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Abstract

Adaptation of statistical classifiers is criti-
cal when a target (or testing) distribution
is different from the distribution that gov-
erns training data. In such cases, a classifier
optimized for the training distribution needs
to be adapted for optimal use in the target
distribution. This paper presents a Bayesian
“divergence prior” for generic classifier adap-
tation. Instantiations of this prior lead to
simple yet principled adaptation strategies
for a variety of classifiers, which yield su-
perior performance in practice. In addition,
this paper derives several adaptation error
bounds by applying the divergence prior in
the PAC-Bayesian setting.

1 Introduction

Many statistical learning techniques assume that
training and test samples are generated from the same
underlying distribution. Often, however, an “un-
adapted classifier” is trained on samples drawn from a
training distribution that is close to but not the same
as the target (or testing) distribution. Moreover, in
many applications, while there may be essentially an
unlimited amount of labeled “training data,” only a
small amount of labeled “adaptation data” drawn from
the target distribution is available. The problem of
adaptation, then, is to utilize the unadapted classifier
and the limited adaptation data to obtain a new classi-
fier optimized for the target distribution. For example,
in speech and handwriting recognition, an unadapted
classifier may be trained on a database consisting of
samples from an enormous number of users. The tar-
get distribution would correspond only to a specific
user, from whom it would be unrealistic to obtain a
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large amount of labeled data. A system, however,
should be able to quickly adapt to that user using as
small an amount of adaptation data as possible. Note
that in our setting, the training data is no longer avail-
able at adaptation time — the only information pre-
served from training is the unadapted classifier; this
happens often in real-world scenarios, where an end
user can hardly afford to store and manipulate a large
amount of training data directly.

The adaptation problem studied in this paper can
be considered as a special setting of multi-task learn-
ing [IL2Z,B,4] in that learning the unadapted and the
adapted model can be viewed as two related tasks. In
our paradigm, however, we are only concerned with
the performance of the target task rather than the
“average” performance over all tasks. In fact, there
has been a large amount of practical work on adapta-
tion developed under similar assumptions. Adaptation
of generative models, such as Gaussian mixture mod-
els (GMM), has been vastly investigated in the area
of speech recognition [BL6]. Regarding discriminative
classifiers, different adaptation strategies have been
proposed for support vector machines (SVMs) [7,8],
multi-layer perceptrons (MLPs) [I,2 @], and condi-
tional maximum entropy (MaxEnt) models [T0]. While
these algorithms have demonstrated empirically the ef-
fectiveness of adaptation in various tasks, it is interest-
ing to ask whether there is a principled approach that
unifies these different treatments. Moreover, a more
fundamental question would be whether we can relate
the adaptation sample complexity to the divergence
between training and target distributions.

This work makes an initial attempt to answer these
questions.  We utilize the concept of “accuracy-
regularization”, where we use a Bayesian “divergence
prior” (on the function space) as the regularizer. In
this regard, our method is strongly related to hierarchi-
cal Bayesian inference, e.g. [[T]. The key difference is
that our proposed prior is essentially a posterior deter-
mined by a training distribution rather than by a train-



ing set. This formulation unifies adaptation strategies
for a variety of classifiers, and relates the adaptation
error bounds to the divergence between training and
target distributions in the PAC-Bayesian setting.

2 Inductive learning vs. adaptation

Throughout this paper, all densities are taken w.r.t.
the Lebesgue measure in their respective spaces. We
assume that (x,y) € X x Y is a pair of random vari-
ables where X is a feature space and Y = {+£1} is
a set of class labels (binary in our case). Taking the
Bayesian perspective, we further assume that a deci-
sion function (or a classifier) f € F: X — )Y is a
random variable and that it has a “standard prior”
distribution 7(f) (which has to be chosen before see-
ing any training or test data, often based on do-
main knowledge). A fundamental problem in inductive
learning is to find such an f that minimizes the true

risk Rp(x.)(f) = Ep(x,) [Q(f (%), )] under certain loss
function Q(-) (e.g. 0-1 loss, log loss, or hinge loss).

A key assumption in inductive learning is that train-
ing and test samples are generated from the same un-
derlying distribution. This paper is interested in the
case where the target sample distribution, denoted
by p®(x,y), varies from that of training, denoted by
pi"(x,y). We formulate the adaptation problem as
follows: given a training distribution p'"(x,y) and a
function space F with a finite VC dimension [12], we
assume the availability of an “unadapted classifier”
(learned from a sufficiently large amount of training
data), which is an approximately correct estimate of

ftr S arfgern]:in Rp“‘(x,y) (f)a (1)

In this paper, we let fi" denote the unadapted model
for simplicity. Secondly, we assume that m adaptation
samples are drawn, in an i.i.d. fashion, from a target
distribution,

,Dgrii = {(Xi7 yi)l(xi7 yi) ~ pad(xv y)}y;l? (2)

which we call “adaptation data”. The goal of adap-
tation is to produce an adapted classifier f that is
as close as possible to our desired decision function
fed € argmin ¢z Rped(x ) (f), by combining the two
sources of information f and D2,

There are two extreme strategies for learning f . First,

we can train a classifier that minimizes the empirical
. A

risk Remp(f) = £ 37, Q(f(xi), vi), (xi,5:) € DL,

but this might cause overfitting when m is small. At

the other extreme, we can simply let f = %", but this

might yield a high empirical risk on D%, especially

m

when p??(x, y) significantly differs from p'"(x,y). This

work seeks a strategy between these two extremes in
which one would hope to achieve better performance.

3 A Bayesian divergence prior

As mentioned in the introduction, we propose to use
an “accuracy-regularization” objective for adaptation,
where we minimize the empirical risk on the adap-
tation data while maximizing a Bayesian “divergence
prior” pg;y (f) (which will be defined shortly). This di-
vergence prior should be distinguished from the stan-
dard prior 7(f) in that the latter is chosen before train-
ing the unadapted model, whereas the former is chosen
after the unadapted model is obtained. Specifically,
our adaptation objective is as follows,

mfin Remp(f) - A lnpdiv(f) (3)

where A is a regularization coeflicient, and the diver-
gence prior pg;y (f) is defined as

lnpdiv(f) = Ep”(x,y)[lnp(f|x7 y)] +7 (4)

In this definition, p®"(x,y) again is the training dis-
tribution, p(f|x,y) is the posterior probability of a
classifier given a sample (which will be discussed in
detail in the following subsections), and v is a nor-
malization constant such that pg;,(f) sums to unity.
This prior essentially can be viewed as an approximate
posterior probability of a classifier given a training dis-
tribution. The reason we choose such a prior is that, as
will be seen shortly, pg;,(f) incorporates information
from both the standard prior m(f) and the unadapted
model f", and that it assigns higher probabilities to
classifiers “closer to” f!". More importantly, this prior
analytically relates pq;, (f¢) (the prior probability of
the desired classifier), and hence the generalization er-
ror bound at f®, to the divergence between training
and target distributions.

Our adaptation objective in Equation (B), therefore,
becomes a tradeoff between fitting the adaptation data
and staying “close” to the unadapted classifier. Next,
we discuss its instantiations for generative and discrim-
inative classifiers respectively.

3.1 Generative classifiers

We first study classifiers using generative models,
which have long been used in speech, text, vision
and bioinformatics applications. In such a case, the
function space F consists of generative models f that
describe the sample distribution p(x,y|f) (here we
slightly abuse notation by letting f denote a generative
model instead of a decision function). The classifica-
tion decision is made via argmax, .y, In p(x, y| f). If we
use Q(-) = —Inp(x,y|f), the unadapted model f" in



Equation () is the true model generating the train-
ing distribution, i.e., p(x, y|ft") = p'"(x,y). Similarly,
we have p(x,y|f%?) = p*(x,y). Note that by doing
this, we implicitly assume that our function space F
contains the true generative models in both cases.

Furthermore, applying Bayes rule, the posterior prob-
ability in Equation ) can be expressed as

pylf)n(f) _  pxylf)w(f)
p(x,y) [ o(x, ylf)m(f) df

where 7(f) is again the standard prior chosen before
seeing the training data. Plugging Equation (@) into
) leads to the following theorem,

p(f|xa y) =

(5)

Theorem 3.1 For generative classifiers, the diver-
gence prior defined in Equation ) satisfies

—D(px, ylf " )Np(x,ylf)) + Inw(f) +(ﬁ)
6

1npdiv(f) =

where 3 > 0 is a normalization constant.

Proof
Inpgiy(f) = E;()<x y\|f“)“)[ér}§)(f|)(( y)]|;¥
- N p(x s P,y "
= Bt G gy
= —D(xylf")lp(x ylf) +1n7f(f)

|
Ip(x7 y)) +

Letting 8 2 D(p(x, y|")||p(x,y)) + 7, we have

)|
+D(p(x,y| )|

—_

~ [painrar

- / exp{—D(p(x, 4 F™) |p(x, yl ) + I (f) + B} df

< [ewlinn(s) + 51 df = exp

The inequality follows since D(p(x, y|f*")||p(x,y|f)) >
0 with equality achieved only at f = f*". Therefore
we have 3>0. |1

This result explains why we use the term “divergence
prior”; the prior is essentially determined by the KL-
divergence between the sample distribution generated
by the unadapted model and that generated from the
model of interest, and it favors those models “simi-
lar to” the unadapted model. In particular, we in-
spect the prior probability of our desired model, i.e.,
In iy (F°0) = —D(p!||p)-+In 7(f24)+8, from which
we can draw some intuitive insights about why using
the divergence would help. As implied in the above
equation, if D(p'"||p??) < B, we have pgj,(f?9) >
7(f?), and thus we are more likely to learn the de-
sired model using the divergence prior than using only
the standard prior. Since 3 > 0, there must exist dis-
tributions p®@ for which the above statement is true.

Consequently, our adaptation objective for generative
classifiers becomes

min Remp (f)+AD(p(x, ylf (1) = An(f) (7)
When 7(f) is uniformfl], this objective asks to minimize
the empirical risk as well as the KL-divergence between
the joint distributions.

The divergence prior, and hence the corresponding
adaptation objective, can be easily derived if a joint
distribution p(x,y|f) has a close-form KL-divergence.
An important example is a class-conditional d-
dimensional Gaussian distribution, i.e. p(x|y iy =
N(x; 1y, 3y7) and p(xly, f) = N(x; py, ¥y). We also
define the class prior probabilities p(y| f”) = wl/ and
p(y|f) = wy. Thus f is represented by (wy, tiy, Xy). In
this case,

D(p gx YLyl f) =
Z 2%y (tr(ztrz D)+ (1 —ﬂztf)TE;l(“y

““(||EE§}||)‘§> Sy
)

If 7(f) is uniform, we see that the prior of the class-
conditional parameter (u,,%,) becomes a normal-
Wishart distribution.  This prior has long been
used in MAP estimation of Gaussian models due to
its tractable mathematical properties as a conjugate
prior. Here we have derived it from the perspective of
KL-divergence. In fact, we can show that the KL-
divergence, and hence the divergence prior, can be
conveniently calculated if the class-conditional distri-
bution p(z|y, f) belongs to the exponential family.

— )

In practice, mixture models are more useful for their
ability to approximate arbitrary distributions. Math-
ematically, p(x|y, f) = >, cy.xP(X|y, k, f), where ¢y 1,
k = 1..K, are component responsibilities for class y.
There is no close-form solution to the KL-divergence
of mixture models. However, we can derive an upper
bound on the KL-divergence, and hence a lower bound
on the divergence prior, using log sum inequality.

D(p(x,ylf")|lp(x,y/f)) <
ZW" ZC" (p(x|y, k, f7)l[p(xy,

+ Zwtr thr ln

m(k), f))
—i— Zw” ln —

9)
where (m(1),...,m(K)) is any permutation of
(1,...,K). Since the above inequality holds for an ar-
bitrary alignment of the mixture components, we can

! Although improper on unbounded support, a uniform
prior does not cause problems in a Bayesian analysis as long
as the posterior corresponding to this prior is integrable.



always choose the alignment, based on the similarity
between the mixture components, that yields the min-
imum KL-divergence in order to tighten the bound.

3.2 Discriminative Classifiers

Generative approaches are suboptimal from a classi-
fication point of view, as they ask to solve a more
difficult density estimation problem. Discriminative
approaches, which directly model the conditional rela-
tionship of class label given input features, often give
better classification performance. One class of dis-
criminative classifiers, including MLPs, SVMs, CRFs
and conditional MaxEnt models, can be viewed as
hyperplane classifiers in a transformed feature space:
f(x) = sgn (whp(x) +b), where f is represented
by (w,b) and ¢(:) is a nonlinear transformation. In
MLPs, for example, ¢(x) is represented by hidden neu-
rons, and in SVMs ¢(x) is implicitly determined by a
reproducing kernel. Here we use x to represent fea-
tures for consistency, but x can be readily replaced by
¢(x) for nonlinear cases. Moreover, a logistic function

1
T 1 ¥ e y(WTxb)

pylx, f)

is often used to model conditional distributions in such
classifiers (while a softmax function is often used for
the multi-class case). Note that although kernel ma-
chines such as SVMs in general do not explicitly model
p(y|x, f), there have been methods to fit SVM outputs
to a probability function using a sigmoid function [I3].
Here we assume that p(y|x, f) exists in all cases in the
form of Equation (IT).

(10)

The function space F, therefore, consists of conditional
models f, and the classification decision is made via
argmax, ¢y In p(y|z, f). Analogous to our discussion
on generative classifiers, if we use Q(-) = — Inp(y|x, f),
the unadapted model obtained in Equation () is the
true model that describes the conditional distribution
in training, i.e., p(y|x, f") = p'"(y|x); and similarly
p(ylx, f249) = p®(y|x). Furthermore, the posterior
probability can be expressed as

~plylx, fp(f,x)

p(ylx, f)m(f)
p(f|X, y) - p(X7 y)

[y, f)m(f) df
(11

where f and x are assumed to be independent vari-
ables. This factorization leads to a result analogous
to Theorem BIF assuming that pt(x,y) is known, the
divergence prior for discriminative classifiers becomes

=D(p(ylx, f")Ip(ylx, ) +In7(f) + 3
(12)

Inpgiy(f) =

where 3 > 0.

The training distribution p'"(x,y), however, is some-
times unknown to discriminative models (the only in-

formation preserved from training is " which reflects
only the conditional distribution in this case), thereby
making D(p(y|x, f")||p(y|x, f)) uncomputable. The
major goal of this subsection is to derive an upper
bound on D(p(y|x, fi")||lp(y|x, f)), and hence a lower
bound on the divergence prior, that does not require
the knowledge of p'"(x,y). Then we use this bound
instead of Inpgy;, (f) in the adaptation objective.

Plugging Equation () into Equation ([[J), we arrive
at the following theorem.

Theorem 3.2 For hyperplane classifiers wIx+b, the
divergence prior in Equation () satisfies

I pgip(f) = —allw—w|[—=[b=b"|+In7(f)+5 (13)
where o = Eper () [||x]]].

14+a
1+0b

Dlplylx, f)llp(yk, f)
1+ efy(w x+b)
— _ tr
- fp (X7 y) ln 1 e—y(waTx-i—bfT)
S y)ly(w — W) Tx 4+ y(b — ') dx dy

lw = w' || [p" (x)[Ix]| dx + [b = ™|
afw—wrl[+[p-0" N

Proof Using the fact that |In | <|lna—Inbd|,

dx dy

IIVANIVAN

(14)

Hence, the accuracy-regularization objective becomes

, A A i
mflnRemp(f)‘F?l”W—Wt |\+72|b—bt | = In7(f)

(15)
where A1 and A\ are regularization coefﬁcientsE Next,
we apply this objective to MLP and SVM adaptation.
We focus on these two classifiers because we have not
noticed similar adaptation work in the literature (while
a similar approach to conditional MaxEnt model adap-
tation can be found in [10]).

MLP adaptation

Equation ([[3) can be applied to the adaptation of the
hidden-to-out layer of a binary MLP, where we the
log loss in optimization and we let A;=Xo=A. We can
extend this to a multi-class, two-layer MLP where we
regularize the input-to-hidden weight matrix Wjap, (in-
cluding the offsets) and the hidden-to-output matrix
Whoo with separate tradeoff coefficients v and A, and
we regularize using the squared f2-norm. Note that we
apply such a regularizer to the input-to-hidden (i.e.,

2The choice of using one or two such coefficients is one of
experimental design. We choose two here to derive results
later in the paper as will be seen.



first) layer only because we have found it to be practi-
cally advantageous (it works well, and it is mathemat-
ically easy) — the regularizer on Wiy, is not derived
from our divergence.

min Remp (Wh207 Wi?h)
Whao,Wizn

A - v - (16)
+(310Wh0 — Wi + 5 1Wian — W5 )

where || A||? = tr(AAT). In fact, Equation (IH) is akin
to training an MLP with weight decay if zeros are used
as the unadapted weights.

SVM adaptation

Secondly, we apply Equation ([[H) to SVM adapta-
tion, which utilizes the hinge loss Q(f(x¢),y:) = |1 —
yt (Wl ¢(x¢) + b)|+ in optimization, and we let Ay = 0.
Applying constrained optimization and using the “ker-
nel trick”, we obtain the optimal decision function:

m
f(x) =sgn <Z a;yik(xi,x) + Z all Yk (xY, x)) )
i=1 j
(17)
,y§") are support vectors from the un-
adapted model with coefficients a?, which are fized
during adaptation. Optimal «; are solved in the dual
space using the adaptation data only, where the num-
ber of new support vectors is controlled by A; in ([H).
Alternatively, since the support vectors from the un-
adapted model are available at adaptation time, we
can update both «; and a‘;T in (@) by performing op-
timization on both the old support vectors and the
adaptation data with the constraint }_,al"y" = 0.
These two algorithms will be referred to as “regular-
ized I” and “regularized II” in our experiments in Sec-
tion Bl Before we evaluate these algorithms, we derive
generalization error bounds for adaptation in the PAC-
Bayesian framework.

tr
where (x

4 PAC-Bayes Error Bound Analysis

A fundamental problem in machine learning is to study
the generalization performance of a classifier in terms
of an error bound or, equivalently, a sample complexity
bound. A PAC-Bayesian approach [I4] incorporates
domain knowledge in the form of a Bayesian prior and
provides a guarantee on generalization error regard-
less of the truth of the prior. In this work, we are
particularly interested in how well an adapted classi-
fier generalizes to unseen data drawn from the target
distribution. We derive the error bounds by using our
proposed prior in the PAC-Bayesian setting. Specifi-
cally, for a countable function space, we apply Occam’s
Razor bound (Lemma 1 in [I4]) which bounds the true

error of a single classifier; while for a continuous func-
tion space, we apply McAllester’s PAC-Bayes bound
(Theorem 1 in [I4]) which bounds the true stochastic
error of a Gibbs classifier.

It is important to note that, although we may apply
different loss functions Q(-), usually surrogates (and
mostly upper bounds) of the 0-1 loss [I5], in actually
training a classifier, we use the 0-1 loss in evaluating
error bounds in all cases below. In other words, we

have R(f) = Epad(x,y) [I(f(x) 7é y)]7 and Remp(f) =
% 221 I(f(x5) # vi), (xi,9:) € D in the following
text.

4.1 An Occam’s Razor adaptation bound

The Occam’s Razor bound (Lemma 1 in [I4]) states
that for a countable function space, for any prior dis-
tribution 7(f) and for any f for which #(f) > 0, the
following bound holds with probability of at least 1—4,

—Iln7(f) —Ind

R(f) < Remp(f) + o

(18)
For adaptation, we replace the standard prior w(f)
in Equation ([[8) by our proposed divergence prior
Pdiv(f) for a countable function space of generative
models. Based on Theorem Bl and the Occam’s Ra-

zor bound, the following bound holds true with prob-
ability of at least 1 — 6,

R(f) € Remp(f)
+\/D(p(xvylf”)llp(xyylf)) —Inn(f)—B—1Iné

2m

(19)

This result has important implications: for the set of
classifiers G = {f € F : D((p(x,y|f*")llp(x. y|f)) <
(B}, their error bounds in Equation (&) which use
the divergence prior are tighter than those in Equa-
tion ([8) which use the standard prior. Since 8 > 0, G
is always nonempty. For classifiers in the complemen-
tary set G, however, we reach the opposite argument.
An important question to ask is: in which set does our
estimated classifier belongs? We are particularly inter-
ested in £, i.e., the optimal classifier w.r.t. the tar-
get distribution. If D(p'"|[p*®) < 3, we have f*¢ € G
and we achieve better generalization performance at
2 by using the divergence prior. Recall that 3 nor-
malizes p-(f) to unity. This constant can be ana-
lytically calculated for certain models (e.g. Gaussian
models), while approximations are needed for general
cases. Additionally, we can derive a similar bound
for discriminative classifiers, where the divergence in
Equation () is between conditional distributions in-
stead of joint distributions.



4.2 Adaptation bounds for Gibbs classifiers

McAllester’s PAC-Bayesian bound for Gibbs classi-
fiers is applicable to both countable and uncount-
able function spaces. A Gibbs classifier is a stochas-
tic classifier drawn from a posterior distribution
q(f). Consequently the true and empirical risks also
become stochastic in the form of E;.4[R(f)] and
Ef~q[Remp(f)]. McAllester’s PAC-Bayesian bound
[4] states that for any prior distribution 7(f) and any
posterior distribution ¢(f), the following holds with
probability 1 — 6:

Equ[ (f)] < Equ[Remp(f)]
+\/ (q(H)llm(f)) —Ind +Inm+2 (20)

2m —1

The choice of a prior distribution 7(f) is again crit-
ical in order to achieve a small error bound. Intu-
itively we should choose a distribution 7(f) such that
Efr[Remp(f)] is small. As a ramification of this the-
orem, PAC-Bayesian margin bounds have been devel-
oped which provide theoretical foundations for SVMs
[16]. The key idea involves choosing a prior 7(f) and
a posterior ¢(f) such that, in addition to our intu-
ition above, it is easy to compute D(q(f)||w(f)) and
Efq[Remp(f)]. Usually ¢(f) is chosen to be in the
same family as 7(f).

In this section, we obtain the error bounds for adap-
tation in a similar fashion as [I6], but with simpler
derivations. Since the derivation requires specifica-
tion of a classifier, we first investigate generative Gaus-
sian models where only Gaussian means are adapted.
We further assume equal class prior probabilities
wi=w_=1/2, equal covariance matrices ¥ =%_ =",
and opposite means p=—p_=pu, thereby leading to
a linear decision boundary. In such a case, f is rep-
resented by p. We make such assumptions only to
simplify the calculation of the stochastic error in this
work, while similar bounds can be derived for more
general cases.

McAllester’s PAC-Bayesian bound allows to choose
any prior distribution and posterior distribution. Here
we use pgjy (f) as the prior distribution, where we as-
sume a uniform 7(f) and renormalize pg;, (f) accord-
ingly. The resulting prior is a Gaussian centered at
the unadapted means [u!", —u!"]7. Furthermore, we
define the posterior distribution ¢(f) to be a Gaussian
centered at some means [u’, —u']T. Mathematically,
Pdiv(f) = N(p; p*",2"7), and q(f) = N (s o/, 27). Tt
is easy to compute the KL-divergence

Dla()Ipain () = 50

which gives the second term in Equation ). On the
other hand, to calculate Eq[Remp(f)]), we first in-
spect the decision function regarding sample (x;,y:),

T Til T
— IS (= ')

segn (y;xI X
thrfl

1
1)
- is a uni-

e., sgn (yi(pg — N—)thrilxi) =
Since q(u) = N(up', X)), y
variate Gaussian with mean yxTEtTillu' and vari-
ance (yxTStrHntr (yxTstr T = xTst 'x. The
stochastic empirical risk hence becomes

Ef~q[Remp(f )]
thr_

= — Z EMNN (s’ Zm)[I(inl

1= 1

1
= — ZEtNN(tyl Tyytr =1y X?Etr—lxi)[l(t < 0)]

- ()
(21)

s2
e~ 7 ds, and (x;,y;) € D

< 0)

_ [ _1
where F(t) = L ﬁ
In conclusion, to adapt Gaussian means in the above
setting, for any choice of i/, the following bound holds
true with probability at least 1 — 4.

LQn gl sy
E:. [R <= F(———2———
ral RS 0 P
1 —
5(#’ . Mtr)TEtr l(ﬂl _ Mtr) —Ind+Inm+2
+
2m —1

(22)

Lastly, we derive an adaptation error bound for hy-
perplane classifiers w”'x + b, which is an important
representative for discriminative classifiers (see Sec-
tion B2). In this case, f = (w,b) where we assume
that w and b are independent variables. We use a
Gaussian prior p(f) centered at (w'”,b'"). Note that
the choice of this prior relates to previous work on
margin bounds; [I6] used a Gaussian prior centered
at zero, and [I7] estimated Gaussian priors from pre-
vious training subsets for incremental learning. The
key difference is that we choose a Gaussian centered
at the unadapted parameters. Furthermore, we choose
a posterior ¢(f) in the same family. Mathematically,
p(w,b) = N(w;wi I) - N(b;b'",1), and g(w,b) =
N(w;w', I) - N(b; b, 1).

Following the derivation in our previous example, we
arrive at the following result: for any choice of (w’,b’),

the following bound holds true with probability at
least 1 — 4.

yi(xiw' + 1)

1 m
Eq(p)[Rpeey) ()] < — (—F——
HW/—WtTHQ—I—|b/—th|2
2

)

—Inéd+Inm+2

+

2m —1
(23)

where F(t) = [, e ds, and (x;,y;) € D

1
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|#adapt. samples || 0.8K | 1.6K | 2.4K |

Unadapted 38.21 | 38.21 | 38.21
Retrained 24.70 | 18.94 | 14.00
Boosted 29.66 | 26.54 | 28.85
Regularized 1 23.28 | 19.01 | 15.00
Regularized 11 28.55 | 25.38 | 20.36

Table 1: Adaptation of a SVM vowel classifier; The
highlighted entries include the best error rate and
those not significantly different at the p < 0.001 level
using a difference of proportions significant test (the
same below).

| # adapt. samples || 0.8K | 1.6K | 2.4K |

Unadapted 32.03 | 32.03 | 32.03
Retrained zero 14.21 | 11.20 | 9.09
Retrained W 12.15 | 9.64 | 7.88
Retrained last 15.45 | 13.32 | 11.40

Regularized 11.56 | 8.16 | 7.30

Table 2: Adaptation of an MLP vowel classifier; The
highlighted entries include the best error rate and
those not significantly different at th e p < 0.001 level.

5 Experiments

This section evaluates the adaptation algorithms de-
rived from the divergence prior, i.e., Equation () and
Equation ([@). We present classification experiments
using adapted SVMs and MLPs, as well as a simula-
tion of empirical error bounds on Gaussian models.

5.1 Vowel classification

Our first task involves a dataset of 8 vowel classes ar-
ticulated in different manners (by varying pitch, vol-
ume and duration) [I8]. We used 182 cepstral fea-
tures (from 7 frames of 16kHz waveforms). Our tar-
get was to perform speaker adaptation and evaluate
frame-level vowel classification error rates. The train-
ing/testing set had 420K /200K samples. But in train-
ing an unadapted SVM, we used only 80K samples
randomly selected from the training set for computa-
tional tractability. For each speaker in the testing set,
we performed 6-fold adaptation-evaluation, where each
adaptation/evaluation set had 2.4K /12K samples. We
repeated the same experiments for 10 test speakers,
and computed the average error rates.

We first adapted an SVM classifier with fixed Gaus-
sian kernels, and compared the following SVM adap-
tation algorithms: (1) “unadapted”; (2) “retrained”
using only adaptation data; (3) “boosted” which com-
bines the old support vectors with misclassified adap-
tation data [7]; (4) “regularized I” which follows Equa-

|#adaptati0n samples || 90 | 180 |

Unadapted 12.5 | 12.5
Retrained 30.1 | 18.9
Boosted 12.1 | 10.7
Regularized 1 14.8 | 13.4
Regularized 11 11.0 | 104

Table 3: adaptation of a SVM object classifier; The
highlighted entries include the best error rate and
those not significantly different at the p < 0.001 level.

tion ([[d); and (5) “regularized II” which updates "
as well. In this task, where it was easy to obtain
adaptation data (100 samples correspond only to a
1-second utterance), our adaptation data sizes were
relatively large, and the “retrained” classifier in gen-
eral works well, as shown in Table [l “Regularized I”,
however, had a statistically significant gain over “re-

trained” when the adaptation data size was restricted.

Secondly, we implemented a two-layer MLP with 50
hidden neurons, and compared MLP adaptation al-
gorithms including: (1) "unadapted”; (2) ”retrained
zero” which learns a new MLP from randomly ini-
tialized weights and regularizes with weight decay;
(3) "retrained W which starts from the unadapted
weights; (4) "retrained last” which fixes the first layer
and retrains the second layer (akin to [I]); and (5)
"regularized” which starts from the unadapted weights
and regularizes as in Equation (). As shown in Ta-
blel] our proposed adaptation algorithm gave superior
performance in all cases.

5.2 Object recognition

Our second task was on an object recognition dataset
comprised of 5 generic classes (animals, human figures,
airplanes, trucks and cars), each with 10 objects [T9].
The images of each object were captured from 18 an-
gles and under 6 lighting conditions (a subset of [19]).
The training and testing set each had 2700 samples.
We conducted similar n-fold adaptation-evaluation ex-
periments, where each adaptation set had either 90 or
180 samples for each lighting condition, and the re-
maining 450 or 360 samples, under the same lighting
condition, were used for evaluation.

We compared the SVM adaptation algorithms listed in
the vowel classification experiments. As shown in Ta-
bleBl, on this data set where the adaptation sample size
was extremely small, both "boosted” and “regularized
II” worked remarkably well as they incorporate more
information from the training data. We also tried us-
ing an MLP classifier, and the regularized adaptation
had only a trivial improvement over the unadapted
classifier.
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Figure 1: Empirical error bound study: § vs. logm for
e = 0.02 (upper figure) and € = 0.1 (lower figure)

5.3 Simulations of empirical error bounds

We simulated empirical adaptation error bounds for a
Gaussian model classifier. Given an unadapted model,
and an adaptation set with m samples randomly gener-
ated from a target distribution, we learned an adapted
classifier using our regularized adaptation objective in
Equation (), where the log joint likelihood loss and a
uniform 7 (f) were used, and X’s for different m’s were
discovered using a development set with 5K samples.
We computed the empirical error Remp on the adap-
tation set, and estimated the true error R on a testing
set with 10K samples, both corresponding to the 0-1
loss. We then estimated 6 = E[I(R > Remp + €)] using
1K separate runs (10K samples each). Figure 1 plots
0 vs. logm for ¢ = 0.02 and ¢ = 0.1 with different
D(p'"||p*?) and m on simulated 2D-Gaussians. The
A = 0 line corresponds to retraining from scratch (no
adaptation), and also to large KL-divergences, as then
optimal A discovery produces A = 0. Although we
do not yet have a theoretical result to bound R(f) by
Remp(f) in the Gaussian model case, as the function
space is continuous (Section El), we have empirically
shown that fewer samples were needed for smaller KL
values to achieve the same confidence 6.

The authors would like to thank Patrick Haflner for
useful comments.
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