forming the matrix KY , which can also be
performed in O(zk) time. Thus, the function and gra-
dient evaluations for k-means can both be performed
in O(zk) time.

3.1 Inequality Constraints for Low-Rank
SDPs

Another departure from Burer and Monteiro’s algo-
rithm is that our low-rank SDPs contain inequality
constraints, which are not readily handled by [3]; thus,
we now generalize the method to handle inequality
constraints. There are several options for handling
linear inequality constraints in the low-rank SDP for-
mulation; for example, one possibility is to use a log
barrier function. However, it turns out that for the

1In some cases such as sparse PCA, the limited-memory
BFGS algorithm cannot be employed; a subgradient tech-
nique would be more appropriate for optimizing the aug-
mented Lagrangian.

augmented Lagrangian approach, it is easier to solve
directly for updates of the Lagrange multipliers for
both equality and inequality constraints.

By treating a constraint tr(Y T AiY) ≥ bi as the con-
straints tr(Y T AiY) = bi + si and si ≥ 0, we can
explicitly solve for the updates of the λi terms. For
inequality constraints, this yields

λi = max(λi − σ(tr(Y T AiY)− bi), 0).

This agrees with the requirement that λi ≥ 0 for La-
grange multipliers for inequality constraints. Com-
puting the Lagrangian and the gradient of the La-
grangian are also straightforward for inequality con-
straints. The second and third terms of the La-
grangian change: for each constraint i, the Lagrangian
term −λi(tr(Y T AiY) − bi) + σ

2 (tr(Y T AiY) − bi)2 is
unchanged if σ(tr(Y T AiY) − bi) ≤ λi. Otherwise,
this term becomes −λ2

i /2σ. Similarly, in the com-
putation of the gradient of the Lagrangian, we only
contribute the term 2(λi − σ(tr(Y T AiY)− bi))AiY if
σ(tr(Y T AiY)− bi) ≤ λi. Otherwise, nothing is added
to the gradient. It is easy to extend this idea to the
actual elementwise constraint Y ≥ 0 that we use in
our k-means formulation in (7).

See [12] for further information on the augmented La-
grangian technique.

4 Related Problems

Min balanced cut embedding (discussed by Lang [10]
and others) is another important embedding tech-
nique. It avoids the so-called “octopus” structure
that exists in many embedding methods, especially
when dealing with power-law graphs. This problem
is demonstrated in [10]: typically, embedding algo-
rithms embed the points densely close to the origin,
with many points projected outward in various direc-
tions like tentacles. By adding constraints that both
embeds the points onto a sphere and promotes bal-
anced cuts, this problem is avoided.

The SDP for min balanced cut is expressed as follows:

min
Z∈Rn×n

tr(LZ) (8)

subject to diag(Z) = e

eT Ze = 0.

The diag(Z) = e constraint places all the data points
onto the unit sphere, while the eT Xe = 0 constraint
forces the data to be mean-centered at 0. The ma-
trix L is the Laplacian of the input graph correspond-
ing to the points. Unlike the earlier cases of k-means
and maximum variance unfolding, adding a rank con-
straint to the SDP does not correspond to solving

an exact form of the underlying objective function,
but we can still apply the low rank transformation
Z = Y Y T to write problem (8) as a quadratic program
with quadratic constraints (QCQP) in Y , leading to a
significantly more scalable algorithm for min balanced
cut embedding.

Finally, we can apply low-rank SDPs to the problem of
finding sparse principal components. A recent paper
by d’Aspremont et al. [6] expressed the sparse PCA
problem for a single component as:

max
y

yT Ay

subject to ‖y‖2 = 1
card(y) ≤ k.

The function card() refers to the cardinality of y, i.e.
the number of non-zero elements. Since yT Ay =
tr(AyyT), this problem can be expressed as a low-rank
SDP:

max
Z∈Rn×n

tr(AZ)

subject to tr(Z) = 1
card(Z) ≤ k2

rank(Z) = 1
X º 0.

Solving this problem is difficult because of the cardi-
nality and rank constraints. The authors of [6] relax
the sparsity constraint, instead imposing eT |Z|e ≤ k,
where |Z| is a matrix whose entries correspond to the
absolute values of the entries of Z. They also drop the
rank constraint, instead projecting the solution of the
full-rank SDP to the principal eigenvector of Z.

By treating this problem as a low-rank SDP, we can
directly optimize y through the low-rank substitution
Z = yyT ; this avoids relaxing the rank constraint.
Furthermore, we can enforce a simple constraint di-
rectly on y, such as ‖y‖1 ≤ k, to promote a sparse
solution.

5 Experimental Results

5.1 Methodology

We first compare results of the low-rank SDP solver
against a state-of-the-art interior point SDP solver,
DSDP [2]. We chose to compare against DSDP be-
cause, as compared to other freely-available solvers, it
performed the best on sparse SDP benchmark exper-
iments [11]. By comparing the low-rank solver with
DSDP, we can determine 1) how the computational
times compare between a traditional SDP solver and
a low-rank SDP solver, and 2) how the accuracy com-
pares between these solvers. Because DSDP is limited

Data set Number of data points
Iris 150
Pima 768
Vehicle 846
Sonar 208
Segment 2310
Satimage 2000
Pendigits 1092

Table 1: Data sets used for small-scale maximum vari-
ance experiments

Data set Number of nodes Number of Edges
add20 2395 7462
data 2851 15093
uk 4824 6837
add32 4960 9462
rajat06 10922 18061
crack 10240 30380
whitaker3 9880 28989

Table 2: Graphs used for graph clustering experiments

to small data sets, we run large-scale experiments us-
ing only the low-rank solver.

We tested the two solvers on SDP problems discussed
earlier: maximum variance unfolding and graph clus-
tering. Due to space constraints, we cannot present
results on sparse PCA or min balanced cut embedding.
For maximum variance unfolding, we fixed the num-
ber of neighbors to be 5, and generated the constraints
from these 5 nearest neighbors. In a recent paper [16],
Weinberger et al. discuss a procedure for consolidating
constraints. By removing redundant constraints, the
authors demonstrate how to substantially improve the
running times of the SDP. We did not perform such a
step in our algorithm, though doing so would almost
certainly result in further improvements of the running
times of our algorithm.

For graph clustering, we optimize the ratio association
objective and compare results of our low-rank solver
against various existing state-of-the-art methods: ker-
nel k-means, the spectral relaxation, and the multilevel
method developed in [8]. For postprocessing the solu-
tions of the relaxation algorithms, we used standard
k-means. Note that since SDP relaxation methods for
k-means do not scale to graphs larger than a few hun-
dred nodes, comparisons to SDP relaxations were not
possible for these experiments.

Default settings were applied to DSDP, and for the
low-rank SDP, we used a multiplicative factor of 1.5
for σ and uniform initialization for Y .

5.2 Data sets

Tables 1 and 2 lists the small data sets used in our ex-
periments. Table 1 consists of vector-based data sets
used for maximum variance unfolding, and Table 2
consists of graph-based data sets used for graph clus-
tering experiments.

5.3 Results

In Table 3, we present results of maximum variance un-
folding. For these experiments, we ran DSDP on each
of the data sets, recording the time taken to converge,
the final variance (trace) value, and the maximum in-
feasibility (i.e., the amount of feasibility for the con-
straint that is most violated) first after running just
DSDP, then after projecting to the top 10 eigenvectors
(DSDP10). We similarly ran our low-rank solver on
the same data sets, and recorded these values. How-
ever, for the low-rank solver, we also ran over varying
ranks: 5, 10, and 50.

Several interesting observations can be made about
these results. First, the dashed lines represent DSDP
failing to converge (due to memory problems, gener-
ally). This happened on two of the data sets (and
many larger data sets not presented here), even though
none of these data sets is particularly large. Second,
even when DSDP converged, it did not always con-
verge to the optimal solution. In fact, it converged to
a feasible solution that was better than all low-rank so-
lutions on only one of the data sets (sonar). On other
data sets, at least one of the low-rank solutions pro-
duced higher variance. Third, the running times for
DSDP are generally much slower than the low-rank
SDP program. DSDP was hundreds of times slower
than the low-rank SDP for r = 5 or r = 10 on several
data sets. Fourth, the solutions to DSDP generally
have better feasibility properties in terms of maximum
infeasibility and average infeasibility (not presented in
the table), but the low-rank SDP solutions generally
have maximum infeasibility lower than 1×10−3, which
is reasonable for machine learning applications. Fifth,
after projecting down to 10 dimensions, generally the
variance given by DSDP is close to that of the unpro-
jected variance, except in the case of vehicle, where the
variance went from 1.4 to 1.3 and the maximum infea-
sibility jumped from 10−11 to 10−3. Finally, overall
it seems that for r = 10, we get a good quality/speed
tradeoff for the low-rank algorithm. In fact, sometimes
the r = 10 solution is the best (for example, in pendig-
its), and generally the solution for r = 10 is nearly as
good as the higher rank solutions. On the other hand,
for r = 5, the solution was substantially suboptimal in
some cases (for example, on pima).

Now we focus on graph clustering. In this experiment,

Data set Run Trace Val Max. Inf. Time
Iris DSDP 8.834e-1 5.007e-9 184

DSDP10 8.834e-1 7.648e-8 184
LR5 1.206e+0 3.257e-5 15
LR10 1.220e+0 3.381e-5 17
LR50 1.227e+0 3.285e-5 80

Pima DSDP 1.098e+1 5.292e-12 25109
DSDP10 1.098e-4 1.813e-6 25109

LR5 8.512e+0 4.966e-4 294
LR10 1.103e+1 2.261e-4 153
LR50 1.113e+1 2.733e-4 744

Vehicle DSDP 1.441e+1 1.410e-11 40851
DSDP10 1.300e+1 5.387e-3 40851

LR5 1.636e+1 2.098e-4 120
LR10 1.681e+1 1.543e-4 167
LR50 1.665e+1 1.493e-4 978

Sonar DSDP 6.476e+1 2.951e-12 71
DSDP10 6.476e+1 7.648e-8 71

LR5 5.298e+1 1.666e-2 24
LR10 6.473e+1 8.369e-6 7
LR50 6.471e+1 3.700e-6 40

Segment DSDP — — —
DSDP10 — — —

LR5 1.300e+2 7.530e-3 450
LR10 1.212e+2 1.167e-3 1040
LR50 1.259e+2 2.044e-3 4791

Satimage DSDP — — —
DSDP10 — — —

LR5 5.378e+0 6.141e-5 233
LR10 5.443e+0 3.162e-5 281
LR50 5.437e+0 3.851e-5 1366

Pendigits DSDP 1.005e+4 3.051e+1 1761
DSDP10 8.995e+3 2.881e+1 1761

LR5 3.003e+0 5.615e-5 137
LR10 3.159e+0 6.796e-5 159
LR50 3.142e+0 6.531e-5 1092

Table 3: Results for maximum variance unfolding

we clustered the graphs given in Table 2 by optimiz-
ing the ratio association objective function. We com-
pared four methods: baseline kernel k-means with ran-
dom initialization, the spectral relaxation technique
(with k-means postprocessing), Graclus [8] (a kernel
k-means approach that is enhanced using multilevel
techniques), and the low-rank SDP. We could not run
any stronger relaxations than the spectral relaxation
due to the size of the graphs (semidefinite relaxations
for k-means are generally limited to only a few hun-
dred points).

Results are given in Table 4. On four of the seven
graphs, the low-rank SDP yields the highest ratio asso-
ciation score. Both the low-rank SDP method and Gr-
aclus consistently outperformed the spectral method

Graph Kernel k-means Spectral Graclus Low-Rank SDP
add20 54.72 72.44 20.71 75.27
add32 11.79 17.94 15.19 18.94
uk 6.29 11.29 11.22 11.43
rajat06 9.69 12.04 13.08 12.64
data 33.39 44.13 41.06 44.71
crack 17.70 21.92 23.37 22.72
whitaker3 17.51 23.04 23.29 23.13

Table 4: Ratio association results on graph clustering experiments (k = 4)

(except on add20, where spectral outperformed Gr-
aclus). Though not given here, we also ran experi-
ments for minimizing the normalized cut; however, we
found that Graclus outperformed the low-rank SDP
in this case. As future work, we would like to explore
multilevel methods using the low-rank SDP algorithm,
which may make it more competitive for minimizing
the normalized cut.

6 Conclusions

In this paper, we have studied low-rank semidefinite
programming. We demonstrated how we can convert
various clustering and embedding problems such as k-
means and maximum variance unfolding into low-rank
SDPs without any convex relaxations. We then di-
rectly optimized these low-rank SDP formulations us-
ing non-convex algorithms, performing computations
directly in the low-rank space. We showed that our ap-
proach is significantly faster, better and more scalable
than standard SDP approaches for embedding. We
also showed that for graph clustering, our approach
matches or outperforms state-of-the-art techniques.

References

[1] A. Barvinok. Problems of distance geometry and con-
vex properties of quadratic maps. Discrete Computa-
tional Geometry, 13:189–202, 1995.

[2] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale
sparse semidefinite programs for combinatorial opti-
mization. SIAM Journal on Optimization, 10(2):443–
461, 2000.

[3] S. Burer and R. D. C. Monteiro. A nonlinear program-
ming algorithm for solving semidefinite programs via
low-rank factorization. Mathematical Programming
(Series B), 95:329–357, 2003.

[4] L. Cayton and S. Dasgupta. Robust euclidean em-
bedding. In Proc. of the 23rd Intl. Conf. on Machine
Learning, 2006.

[5] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trad-
ing convexity for scalability. In Proc. 23 ICML Con-
ference, 2006.

[6] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and
G. R. G. Lanckriet. A direct formulation for sparse

pca using semidefinite programming. SIAM Review,
2006.

[7] I. Dhillon, Y. Guan, and B. Kulis. A unified view of
kernel k-means, spectral clustering and graph cuts.
Technical Report TR-04-25, University of Texas at
Austin, 2004.

[8] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-
based multilevel algorithm for graph clustering. In
11th ACM SIGKDD Conference, 2005.

[9] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El
Ghaoui, and M. I. Jordan. Learning the kernel matrix
with semidefinite programming. Journal of Machine
Learning Research, 5:27–72, 2004.

[10] K. Lang. Fixing two weaknesses of the spectral
method. In Neural Information Processing Systems
18, 2005.

[11] H. Mittelmann. Several SDP-codes on sparse and
other SDP problems. http://plato.asu.edu/ftp/
sparse_sdp.html, Jul 2006.

[12] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, 1999.

[13] G. Pataki. On the rank of extreme matrices in
semidefinite programs and the multiplicity of opti-
mal eigenvalues. Mathematics of Operations Research,
23:339–358, 1998.

[14] J. Peng. 0-1 semidefinite programming for spectral
clustering: Modeling and approximation. Technical
Report 2005/12, Advanced Optimization Laboratory,
McMaster University, 2005.

[15] S. U. Pillai, T. Suel, and S. Cha. The Perron-
Frobenius theorem. IEEE Signal Processing Maga-
zine, 22(2):62–75, March 2005.

[16] K. Q. Weinberger, B. D. Packer, and L. K. Saul. Non-
linear dimensionality reduction by semidefinite pro-
gramming and kernel matrix factorization. In Proc.
of the 10th Intl. Workshop and Artificial Intelligence
and Statistics, 2005.

[17] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a
kernel matrix for nonlinear dimensionality reduction.
In Proc. of the 21st Intl. Conf. on Machine Learning,
2004.

[18] E. P. Xing and M. I. Jordan. On semidefinite relax-
ations for normalized k-cut and connections to spec-
tral clustering. Technical Report CSD-03-1265, Uni-
versity of California at Berkeley, 2003.

[19] H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spec-
tral relaxation for k-means clustering. In Neural In-
formation Processing Systems 14, 2001.

