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Abstract

In this paper we apply the latest techniques in
sparse Gaussian process regression (GPR) to
the Gaussian process latent variable model (GP-
LVM). We review three techniques and discuss
how they may be implemented in the context
of the GP-LVM. Each approach is then imple-
mented on a well known benchmark data set and
compared with earlier attempts to sparsify the
model.

1 Introduction

The Gaussian process latent variable model (GP-LVM)
[Lawrence, 2004, 2005] is a flexible approach to proba-
bilistic modelling in high dimensional spaces. It has been
succesfully applied in a range of application domains in-
cluding graphics [Grochow et al., 2004] and visual tracking
[Urtasun et al., 2005]. A major advantage of the approach
is its ability to effectively model probabilistically data of
high dimensionality, however a major weakness with the
approach is that computation of gradients and the likeli-
hood are cubic in the number of data points. In the original
GP-LVM paper the informative vector machine algorithm
(IVM) [Lawrence et al., 2003] was used for obtaining a
sparse representation. However, in the context of the GP-
LVM, this approach suffers from several weakness. In this
paper we show how recent developments in sparse Gaus-
sian process regression [Snelson and Ghahramani, 2006,
Quiñonero Candela and Rasmussen, 2005, Seeger et al.,
2003] can be adapted to work with the GP-LVM.

2 GP-LVM

The Gaussian process latent variable model [Lawrence,
2004, 2005] is a flexible, non-linear dimensionality reduc-
tion technique which also provides a probabilistic represen-
tation of a data set. Given a data set Y ∈ <N×d containing

N data points and d dimensions we seek a q-dimensional
representation of the data given by X ∈ <N×q. A stan-
dard probabilistic approach taken to this problem is to first
define a mapping between X and Y,

ynj = f (xn,wj) + εnj ,

where εn is a noise term, ynj is the element from the nth
row and jth column of Y, xn is a column vector taken
from the nth row of X and the parameters of the mapping
are given by the vectors {wj}d

j=1. If the noise is drawn
independently from a Gaussian distribution we can write
down the condtional for yn given xn as,

p (yn|xn,W) =
d∏

j=1

N
(
ynj |f (xn,wj) , β−1

)
,

where W = [w1 . . .wd]
Tand we have introduced β for the

precision (inverse variance) of the noise. The distribution
of the full matrix Y given X and W is then

p (Y|X,W) =
N∏

n=1

d∏
j=1

N
(
ynj |f (xn,wj) , β−1

)
.

In most traditional approaches to this problem [Tipping and
Bishop, 1999, MacKay, 1995, Bishop et al., 1998] the next
step is to treat X as latent variables by selection of an
appropriate prior distribution, p (X), and marginalisation.
The model is then optimised by maximising the marginal
likelihood p (Y|W). A key innovation in the GP-LVM is
to, instead, place a prior distribution over the mappings,
p (W) and maximise the marginal likelihood with respect
to the latent positions, p (Y|X). If the mappings are linear,

f (xn,wj) = xT
n wj ,

and a Gaussian prior over wj is used, the model is equiva-
lent to principal component analysis. However by consid-
ering a process prior directly on the function f (·) we can
obtain non-linear mappings. An appropriate, and tractable,
process prior is a Gaussian Process (GP) [Rasmussen and



Williams, 2006]. If the GP prior over each of the d func-
tions is the same we obtain the following likelihood,

p (Y|X,θ) =
d∏

j=1

N
(
y(j)|0,K

)
where y(j) is the jth column of Y and K ∈ <N×N is
the covariance function or kernel of the Gaussian process
which we assume is additionally parameterised by θ.

3 Learning in GP-LVMs

Learning in the GP-LVM consists of maximising the like-
lihood with respect to the positions of the latent variables,
X, and the parameters of the kernel θ. This leads to the
following log-likelihood,

L (X,θ) = −dN

2
log 2π − d

2
log |K|

−1
2

tr
(
K−1YYT

)
.

Gradients of L (X,θ) are then easily obtained through

combining gradients of
∂L(X,θ)

∂K with gradients given by
∂K:
∂X: and ∂K:

∂θ:
. In general1, it is not possible to obtain a

fixed point solution for X and θ, to make progress we must
turn to gradient based iterative optimisation of the log-
likelihood. Such algorithms rely on multiple re-evaluations
of the log-likelihood and its gradients. Each evaluation has
O

(
N3

)
complexity due to the inverse of K. In Lawrence

[2004, 2005] a sparse approximation based on active set se-
lection through the informative vector machine (IVM) was
proposed. However, there are two key problems with this
approach. Firstly, the resulting posterior distribution over
mappings depends only on the active set. Secondly, the op-
timal active set changes as the optimisation proceeds. The
active set must, therefore, be re-selected regularly causing
fluctuations in the objective function. It can therefore be
diffcult to determine when convergence has occured. In
this paper we show how the latest methods for sparse Gaus-
sian process regression can be used with the GP-LVM to
reduce the complexity of gradient and likelihood evalua-
tions to O

(
k2N

)
while retaining a convergent algorithm

in which the posterior distributions over the mappings de-
pend on the entire data set.

4 Sparse Approximations

By exploiting a sparse approximation to the full Gaussian
process it is usually possible to reduce the computational
complexity from an often prohibitive O

(
N3

)
to a more

1An exception is when K = XXT + β−1I, i.e. when the
process constrains the model to linear functions. In this case the
principal component analysis solution is recovered.

manageable O
(
k2N

)
, where k is the number of points

retained in the sparse representation. A large body of re-
cent work has been focussed on approximating the covari-
ance function with a low rank approximation [Smola and
Bartlett, 2001, Williams and Seeger, 2001, Tresp, 2000,
Schwaighofer and Tresp, 2003, Csató and Opper, 2002,
Seeger et al., 2003]. Recently several of these approaches
were unified by Quiñonero Candela and Rasmussen [2005].
The advantage of the unified viewpoint is that we can dis-
cuss approximations within the same context. Quiñonero
Candela and Rasmussen [2005] also provide a consistent
terminology for these approximations (which we will refer
to as QR-terminology) that we will make use of in this pa-
per. The approximations all involve augmenting the func-
tion values at the training points, F ∈ <N×d, and the func-
tion values at the test points, F∗ ∈ <∞×d, by an additional
set of variables, U ∈ <k×d. The number of these variables,
k, can be specified by the user. The augmenting variables
have been variously called the ‘active points’, ‘pseudo-
inputs’ or ‘support points’; in QR-terminology they are
known as the inducing variables.

The factorisation of the likelihood across the columns2 of
Y allows us to focus on one column of F without loss of
generality. We therefore consider function values at f ∈
<N×1, f∗ ∈ <∞×1 and u ∈ <k×1. These variables are
considered to be jointly Gaussian distributed with f and f∗
such that

p (f , f∗) =
∫

p (f , f∗|u) p (u) du,

where the prior distribution over the inducing variables is
given by a Gaussian process,

p (u) = N (u|0,Ku,u) ,

with a covariance function given by Ku,u. This covariance
is constructed on a set of inputs3 Xu which may or may not
be a subset of X. For the full Gaussian process the pres-
ence or absence of these inducing variables is irrelevant,
however through their introduction we can motivate most
of the sparse approximations listed above. The key concept
in unifying the different approximations [Quiñonero Can-
dela and Rasmussen, 2005] is to consider that the variables
associated with the training data, f , are conditionally inde-
pendent of those associated with the test data, f∗, given the
inducing variables, u:

p (f , f∗,u) = p (f |u) p (f∗|u) p (u) ,

where

p (f |u) = N
`

f |Kf ,uK
−1
u,uu,Kf ,f − Kf ,uK

−1
u,uKu,f

´

(1)

2Much of our analysis may hold even if a factorisation as-
sumption isn’t made, but it simplifies the exposition if we con-
strain ourselves to the factorising case.

3There is nothing to prevent us from allowing a different set of
inducing variables, X(i)

u , for each of the d dimensions of the data,
but we shall consider only one set for all data dimensions to keep
the derivations simple.



is the training conditional in QR-terminology and

p (f∗|u) = N
(
f∗|K∗,uK−1

u,uu,K∗,∗ − K∗,uK−1
u,uKu,∗

)
is the test conditional. Kf ,u is the covariance function com-
puted between the training inputs, X, and the inducing vari-
ables, Xu, Kf ,f is the symmetric covariance between the
training inputs, K∗,u is the covariance function between
the test inputs and the inducing variables and K∗,∗ is the
symmetric covariance function the test inputs. This decom-
position does not in itself entail any approximations: the
approximations are introduced through assumptions about
the form of these distributions.

4.1 Deterministic Training Conditional

The first approximation we consider in the context of the
GP-LVM is known as the ‘deterministic training condi-
tional’ (DTC) approximation in QR-terminology. It is so
called because it involves replacing the true training condi-
tional (1) with a deterministic approximation of the form

q
(
f(j)|u

)
= N

(
f(j)|Kf ,uK−1

u,uu,0
)
,

where we introduced the index on f to indicate the column
of F from which it comes. This approximation was first
proposed by Csató and Opper [2002] in the context of on-
line learning of Gaussian processes and was further used
by Seeger et al. [2003]. Re-introducing the prior over the
inducing variables we find that the functional prior for this
approximation is given by

q
(
f(j)

)
= N

(
f(j)|0,Kf ,uK−1

u,uKu,f

)
.

This prior may be combined with the likelihood,

p
(
y(j)|f(j), β

)
= N

(
y(j)|f(j), β−1I

)
to give a marginal log likelihood of the form

log p (Y|X+,θ) = −d

2
log (2π)

−d

2
log

∣∣Kf ,uK−1
u,uKu,f + β−1I

∣∣
−tr

(
YYT (

Kf ,uK−1
u,uKu,f + β−1I

)−1
)

= L (X+,θ) ,

where we have used X+ = {Xu,X} to represent the set
of training inputs augmented by the inducing inputs. Gra-
dients with respect to the X+ and θ may all be determined
through first seeking gradients with respect to Kf ,u and
Ku,u and combining them with gradients of a given ker-
nel. Details of how these gradients may be arrived at are
given in Lawrence [2006]. Having optimised with respect
to these parameters predictions can be made for test points
using

p
(
f∗(j)|y(j)

)
= N

(
f∗(j)|f̄1,Σ1

)
,

where the mean is given by f̄1 = K∗,uA−1Ku,fy(j), the
covariance is Σ1 = K∗,∗−K∗,u

(
K−1

u,u − β−1A−1
)
Ku,∗

and A =
(
β−1Ku,u + Ku,fKf ,u

)
.

4.2 Fully and Partially Indepence

Much of the recent insight into sparse Gaussian process re-
gression was triggered by the work of Snelson and Ghahra-
mani [2006]. Their paper proposed two orthogonal ideas.
The first was to optimise with respect to the positions of the
inducing variables (or pseudo-inputs as they term them)4

and the second was a richer form of approximation to the
training conditional. In QR-terminology it is refered to as
the ‘fully independent training conditional’ (FITC) approx-
imation and involves an independence assumption for the
training conditional. Csató [2005] has pointed out that the
Bayesian Committee Machine [Tresp, 2000, Schwaighofer
and Tresp, 2003] makes similar block diagonal indepen-
dence assumptions, in QR-terminology this is refered to as
the ‘partially independent training conditional’. Both ap-
proaches can be considered through the following form for
the training conditional,

q (f |u) = N
(
f(j)|f̄2,Σ2

)
,

where f̄2 = Kf ,uK−1
u,uu , Σ2 =

mask
(
Kf ,f − Kf ,uK−1

u,uKu,f ,M
)

and the function
V = mask (Z, M), with M a matrix of ones and zeros,
returns a matrix V of dimension matching that of Z with
elements vij = zij iff mij = 1 and zero otherwise. In the
case that M = I the training conditional has a diagonal
covariance as is specified for the FITC approxixmation and
if M is block diagonal the training conditional also has a
block diagonal covariance structure as is specified for the
PITC approximation.

Again we can reintroduce the prior over the inducing vari-
ables to recover a marginal distribution of the form

q (f) = N (f |0,Σ3) ,

where Σ3 = Kf ,uK−1
u,uKu,f +

mask
(
Kf ,f − Kf ,uK−1

u,uKu,f ,M
)
. This distribution

may again be combined with p (Y|F, β) to obtain the
log-likelihood

log p (Y|X+,θ) = −d

2
log (2π)

−d

2
log

∣∣Kf ,uK−1
u,uKu,f + D

∣∣
4 This idea is reminicent of adaptive basis models, such as

multi-layer perceptrons and radial basis functions (see Bishop,
1995). It is indeed possible to represent such networks as Gaus-
sian processes and to adapt the location of the basis by treating
them as hyper parameters: however the resulting models would
correspond to the Subset of Regressors approximation [Poggio
and Girosi, 1990, Luo and Wahba, 1997, Williams et al., 2002,
Quiñonero Candela and Rasmussen, 2005] rather than the more
advanced approximations we are reviewing here.



−1
2

tr
(
YYT (

Kf ,uK−1
u,uKu,f + D

)−1
)

= L (X+,θ) .

where D = mask
(
β−1 + Kf ,f − Kf ,uK−1

u,uKu,f ,M
)
.

Derivatives of the likelihood with respect to Kf ,f , Ku,f and
Ku,u are given in Appendix C.

4.3 Application in the GP-LVM

As we mentioned in the previous section, Snelson and
Ghahramani [2006] not only suggested the use of the FITC
approximation but they also suggested optimisation of the
inducing inputs jointly with the parameters of the covari-
ance function. There are several reasons why this is an
attractive idea, but in the context of the GP-LVM, perhaps
foremost amoungst them is the fact that by jointly optimis-
ing over X, Xu and θ convergence can be monitored in
a straightforward manner. If, rather than optimising with
respect to them, the inducing variables are being chosen
as a sub-set of X then the likelihood fluctuates as they are
reselected. This problem manifests itself in the IVM-based
sparsification of the GP-LVM [Lawrence, 2005]. In this pa-
per we will aim to improve performance through following
Snelson and Ghahramani’s suggestion of optimising the in-
ducing variable inputs in the context of the approximations
outlined above.

4.3.1 Multiple Output Regressions

Snelson and Ghahramani focus on Gaussian process regres-
sion with a single target vector (in the context of the GP-
LVM, d = 1). They do not address the issue of whether
to represent the inducing variables separately for each col-
umn of Y target or to share the same inducing variables
across columns of Y. Arguments could be made in favour
of either approach, however allowing different sets of Xu

for each data dimension will cause the number of inducing
variables to scale with d. For high dimensional data sets
this could make the optimisation prohibitive. Furthermore,
Snelson and Ghahramani have some concerns about over-
fitting when k is large: normally overfitting isn’t a concern
for Gaussian processes, but by using inducing variables we
are introducing a large number of parameters into the sys-
tem. The possibility of overfitting would be compounded
by allowing different active sets for each column of d.

5 Experiments

To evaluate the new sparse GP approximations in the GP-
LVM we considered two datasets, a benchmark data set vi-
sualising oil flow in a pipeline and a set of human motion
capture data of a subject walking and running.
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Figure 1: The oil data visualised using a GP-LVM with (a) the
DTC approximation, (b) the FITC approximation, (c) the PITC
approximation and (d) no approximation. Crosses (red), circules
(green) circles and plus signs (blue) represent stratified, annular
and homogenous respectively. The greyscale background to the
plots visualises the precision with which the posterior process is
mapped in the data space, for larger plots see Lawrence [2006].

5.1 Oil Data

In this section we present results on three phase oil flow
data [Bishop and James, 1993] . The data consists of twelve
dimensional measurements of oil flow within a pipeline.
There are three phases of flow associated with the data:
stratified, annular and homegenous and 1000 points in the
data set. We compared the sparse GP-LVM using the differ-
ent approximations with an IVM based approximation and
a full GP-LVM trained on the data. In each case we pro-
jected the data onto two dimensions. We show the result-
ing projections for the new sparse approaches in Figure 1 as
well as the result for the full GP-LVM. For the result from
the IVM see Lawrence [2005]. As well as the locations of
the data in the latent space we also show the uncertainty
associated with the Gaussian processes as a function of the
latent space. This is shown as a greyscale image with white
representing low variance (or high precision) and black rep-
resenting high variance (low precision).

There is a noticable difference in the pattern associated
with the uncertainty for each plot. In particular for the
DTC approximation (Figure 1 (a)) the variances are low
along spray-paint-like streaks across the latent space. This
effect becomes less pronounced with the FITC approxima-
tion (Figure 1 (b)) and is almost non-existent with the PITC
approximation (Figure 1 (c)). In each case 100 inducing
points were used to create these visualisations.



DTC FITC PITC IVM FULL IN Y

ERRORS 3 6 6 24 1 2

Table 1: Nearest neighbour errors in latent space for the
oil data. For reference we include the result obtained when
nearest neighbour classification is undertaken in the origi-
nal high-dimensional data space (labelled ‘In Y’).

The quality of the models can be objectively assesed
through computing the nearest neighbour classification er-
ror in the latent space. The results from doing so are shown
in Table 1. Also included is a result obtained by using a
sparse algorithm based on the IVM approximation from
Lawrence [2005]. Each of the presented sparse algorithms
strongly outperforms the IVM-based sparsification while
not quite reaching the performance of the full algorithm.

5.2 Motion Capture

We followed Taylor et al. [2007] in considering a human
motion capture data set. The data consisted of walking and
running motions from subject 35 in the CMU Mocap data
base. Motion numbers 1-17, 19-26, 28 and 30-34 were con-
catanated to form a training set. Each motion represents a
separate sequence, we therefore made use of the dynam-
ical refinement of the GP-LVM proposed by Wang et al.
[2006] to handle the dynamics. Taylor et al. [2007] mapped
the angles to be between -180 and 180, rescaled the data,
removed dimensions which weren’t varying and mapped
the root node’s rotations onto circles using sine and cosine.
They created a data set for their model by forming each data
point by concatanating two neighbouring frames. They ap-
plied their binary latent variable model to two missing data
problems: the first where the right leg was removed from
the test seqence and the second where the upper body was
removed. The reconstruction obtained was compared to
that given by nearest neighbour. We used a slightly mod-
ified presentation of the data set. We did not concatanate
frames (as we wish to assess the ability of the dynamical
model to represent temporal relationships in their entireity)
and we removed the absolute value of the root node for po-
sition in the co-ordinates x and z and rotation around the
y-axis, modelling instead differences between frames5.

In learning we used the FITC approximation with 100 in-
ducing points. However, rather than allowing these points
to be moved freely, they were fixed to latent points that
were uniformly sub-sampled from the data. The models
were back constrained [Lawrence and Quiñonero Candela,
2006] using multi-layer perceptrons with 10 hidden units.

5The absolute root position in x and z and absolute rotation
around y (the vertical axis) should normally be irrelevant in deter-
mining pose, but in this data the subject’s path and start position
were very similar in each sequence so they, unusually, carry infor-
mation. We choose to discard this information because it would
not normally be available.

DATA CL CB L L B B

ERR. TYP. SC SC SC RA SC RA

BLV 11.7 8.8 - - - -

NN (S) 22.2 20.5 - - - -

GP-LVM (q = 3) - - 11.4 3.40 16.9 2.49

GP-LVM (q = 4) - - 9.7 3.38 20.7 2.72

GP-LVM (q = 5) - - 13.4 4.25 23.4 2.78

NN (S) - - 13.5 4.44 20.8 2.62

NN - - 14.0 4.11 30.9 3.20

Table 2: Results from the missing data problem. Headings: CL

and CB are the leg and body data sets as preprocessed by Taylor
et al.. L and B are our pre-processings. The error types are SC,
which is Taylor et al.’s cumulative error per joint in the scaled
space, and RA, which is root mean square error in the angle space.
Methods are: BLV: Taylor et al.’s binary latent variable model,
NN: nearest neighbour, NN (s): nearest neighbour in scaled space,
GP-LVM (latent dimension): the GP-LVM with different latent
dimensions, q. Bold results are the best reported for a given col-
umn. Italicised results are the best reported in terms of cumulative
error per joint across the data set (regardless of pre-processing).

The parameters of the dynamics model were learnt during
optimisation6. The data set size was 2613 frames.

A summary of the results is given in Table 2. Note that the
cumulative scaled error reported by Taylor is not always
consistent with the angle error, in particular note that for
the GP-LVM with q = 3 cumulative error is much higher
than with q = 4, but the root mean square angle errors are
very similar. The results show that the GP-LVM typically
outperforms nearest neighbour.

6 Discussion

In this paper we have reviewed sparse approximations for
Gaussian process regression from the perspective of a uni-
fying framework proposed by Quiñonero Candela and Ras-
mussen [2005]. We combined each of the different ap-
proximations summarised by Quiñonero Candela and Ras-
mussen [2005] with the suggestion of Snelson and Ghahra-
mani [2006] to optimise the locations of the inducing vari-
ables (described as pseudo inputs by Snelson and Ghahra-
mani). The resulting approximations were combined with
the Gaussian process latent variable model and results
were then presented on a benchmark visualisation data set.
The results show that much better quality results can be
achieved with this family of approximations. The DTC ap-
proximation gave the best performance in a nearest neigh-
bour experiment, but the quality of the error bars was better
for the PITC and FITC approximations.

6This is possible due to the back constraints, if no back con-
straints are used the dynamics effectively learn to switch them-
selves off.



All the experiments detailed here may be recreated with
code available on-line from http://www.dcs.shef.
ac.uk/˜neil/fgplvm.
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A On-line Source Code

Matlab source code for repeating the experiments described
in Section 5 is available on-line from http://www.cs.
man.ac.uk/˜neill/fgplvm. The experiments were cre-
ated using the scripts demOil3.m for DTC, demOil1.m for
FITC and demOil5.m for PITC (version 0.13 of the code,
demOil2.m, demOil4.m and demOil6.m are results that
use back constraints [Lawrence and Quiñonero Candela, 2006]
and are not presented here). The full GP-LVM was created
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using C++ code available from http://www.cs.man.ac.
uk/˜neill/gplvmcpp, see instructions on that site for how
to recreate it. The motion capture results were created us-
ing the scripts demCmu35gplvm1.m, demCmu35gplvm2.m
and demCmu35gplvm3.m. The missing data results were cre-
ated with demCmu35gplvmReconstruct.m and the near-
est neighbour results from Taylor et al. are recreated in
demCmu35TaylorNearestNeighbour.m (version 0.151
of the code).

B Matrix Derivatives

In what follows we will make use of matrix derivatives.
Broadly speaking we follow the notation suggest in the
The Matrix Reference Manual [Brookes, 2005]. We con-
sider the derivative of one vector with respect to another
as da

db ∈ <m×n if a ∈ <m×1 and b ∈ <n×1. To obtain
matrix-matrix derivatives we make use of C: to indicate a
vector formed from the matrix C by stacking the columns
of C to form a <mn×1 vector if C ∈ <m×n. Under this
notation we can write the derivative of a matrix E ∈ <p×q

with respect to C as dE:
dC: ∈ <pq×mn. This notation makes

it easier to apply the chain rule while maintaining matrix
notation. This entails the use of Kronecker products, we
denote the Kronecker product of F and G as F ⊗ G. In
most cases where they arise below they are later removed
using this relationship

(E:)T F⊗ G =
((

GTEF
)
:
)T

, (2)

this form typically arises whenever the chain rule is ap-
plied,

dL

dH:
dH:
dJ:

=
dL

dJ:
,

as we normally find that dH:
dJ: has the form of a Kronecker

product, dH:
dJ: = F ⊗ G and we expect the result of dL

dH: and
dL
dJ: to be in the form (L:)T. The following two identities
for Kronecker products will also prove useful.

FT ⊗ GT = (F ⊗ G)T

and
(E ⊗ G) (F⊗ H) = EF⊗ GH.

In what we present below there are two ways of writing the
derivative of a scalar with respect to a matrix, dL

dJ: and dL
dJ ,

the first being a row vector and the second is a matrix of the
same dimension of J. The second representation is more
convenient for summarising the result, the first is easier to
wield when computing the result. The equivalence of the
representations is given by

dL

dJ:
=

((
dL

dJ

)
:
)T

.

Any other results used for matrix differentiation and not
explicitly given here may be found in Brookes [2005].

C FITC and PITC

In this appendix we consider the gradient required for the
FITC and PITC approximations. The DTC gradients are
more straightforward, we refer the reader to Lawrence
[2006] for details. The log likelihood of the training data is
given by:

L (X+,θ) = −d

2
log

∣∣Kf ,uK−1
u,uKu,f + β−1D

∣∣
−1

2
tr

((
Kf ,uK−1

u,uKu,f + β−1D
)−1

YYT
)

.

We can apply the matrix inversion lemma and re-express
the determinant to obtain the following expression for the
log likelihood of the training data

L (X,U,θ) = −d

2
log |D| − β

2
tr

(
D−1YYT

)
+

d

2
log |Ku,u| −

d

2
log |A|

+
β

2
tr

(
A−1Ku,fD−1YYTD−1Kf ,u

)
,

where we define7 A to be

A =
(

1
β
Ku,u + Ku,fD−1Kf ,u

)
.

We first consider gradients with respect to A.

dL (X+,θ)
dA

= −1
2
C

where C = A−1d−βA−1Ku,fD−1YYTD−1Kf ,uA−1.
Gradients with respect to D are given by

dL (X+,θ)
dD:

= −1
2

((
D−1HD−1

)
:
)T − 1

2
(C:)T

dA:
dD:

(3)
where H =

(
D−1d − βYYT + 2βKf ,uA−1Ku,fD−1YYT

)
.

The gradient of A: with respect to D: is given by

∂A:
∂D:

= − (Ku,f ⊗ Ku,f )
(
D−1 ⊗ D−1

)
= −

(
Ku,fD−1 ⊗ Ku,fD−1

)
. (4)

which allows us to combine (3) with (2) to write
dL(X+,θ)

dD: = − 1
2D

−1JD−1where J = H−Kf ,uCKu,f .
We are now in a position to write

dL (X+,θ)
dKu,u:

=
d

2
((

K−1
u,u

)
:
)T − 1

2
(C:)T

dA:
dKu,u:

−1
2

((
D−1JD−1

)
:
)T dD:

dKu,u:
(5)

7Another possible definition for A would be Â =
“

Ku,u + Ku,f D̂
−1Kf ,u

”

where D̂ = β−1D, our original im-
plementations (FGPLVM up to version 0.132) used this represen-
tation which is in line with the notation used by Quiñonero Can-
dela and Rasmussen [2005]. However in their implementation
Snelson and Ghahramani [2006] used something more akin to the
representation we give here. We found this representation to be
much more numerically stable (FGPLVM versions from 0.14).
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and

dL (X+,θ)
dKu,f:

= −1
2

(C:)T
dA:

dKu,f:

−1
2

((
D−1JD−1

)
:
)T dD:

dKu,f:

+β
((

A−1Ku,fD−1YYTD−1
)
:
)T
(6)

gradients with respect to Kf ,f can be found through

dL (X+,θ)
dKf ,f:

= −1
2

((
D−1JD−1

)
:
)T dD:

dKf ,f:
(7)

with a similar result holding for β. It remains to compute
the derivatives of D and A with respect to Ku,u, Kf ,u and
Kf ,f .

We define D as

D = I + βmask
(
Kf ,f − Kf ,uK−1

u,uKu,f ,M
)
.

Now we note that

dmask (Z,M):
dZ:

= diag (M:)

where the function diag (z) takes a vector z and returns a
diagonal matrix whose diagonal elements are given by z.
These definitions allow us to write

dD: = −βdiag (M:)
((

I ⊗ Kf ,uK−1
u,u

)
dKu,f:

+
(
Kf ,uK−1

u,u ⊗ I
)
dKf ,u:

)
(8)

and

∂D:
∂Ku,u:

= βdiag (M:) (Kf ,u ⊗ Kf ,u)
(
K−1

u,u ⊗ K−1
u,u

)
= βdiag (M:)

(
Kf ,uK−1

u,u ⊗ Kf ,uK−1
u,u

)T

with
∂D:

∂Kf ,f:
= βdiag (M:) (9)

and

∂D:
∂β

= mask
(
Kf ,f − Kf ,uK−1

u,uKu,f ,M
)
: . (10)

We can now use these equations in combination with gradi-
ents of A to obtain gradients of L (X+,θ) with respect to
Ku,u, Ku,f and Kf ,f , dA:

dKu,u:
= 1

β I, where we have ignored
the dependence of D on Ku,u as we already accounted for
that in (5). Combining the gradient of A and those of D
with (5) above we obtain

dL (X+,θ)
dKu,u:

=
1
2

(
K−1

u,ud − 1
β
C − βK−1

u,uKu,fQKf ,uK−1
u,u

)
,

where Q = mask
(
D−1JD−1,M

)
and we have made use

of the fact that

(E:)T diag (M:) (F⊗ G)T =
(
GTmask (E,M)FT

)
: .

Similarly with respect to Ku,f we find

dA: =
(
Ku,fD−1 ⊗ I

)
dKu,f +

(
I⊗ Ku,fD−1

)
dKf ,u.(11)

Substituting (8) and (11) into (6) above we obtain

dL (X+,θ) = −1
2

((
CKu,fD−1

)
:
)T

dKu,f

−1
2

((
D−1Kf ,uC

)
:
)T

dKf ,u

+
β

2
((

K−1
u,uKu,fQ

)
:
)T

dKu,f

+
β

2
((

QKf ,uK−1
u,u

)
:
)
dKf ,u

+β
((

A−1Ku,fD−1YYTD−1
)
:
)T

dKu,f

which leads to

dL (X+,θ)
dKu,f

= −CKu,fD−1 + βK−1
u,uKu,fQ

+βA−1Ku,fD−1YYTD−1.

By substituting (9) into (7) we obtain

dL (X+,θ)
dKf ,f

= −β

2
Q

and finally by substituting (10) into (7) we have

dL (X+,θ)
dβ

=
1
2

tr (Q) .

Once again these gradients may be combined with gradi-
ents of the kernel with respect to X, Xu and θ to obtain the
relevant gradients for their optimisation.


