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Abstract

In many modern data mining applications,
such as analysis of gene expression or word-
document data sets, the data is high-
dimensional with hundreds or even thousands
of variables, unstructured with no specific or-
der of the original variables, and noisy. De-
spite the high dimensionality, the data is
typically redundant with underlying struc-
tures that can be represented by only a few
features. In such settings and specifically
when the number of variables is much larger
than the sample size, standard global meth-
ods may not perform well for common learn-
ing tasks such as classification, regression and
clustering. In this paper, we present treelets
— a new tool for multi-resolution analysis
that extends wavelets on smooth signals to
general unstructured data sets. By construc-
tion, treelets provide an orthogonal basis that
reflects the internal structure of the data. In
addition, treelets can be useful for feature
selection and dimensionality reduction prior
to learning. We give a theoretical analysis
of our algorithm for a linear mixture model,
and present a variety of situations where
treelets outperform classical principal com-
ponent analysis, as well as variable selection
schemes such as supervised (sparse) PCA.

1 Introduction

A well-known problem in statistics is that estimation
and prediction tasks become increasingly difficult with
the dimensionality of the observations. This “curse of
dimensionality” [1] highlights the necessity of more ef-
ficient data representations that reflect the inherent,
often simpler, structures of naturally occurring data.
Such low-dimensional compressed representations are

required to both (i) reflect the geometry of the data,
and (ii) be suitable for later tasks such as regres-
sion, classification, and clustering. Two standard tools
for dimensionality reduction and feature selection are
Principal Component Analysis (PCA) and wavelets.
Each one of these techniques has its own strengths
and weaknesses. As described below, both methods
are inadequate for the analysis of noisy unstructured
high-dimensional data of intrinsic low dimensionality,
which is the interest of this work.

Principal component analysis (PCA) is a popular fea-
ture selection method due to both its simplicity and
theoretical property as providing a sequence of “best”
linear approximations in a least square sense [2]. PCA,
however, has two main limitations. First, PCA com-
putes a global representation, where each basis vector
is a linear combination of all the original variables.
Thus, interpretation of its results is often a difficult
task and may not help in unraveling internal localized
structures in a data set. For example, in DNA microar-
ray data, it can be quite difficult to detect small sets
of highly correlated genes from a global PCA analysis.
The second limitation of PCA is that for noisy input
data, it constructs an optimal representation of the
noisy data but not necessarily of the (unknown) un-
derlying noiseless data. When the number of variables
p is much larger than the number of observations n,
the true underlying principal factors may be masked
by the noise, yielding an inconsistent estimator in the
joint limit p(n) →∞ and n →∞ [3]. Even for a finite
sample size n, this property of PCA and other global
methods including partial least squares and ridge re-
gression can lead to large prediction errors in regres-
sion and classification [4, 5].

In contrast to PCA, wavelet methods describe the
data in terms of localized basis functions. The rep-
resentations are multi-scale, and for smooth data, also
sparse [6]. Wavelets are often used in many non-
parametric statistics tasks, including regression and
density estimation [7]. Their main limitation is the



implicit assumption of smoothness of the (noiseless)
data as a function of its variables. Wavelets are thus
not suited for the analysis of unstructured data.

In this paper, we are interested in the analysis of
high-dimensional, unstructured and noisy data, as it
typically appears in many modern applications (gene
expression microarrays, word-document arrays, con-
sumer data sets). We present a novel multi-scale rep-
resentation of unstructured data, where variables are
randomly ordered and do not necessarily satisfy any
specific smoothness criteria. We call the construction
treelets, as the method is inspired by both wavelets
and hierarchical clustering trees. The treelet algorithm
starts from a pairwise similarity measure between fea-
tures and constructs, step by step, a data-driven multi-
scale orthogonal basis whose basis functions are sup-
ported on nested clusters in a hierarchical tree. As in
PCA, we explore the covariance structure of the data
but — unlike PCA — the analysis is local and multi-
scale.

There are also other methods related to treelets. In
recent years, hierarchical clustering algorithms have
been widely used for identifying diseases and groups of
co-expressed genes [8]. The novelty and contribution of
our approach, compared to such clustering methods, is
the simultaneous construction of a data-driven multi-
scale basis and a cluster tree. The introduction of a
basis enables application of the well-developed machin-
ery of orthonormal expansions, wavelets and wavelet
packets for e.g. reconstruction, compression, and de-
noising of general, non-structured, data arrays. The
treelet algorithm bears some similarities to the local
Karhunen-Loeve Basis for smooth structured data by
Saito [9], where the basis functions are data-driven but
the tree structure is fixed. Our work is also related to a
recent paper by Murtagh [10], which also suggests con-
structing basis functions on data-driven cluster trees
but uses fixed Haar wavelets. The treelet algorithm
offers the advantages of both approaches as it incorpo-
rates adaptive basis functions as well as a data-driven
tree structure.

In Sec. 2, we describe the treelet algorithm. In Sec. 3,
we provide analysis of its performance on a linear mix-
ture error-in-variable model and give a few illustrative
examples of its use in representation, regression and
classification problems. In particular, in Sec. 3.2, (un-
supervised) treelets are compared to supervised dimen-
sionality reduction schemes by variable selection, and
are shown to outperform these under some settings,
whereas in Sec. 3.3 we present application of treelets
on a classification problem with a real dataset of in-
ternet advertisements.

2 The Treelet Transform

In many modern data sets (e.g. DNA microarrays,
word-document arrays, financial data, consumer data-
bases, etc.), the data is noisy and high-dimensional
but also highly redundant with many variables (the
genes, words, etc) related to each other. Clustering
algorithms are typically used for the organization and
internal grouping of the coordinates of such data sets,
with hierarchical clustering being one of the common
choices. These methods offer an easily interpretable
description of the data structure in terms of a den-
drogram, and only require the user to specify a mea-
sure of similarity between groups of observations, or in
this case, groups of variables. So called agglomerative
methods start at the bottom of the tree and at each
level merge the two groups with highest inter-group
similarity into one larger cluster.

The novelty of the proposed treelet algorithm is in
constructing not only clusters or groupings of vari-
ables, but also a multi-resolution representation of the
data: At each level of the tree, we group together the
most similar variables and replace them by a coarse-
grained “sum variable” and a residual “difference vari-
able”, both computed from a local principal compo-
nent analysis (or Jacobi rotation) in two dimensions.
We repeat this process recursively on the sum vari-
ables, until we reach either the root node at level
L = p − 1 (where p is the total number of original
variables) or a maximal level J ≤ p − 1 selected by
cross-validation or other stopping criteria. As in stan-
dard multi-resolution analysis, the treelet algorithm
results in a set of “scaling functions” defined on nested
subspaces V0 ⊃ V1 ⊃ . . . ⊃ VJ , and a set of orthogonal
“detail functions” defined on residual spaces {Wj}J

j=1

where Wj ⊕ Vj = Vj−1.

The decision as to which variables to merge in the tree
is determined by a similarity score Mij computed for
all pairs of sum variables vi and vj . One choice for
Mij is the correlation coefficient

Mij = Cij/
√

CiiCjj (1)

where Cij = E
[
(vi − Evi)(vj − Evj)T

]
is the familiar

covariance. For this measure |Mij | ≤ 1 with equality
if and only if xj = axi + b for some constants a, b ∈ R.
Other information-theoretic or graph-theoretic simi-
larity measures are also possible and can potentially
lead to better results.

The Treelet Algorithm: Jacobi Rotations on
Pairs of Similar Variables

• At level L = 0 (the bottom of the tree), each obser-
vation or “signal” is represented by the original vari-
ables xk (k = 1, . . . , p). For convenience, introduce a



p-dimensional coordinate vector

x(0) .= [s0,1, . . . , s0,p]

where s0,k = xk, and associate these coordinates to the
Dirac basis B0

.= [v0,1,v0,2, . . . ,v0,p] where B0 is the
p× p identity matrix. Compute the sample covariance
and similarity matrices C(0) and M (0). Initialize the
set of “sum variables”, S = {1, 2, . . . , p}.
• Repeat for L = 1, . . . , J

1. Find the two most similar sum variables ac-
cording to the similarity matrix M (L−1). Let

(α, β) = arg max
i,j∈S

M
(L−1)
ij . (2)

where i < j, and maximization is only over pairs
of sum variables that belong to the set S. As in
standard wavelet analysis, “difference variables”
(defined in step 3) are not processed.

2. Perform a local PCA on this pair. Find a
Jacobi rotation matrix [11]

J(α, β, θL) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




(3)

where c = cos (θL) and s = sin (θL), that decor-
relates xα and xβ ; i.e. find a rotation angle θL

such that C
(L)
αβ = C

(L)
βα = 0 and C

(L)
αα ≥ C

(L)
ββ ,

where C(L) = JC(L−1)JT . This transformation
corresponds to a change of basis BL = JBL−1,
and new coordinates x(L) = Jx(L−1). Update the
similarity matrix M (L) accordingly.

3. Multi-resolution analysis. Define the sum and
difference variables at level L as sL = x

(L)
α and

dL = x
(L)
β . Similarly, define the scaling and detail

functions vL and wL as columns α and β of the
basis matrix BL. Remove the difference variable
from the set of sum variables, S = S\{β}. At level
L, we have the orthogonal treelet decomposition

x =
p−L∑

i=1

sL,ivL,i +
L∑

i=1

diwi. (4)

where the new set of scaling vectors {vL,i}p−L
i=1 is

the union of the vector vL and the scaling vec-
tors {vL−1,j}j 6=α,β from the previous level, and
the new coarse-grained sum variables {sL,i}p−L

i=1

are the projections of the original data onto these
vectors.

The output of the algorithm can be summarized in
terms of a cluster tree with a height J ≤ p − 1
and an ordered set of rotations and pairs of indices,
{(θj , αj , βj)}J

j=1. The treelet decomposition of a sig-
nal x has the general form in Eq. 4 with L = J . As
in standard multi-resolution analysis, the first sum is
the coarse-grained representation of the signal, while
the second sum captures the residuals at different
scales. In particular, for a maximum height tree with
J = p−1, we have x = sJvJ+

∑J
j=1 djwj , with a single

coarse-grained variable (the root of the tree) and p−1
difference variables. Fig. 1 (left) shows an example of
a treelet construction for a signal of length p = 5, with
the signal representations x(L) at the different levels
of the tree shown on the right.

In a naive implementation with an exhaustive search
for the optimal pair (α, β) in Eq. 2, the overall com-
plexity of the treelet algorithm is O(Jp2) operations.
However, by storing the similarity matrices C(0) and
M (0) and keeping track of their local changes, the com-
plexity is reduced to O(p2).

3 Theory and Examples

The motivation for the treelets is two-fold: One goal is
to find a “natural” system of coordinates that reflects
the underlying internal structures of the data. A sec-
ond goal is to improve the performance of conventional
regression and classification techniques in the “large
p, small n” regime by compressing the data prior to
learning. In this section, we study a few illustrative su-
pervised and unsupervised examples with treelets and
a linear error-in-variables mixture model that address
both of these issues.

In the unsupervised setting, we consider a data set
{xi}n

i=1 ⊂ Rp that follows a linear mixture model with
K components and additive Gaussian noise,

x =
K∑

j=1

ujvj + σz . (5)

The components or “factors” uj are random variables,
the “loading vectors” vj are fixed but typically un-
known linearly independent vectors, σ is the noise
level, and z ∼ Np(0, I) is the noise vector. Unsu-
pervised learning tasks include inference on the num-
ber of components K and the underlying vectors vj

in, for example, data representation, compression and
smoothing.

In the supervised case, we consider a data set
{xi, yi}n

i=1, where the response value y is a linear com-
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Figure 1: (Left) A toy example of a hierarchical tree for data of dimension p = 5. At L = 0, the signal
is represented by the original p variables. At each successive level L = 1, 2, . . . , p − 1 the two most similar
sum variables are combined and replaced by the sum and difference variables sL, dL corresponding to the first
and second local principal components. (Right) Signal representation x(L) at different levels. The s- and
d-coordinates represent projections along scaling and detail functions in a multi-scale treelet decomposition.

bination of the variables uj above according to

y =
K∑

j=1

αjuj + ε , (6)

where ε represents random noise. A supervised learn-
ing task is prediction of y for new data x given a train-
ing set {xi, yi}n

i=1 in regression or classification.

Linear mixture models are common in many fields, in-
cluding spectroscopy and gene expression analysis. In
spectroscopy Eq. 5 is known as Beer’s law, where x
is the logarithmic absorbance spectrum of a chemi-
cal substance measured at p wavelengths, uj are the
concentrations of constituents with pure absorbance
spectra vj , and the response y is typically one of the
components, y = ui. In gene data, x is the measured
expression level of p genes, uj are intrinsic activities
of various pathways, and each vector vj represents the
set of genes in a pathway. The quantity y is typically
some measure of severity of a disease such as time until
recurrence of cancer. A linear relation between y and
the values of uj as in Eq. 6 is commonly assumed.

3.1 Linear Mixture Model with Block
Structures

We first consider the unsupervised problem of uncover-
ing the internal structure of a given data set. Specif-
ically, we consider a set {xi}n

i=1 from the model (5)
with K = 3 components and with loading vectors

v1 = 1√
p1

[

B1︷ ︸︸ ︷
1 1 . . . 1

B2︷ ︸︸ ︷
0 0 . . . 0

B3︷ ︸︸ ︷
0 0 . . . 0]T

v2 = 1√
p2

[0 0 . . . 0 1 1 . . . 1 0 0 . . . 0]T

v3 = 1√
p3

[0 0 . . . 0 0 0 . . . 0 1 1 . . . 1]T .

(7)

where each set of variables Bj is disjoint with pj ele-
ments (j = 1, 2, 3). For illustrative purposes, the vari-

ables are ordered; shuffling the variables does not af-
fect the results of the treelet algorithm. Our aim is
to recover the unknown vectors vi and the relation-
ships between the variables {x1, . . . , xp}. We present
two examples. In the first example, PCA is able to
find the hidden vectors, while it fails in the second
one. Treelets, in contrast, are able to unravel these
structures in both cases.

Example 1: Uncorrelated Blocks. Suppose that
the random variables uj ∼ N(0, σ2

j ) are independent
for j = 1, 2, 3. The population covariance matrix of x
is then given by C = Σ + σ2Ip where

Σ =




Σ11 0 0
0 Σ22 0
0 0 Σ33


 (8)

is a 3 × 3 block matrix with Σkk = σ2
k1pk×pk

. As-
sume that σj À σ for all j. As n →∞, PCA recovers
the hidden vectors v1, v2, and v3, as these three vec-
tors are the principal eigenvectors of the system. A
treelet transform with a height determined by cross-
validation (see below), given that K = 3, returns the
same results.

Example 2: Correlated Blocks. We now consider
the case of correlations between the random variables
uj . Specifically, assume they are dependent according
to

u1 ∼ N(0, σ2
1), u2 ∼ N(0, σ2

2), u3 = c1u1+c2u2 . (9)

The covariance matrix is now given by C = Σ + σ2Ip

where

Σ =




Σ11 0 Σ13

0 Σ22 Σ23

Σ13
T Σ23

T Σ33


 (10)

with Σkk = σ2
k1pk×pk

(note that σ2
3 = c2

1σ
2
1 + c2

2σ
2
2),

Σ13 = c1σ
2
1Ip1×p3 and Σ23 = c2σ

2
2Ip2×p3 . Due to



the correlations between uj , the loading vectors of
the block model no longer coincide with the principal
eigenvectors, and it is quite difficult to extract them
with PCA.

We illustrate this problem by the example considered
in [12]. Specifically, let σ2

1 = 290, σ2
2 = 300, c1 = −0.3,

c2 = 0.925, p1 = p2 = 4, p3 = 2, and σ = 1. The
corresponding variance σ2

3 of u3 is 282.8. The first
three PCA vectors are shown in Fig. 2 (left). As ex-
pected, it is difficult to detect the underlying vectors vi

from these results. Other methods, such as PCA with
thresholding also fail to achieve this goal [12], even
with an infinite number of observations, i.e. in the
limit n →∞. This example illustrates the limitations
of a global approach, since ideally, we should detect
that the variables (x5, x6, x7, x8) are all related and
then extract the latent vector v2 from these variables.
In [12], Zou et al show by simulation that a combined
L1 and L2-penalized least squares method, which they
call “sparse PCA” or “elastic nets”, correctly identifies
the sets of important variables if given “oracle informa-
tion” on the number of variables p1, p2, p3 in the differ-
ent blocks. The treelet transform is similar in spirit to
elastic nets as both methods tend to group highly cor-
related variables together. Treelets however are able
to find the vectors vi knowing only K, the number of
components in the linear mixture model, and also do
not require tuning of any additional sparseness para-
meters.

Let us start with a theoretical analysis in the limit
n →∞, assuming pairwise correlation as the similarity
measure. At the bottom of the tree, i.e. for L = 0,
the correlation coefficients of pairs of variables in same
block Bk (k = 1, 2, 3) are given by

ρkk =
1

1 + σ2/σ2
k

≈ 1− σ2/σ2
k , (11)

while variables in different blocks are related according
to

ρ13 = sgn(c1)√
1+(c22σ2

2)/(c21σ2
1)

+O
(

σ2

σ2
3

)
≈ −0.30

ρ23 = sgn(c2)√
1+(c21σ2

1)/(c22σ2
2)

+O
(

σ2

σ2
3

)
≈ 0.95.

(12)

The treelet algorithm is bottom-up, and thus com-
bines within-block variables before it merges (weaker
correlated) variables between different blocks. While
the order in which within-block variables are paired de-
pends on the exact realization of the noise, the coarse
scaling functions are very robust to this noise thanks
to the adaptive nature of the treelets. Moreover, vari-
ables in the same block that are statistically exchange-
able will (in the limit n → ∞, σ → 0) have the same
weights in all scaling functions, at all levels in the tree.

For example, suppose that the noise realization is such
that at level L = 1, we group together variables x5

and x6 in block B2. A local PCA on this pair gives
the rotation angle θ1 ≈ π/4 and

s1 ≈ x5 + x6√
2

, d1 ≈ −x5 + x6√
2

. (13)

The updated correlation coefficients are ρ(s1, x7) ≈
ρ(s1, x8) ≈ ρ(x7, x8) ≈ 1; hence any of these three
pairs may be chosen next. Suppose that at L = 2, s1

and x8 are grouped together. A theoretical calcula-
tion gives the rotation angle θ2 ≈ arctan

(
1/
√

2
)

and
principal components

s2 ≈ x5 + x6 + x8√
3

, d2 ≈ −x5 + x6 − 2x8√
6

. (14)

Finally,“merging” s2 and the remaining variable x7 in
the set B2 leads to θ3 ≈ π/6 and

s3 ≈ x5 + x6 + x7 + x8

2
, d3 ≈ −x5 + x6 − 3x7 + x8

2
√

3
.

(15)
The corresponding scaling and detail functions
{v3,w3,w2,w1} in the basis are localized and sup-
ported on nested clusters in the block B2. In
particular, the maximum variance function v3 ≈[
0, . . . , 0, 1

2 , 1
2 , 1

2 , 1
2 , 0, . . . , 0

]T only involves variables
in B2 with the statistically equivalent variables
{x5, x6, x7, x8} all having equal weights. A similar
analysis applies to the remaining two blocks B1 and
B3. With a tree of height J = 7, the treelet algorithm
returns the hidden loading vectors in Eq. 7 as the three
maximum variance basis vectors. Fig. 2 (center and
right) shows results from a treelet simulation with a
finite but large sample size. To determine the height
J of the tree, we use cross-validation and choose the
“best basis” with the larges variance using K vectors,
where K = 3 is given.

Finally, to illustrate the importance of an adaptive
data-driven construction, we compare treelets to [10],
which suggests a fixed Haar wavelet transform. For
example, suppose that a particular realization of the
noise leads to the grouping order {{x5, x6}, x8}, x7}
described above. A fixed rotation angle of π/4 gives the
following sum coefficient and scaling function at level
L = 3, s3 = 1√

2

(
1√
2

(
1√
2
(x5 + x6) + x8

)
+ x7

)
and

v3
Haar = [0, . . . , 0, 1

2
√

2
, 1

2
√

2
, 1√

2
, 1

2 , 0, . . . , 0]T , respec-
tively. Thus, although the random variables x1, x2, x3

and x4 are statistically exchangeable and of equal im-
portance, they have different weights in the scaling
function. Furthermore, a different noise realization
can lead to very different sum variables and scaling
functions. Note also that only if p1, p2 and p3 are pow-
ers of 2, and if all the random variables are grouped
dyadically as in {{x5, x6}, {x7, x8}} etc, are we able to
recover the loading vectors in Eq. 7 by this method.
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Figure 2: In Example 2, PCA fails to find the important variables in the model, while a treelet transform is able
to uncover the underlying data structures. Top: The loadings of the first three eigenvectors in PCA. Bottom
left: The tree structure in a simulation with the treelet transform. Bottom right: The loadings of the three
dominant treelets.

3.2 The Treelet Transform as a Feature
Selection Scheme Prior to Regression

Now consider a typical regression or classification
problem with a training set {xi, yi}n

i=1, from Eqs. (5)
and (6). Since the data x is noisy, this is an error-in-
variables type problem. Given the finite training set
the goal is to construct a linear function f : Rp → R
to predict ŷ = f(x) for a new observation x. In
typical applications, the number of variables is much
larger than the number of observations (p À n).
Two common approaches to overcome this problem in-
clude principal component regression (PCR) and par-
tial least squares (PLS). Both methods first perform a
global dimensionality reduction from p to k variables,
and then apply linear regression on these k features.
The main limitation of these global methods is that the
computed projections are noisy themselves, see [3, 4].
In fact, the averaged prediction error of these methods
has the form [4]

E{(ŷ − y)2} ' σ2

‖vy‖2
[
1 +

c1

n
+

c2 σ2

µ‖vy‖2
p2

n2
(1 + o(1))

]

(16)
where ‖vy‖ is the norm of the orthogonal response vec-
tor of y (see Eq. 19 for an example), µ is a measure of
the variance and covariance of the components ui, and
c1, c2 are both O(1) constants, independent of σ, p, n.
This formula shows that when p À n the last term in
(16) can dominate and lead to large prediction errors,
thus emphasizing the need for robust feature selection
and dimensionality reduction of the underlying noise-
free data prior to application of learning algorithms
such as PCR and PLS.

Variable selection schemes, and specifically those that
choose a small subset of variables based on their in-
dividual correlation with the response y are also com-
mon approaches to dimensionality reduction in this
setting. To analyze their performance we consider a
more general transformation T : Rp → Rk defined by

k orthonormal projections wi,

Tx = (x ·w1,x ·w2, . . . ,x ·wk) (17)

This family of transformations includes variable selec-
tion methods, where each projection wj selects a sin-
gle variable, as well as wavelet-type methods and our
treelet transform. Since an orthonormal projection of
a Gaussian noise vector in Rp is a Gaussian vector in
Rk, the prediction error in the new variables admits
the form

E{(ŷ−y)2} ' σ2

‖Tvy‖2
[
1 +

c1

n
+

c2 σ2

µ‖Tvy‖2
k2

n2
(1 + o(1))

]

(18)
Eq. (18) indicates that a dimensionality reduction
scheme should ideally preserve the signal vector of y
(‖Tvy‖ ' ‖vy‖) while at the same time representing
the signals by as few features as possible (k ¿ p).
The main problem of PCA is that it optimally fits
the noisy data, yielding for the noise-free response
‖Tvy‖/‖vy‖ ' (1 − Cσ2p2/n2). The main limitation
of variable selection schemes is that in complex set-
tings with overlapping vectors vj , such schemes may
at best yield ‖Tvy‖/‖vy‖ = r < 1. However, due
to high dimensionality, variable selection schemes may
still achieve better prediction errors than methods that
use all the original variables. If the data x is apri-
ori known to be smooth continuous signals, then this
feature selection can be done by wavelet compression,
which is known to be asymptotically optimal. In the
case of unstructured data, we propose to use treelets.

We present a simple example and compare the perfor-
mance of treelets to the variable selection scheme of
[13] for PLS. Specifically, we consider a training set of
n = 100 observations from (5) in p = 2000 dimensions
with σ = 0.5, K = 3 components and y = u1, where
u1 = ±1 with equal probability, u2 = I(U2 < 0.4),
u3 = I(U3 < 0.3) where I(x) is the indicator of x,
and Uj are all independent uniform random variables



100 200 300 400 500
0

0.5

1

Vectors v
1
,v

2
,v

3

coordinate
50 100 150

−0.5

0

0.5

Orthogonal Vector v
y

coordinate
0 10 20

0

0.05

0.1

0.15

0.2

simulation number

Prediction Errors

Figure 3: Left: The vectors v1 (blue), v2 (red), and v3 (green). Center: The vector vy (only first 150
coordinates are shown, the rest are zero). Right: Averaged prediction errors of 20 simulation results for the
methods from top to bottom: PLS on all variables (blue), supervised PLS with variable selection (purple), PLS
on treelet features (green), PLS on projections onto the true vectors vi (red).

in [0,1]. The vectors vj are shown in figure 3 (left).
In this example, the two vectors v1 and v2 overlap.
Therefore, the response vector unique to y, known in
chemometrics as the net analyte signal, is given by (see
Fig. 3, center)

vy = v1 − v1 · v2

‖v2‖2 v2 (19)

To compute vy, all the 100 first coordinates are
needed. However, a feature selection scheme that
chooses variables based on their correlation to the re-
sponse will pick the first 10 coordinates and then most
of the next 40. Variables numbered 51 to 100, although
critical for prediction of the response y = u1, are un-
correlated with it (as u1 and u2 are uncorrelated) and
are thus not chosen. In contrast, even in the presence
of moderate noise, the treelet algorithm correctly joins
together the subsets of variables 1-10, 11-50, 51-100
and 201-400. The rest of the variables, which contain
only noise are combined only at much higher levels in
the treelet algorithm, as they are asymptotically un-
correlated. Therefore, using only coarse-grained sum
variables in the treelet transform yields near optimal
prediction errors. In Fig. 3 (right) we plot the mean
squared error of prediction (MSEP) for 20 different
simulations tested on an independent test set of 500
observations. The different methods are PLS on all
variables (MSEP=0.17), supervised PLS with vari-
able selection as in [13] (MSEP=0.09), PLS on the 50
treelet features with highest variance, with the level of
the treelet determined by leave-one-out cross valida-
tion (MSEP=0.035), and finally PLS on the projection
of the noisy data onto the true vectors vi (MSEP =
0.030). In all cases, the optimal number of PLS projec-
tions (latent variables) is also determined by leave-one-
out cross validation. Due to the high dimensionality
of the data, choosing a subset of the original variables

performs better than full-variable methods. However,
choosing a subset of treelet features performs even bet-
ter yielding almost optimal errors (σ2/‖vy‖2 ≈ 0.03).

3.3 A Classification Example with an
Internet-Ad Dataset

We conclude with an application of treelets on the in-
ternet advertisement dataset [14], from the UCI ML
repository. After removal of the first three continuous
variables, this dataset contains 1555 binary variables
and 3278 observations, labeled as belonging to one of
two classes. The goal is to predict whether a new sam-
ple (an image in an internet page) is an internet ad-
vertisement or not, given values of its 1555 variables
(various features of the image).

With standard classification algorithms, one can eas-
ily obtain a generalization error of about 5%. For ex-
ample, regularized linear discriminant analysis (LDA),
with the additional assumption of a diagonal covari-
ance matrix, achieves an average misclassification er-
ror rate of about 5.5% for a training set of 3100 ob-
servations and a test set of 178 observations (the av-
erage is taken over 10 randomly selected training and
test sets). Nearest neighbor classification with k = 1
achieves a slightly better performance with an error
rate of roughly 4%.

This data set, however, has several distinctive proper-
ties that are clearly revealed if one applies the treelet
algorithm as a pre-processing step prior to learning:
First of all, several of the original variables are exactly
linearly related. As the data is binary (-1 or 1), these
variables are either identical or with opposite values.
In fact, one can reduce the dimensionality of the data
from 1555 to 760 without loss of information. (Such
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a lossless compression reduces the error rate of LDA
slightly, to roughly 4.8%, while the error rate of k-NN
obviously remains the same). Furthermore, of these re-
maining 760 variables, many are highly related. There
are more than 200 distinct pairs of variables with a cor-
relation coefficient larger than 0.95. Not surprisingly,
treelets not only reduce the dimensionality but also
increase the predictive performance on this dataset.
In figure 4 a plot of the LDA error on the 200 high-
est variance treelet features is shown as a function of
the level of the tree. As seen from the graph, at a
treelet level of L = 450 the error of LDA is decreased
to roughly 4.2%. Similar results hold for k-NN, where
the error is decreased from 4% for the full dimensional
data to around 3.3% for a treelet-compressed version.
The above results with treelets are competitive with
recently published results on this data set using other
feature selection methods in the literature [15].

3.4 Summary and Discussion

To conclude, in this paper we presented treelets – a
novel construction of a multi-resolution representation
of unstructured data. Treelets have many potential
applications for dimensionality reduction, feature ex-
traction, denoising etc, and enable use of wavelet-type
methods including wavelet-packets and joint best ba-
sis, to unstructured data. In particular, we presented
a few simulated examples of situations where treelets
outperform other common dimensionality reduction
methods (e.g. linear mixture models with overlapping
loading vectors or correlated components). We have
also shown the potential applicability of treelets on
real data sets for a specific example with an internet-
ad dataset.
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