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Abstract

The Support Vector Machine (SVM) has
become one of the most popular ma-
chine learning techniques in recent years.
The success of the SVM is mostly due
to its elegant margin concept and the-
ory in binary classification. Generaliza-
tion to the multicategory setting, how-
ever, is not trivial. There are a num-
ber of different multicategory extensions
of the SVM in the literature. In this pa-
per, we review several commonly used ex-
tensions and Fisher consistency of these
extensions. For inconsistent extensions,
we propose two approaches to make them
Fisher consistent, one is to add bounded
constraints and the other is to truncate
unbounded hinge losses.

1 Background on Binary SVM

The Support Vector Machine (SVM) is a well
known large margin classifier and has achieved
great success in many applications (Vapnik, 1998,
Cristianini and Shawe-Taylor, 2000, and Hastie,
Tibshirani, and Friedman, 2000). The basic con-
cept behind the binary SVM is to search a separat-
ing hyperplane with maximum separation between
the two classes.

Suppose a training dataset containing n training
pairs {xi, yi}n

i=1, i.i.d realizations from a proba-
bility distribution P (x, y), is given. The goal is
to search for a linear function f(x) = w

′
x + b so

that sign(f(x)) can be used for prediction of la-
bels for new inputs. The SVM aims to find such
an f so that points of class +1 and points of class
−1 are best separated. In particular, for the sepa-
rable case, the SVM’s solution maximizes the dis-
tance between f(x) = ±1 subject to yif(xi) ≥ 1;
i = 1, . . . , n. This distance can be expressed as

2
‖w‖ and is known as the geometric margin.

When perfect separation between two classes is not
feasible, slack variables ξi; i = 1, . . . , n, can be used

to measure the amount of violation of the original
constraints. Then the SVM solves the following
optimization problem:

min
w,b

1
2
‖w‖22 + C

n∑

i=1

ξi (1)

s.t. yif(xi) ≥ 1− ξi, ξi ≥ 0,∀i,
where C > 0 is a tuning parameter which balances
the separation and the amount of violation of the
constraints.

Optimization formulation in (1) is also known as
the primal problem of the SVM. Using the La-
grange multipliers, (1) can be converted into an
equivalent dual problem as follows:

min
α

1
2

n∑

i,j=1

yiyjαiαj〈xi,xj〉 −
n∑

i=1

αi(2)

s.t.
n∑

i=1

yiαi = 0; 0 ≤ αi ≤ C, ∀i.

Once the solution of problem (2) is obtained, w
can be calculated as

∑n
i=1 yiαixi and the intercept

b can be computed using the Karush-Kuhn-Tucker
(KKT) complementary conditions of the optimiza-
tion theory. If nonlinear learning is needed, one
can apply the kernel trick by replacing the inner
product 〈xi, xj〉 by K(xi,xj), where the kernel K
is a positive definite function. This amounts to ap-
plying linear learning in the feature space induced
by the kernel K to achieve nonlinear learning in
the original input space.

It is now known that the SVM can be fit in the reg-
ularization framework (Wahba, 1998) as follows:

min
f

J(f) + C

n∑

i=1

[1− yif(xi)]+, (3)

where the function [1− u]+ = 1− u if u ≤ 1 and 0
otherwise and it is known as the hinge loss function
(see Figure 1). The term J(f) is a regularization
term and in the linear learning setting, it becomes
1
2‖w‖22 which is related to the geometric margin.

Denote P (x) = P (Y = 1|X = x). Then a bi-
nary classifier with loss V (f(x), y) is Fisher consis-
tent if the minimizer of E[V (f(X), Y |X = x] has
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Figure 1: Plot of the hinge loss H1(u) = [1− u]+.

the same sign as P (x)− 1/2. Clearly, Fisher con-
sistency requires the loss function asymptotically
yields the Bayes decision boundary. Fisher consis-
tency is also known as “classification-calibration”
(Bartlett et al., 2006). For the SVM, Lin (2002)
shows that the minimizer of E[[1−Y f(X)]+|X =
x] is sign(P (x)− 1/2) and consequently the hinge
loss of the SVM is Fisher consistent. Interest-
ingly, the SVM only targets on the classification
set {x : P (x) ≥ 1/2} without estimating P (x)
itself.

Extending the binary SVM to multicategory SVM
is not trivial. In this paper, we first review four
common extensions in Section 2. Fisher consis-
tency of different extensions will be discussed in
Secion 3. Among the four extensions, three exten-
sions are not always Fisher consistent. In Sections
4 and 5, we propose to use bounded constraints
and truncation to derive Fisher consistent analogs
of different losses discussed in Section 2. Some dis-
cussions are given in Section 6.

2 Multicategory SVM

The standard SVM only solves binary problems.
However, it is very often for one to encounter mul-
ticategory problems in practice. To solve a multi-
category problem using the SVM, one can use two
possible approaches. The first approach is to solve
the multicategory problem via a sequence of binary
problems, e.g., one-versus-rest and one-versus-one.
The second approach is to generalize the binary
SVM into a simultaneous multicategory formula-
tion. In this paper, we will focus on the second
approach.

Consider a k-class classification problem with k ≥
2. When k = 2, the methodology to be dis-
cussed here reduces to the binary counterpart in
Section 1. Let f = (f1, f2, · · · , fk) be the deci-
sion function vector, where each component rep-

resents one class and maps from S to <. To
remove redundant solutions, a sum-to-zero con-
straint

∑k
j=1 fj = 0 is employed. For any new

input vector x, its label is estimated via a deci-
sion rule ŷ = argmaxj=1,2,··· ,kfj(x). Clearly, the
argmax rule is equivalent to the sign function used
in the binary case in Section 1.

The extension of the SVM from the binary to mul-
ticategory case is nontrivial. Before we discuss the
detailed formulation of multicategory hinge loss,
we first discuss Fisher consistency for multicate-
gory problems. Consider y ∈ {1, . . . , k} and let
Pj(x) = P (Y = j|x). Suppose V (f(x), y) is a
multicategory loss function. Then in this con-
text, Fisher consistency requires that argmaxjf

∗
j =

argmaxjPj , where f∗(x) = (f∗1 (x), . . . , f∗k (x)) de-
notes the minimizer of E[V (f(X), Y )|X = x].
Fisher consistency is a desirable condition of a loss
function, although a consistent loss may not al-
ways translate into better classification accuracy
(Hsu and Lin, 2002, Rifkin and Klautau, 2004).

For simplicity, we only focus on standard learn-
ing where all types of misclassification are treated
equally. The proposed techniques, however, can
be extended to more general settings with unequal
losses. Note that a point (x, y) is misclassified by
f if y 6= argmaxjfj(x). Thus a sensible loss V
should try to force fy to be the maximum among
k functions. Once V is chosen, multicategory SVM
solves the following problem

min
f

k∑

j=1

J(fj) + C

n∑

i=1

V (f(xi), yi) (4)

subject to
∑k

j=1 fj(x) = 0.

The key of extending the SVM from binary to mul-
ticategory is the choice of loss V . There are a num-
ber of extensions of the binary hinge loss to the
multicategory case proposed in the literature. We
consider the following four commonly used exten-
sions and their Fisher consistency or inconsistency
will be discussed. For inconsistent losses, we pro-
pose two methods to make them Fisher consistent.

(a). (Naive hinge loss, c.f., Zou et al. 2006) [1 −
fy(x)]+;

(b). (Lee et al., 2004)
∑

j 6=y[1 + fj(x)]+;

(c). (Vapnik, 1998; Weston and Watkins, 1999;
Bredensteiner and Bennett, 1999; Guermeur,
2002)

∑
j 6=y[1− (fy(x)− fj(x))]+;

(d). (Crammer and Singer, 2001; Liu and Shen,
2006) [1−minj(fy(x)− fj(x))]+.

Note that the constant 1 in these losses can be
changed to a general positive value. However, the
resulting losses will be equivalent to the current
ones by re-scaling f .
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As a remark, we note that the sum-to-zero con-
straint is essential for Losses (a) and (b), not so
for Losses (c) and (d). It is easy to see that all
these losses try to encourage fy to be the maximum
among k functions, either explicitly or implicitly.
In the next section, we explore Fisher consistency
of these four multicategory hinge loss functions.

3 Fisher Consistency of
Multicategory Hinge Losses

In this section, we discuss Fisher consistency of all
four losses. We would like to clarify here that some
of the Fisher consistency results are already avail-
able in the literature. There are previous studies
on Fisher consistency of multicategory SVMs such
as Zhang (2004), Lee et al. (2004), Tewari and
Bartlett (2005), and Zou et al. (2006). The goal
of this paper is to first review Fisher consistency or
inconsistency of these losses and then explore ways,
motivated from the discussions in this section, to
modify inconsistent extensions to be consistent.

Inconsistency of Loss (a):

Lemma 1. The minimizer f∗ of E[[1 −
fY (X)]+|X = x] subject to

∑k
j fj(x) = 0 sat-

isfies the following: f∗j (x) = −(k − 1) if j =
argminjPj(x) and 1 otherwise.

Proof: E[[1 − fY (X)]+] = E[
∑k

l=1[1 −
fl(X)]+Pl(X)]. For any fixed X = x, our goal
is to minimize

∑k
l=1[1− fl(x)]+Pl(x).

We first show the minimizer f∗ satisfies f∗j ≤ 1 for
∀j = 1, . . . , k. To show this, suppose a solution
f1 having f1

j > 1. Then we can construct another
solution f2 with f2

j = 1 and f2
l = f1

l + A, where
A = (f1

j − 1)/(k − 1) > 0. Then
∑

l f
2
l = 0 and

f2
l > f1

l ; ∀l 6= j. Consequently,
∑k

l=1[1−f2
l ]+Pl <∑k

l=1[1 − f1
l ]+Pl. This implies that f1 cannot be

the minimizer. Therefore, the minimizer f∗ satis-
fies f∗j ≤ 1 for ∀j.
Using the property of f∗, we only need to con-
sider f with fj ≤ 1 for ∀j. Thus,

∑k
l=1[1 −

fl(x)]+Pl(x) =
∑k

l=1(1 − fl(x))Pl(x) = 1 −∑k
l=1 fl(x)Pl(x). Then the problem reduces to

max
f

k∑

l=1

Pl(x)fl(x) (5)

subject to
k∑

l=1

fl(x) = 0; fl(x) ≤ 1, ∀l. (6)

It is easy to see that the solution satisfies f∗j (x) =
−(k − 1) if j = argminjPj(x) and 1 otherwise.

From Lemma 1, we can see that Loss (a) is not
Fisher consistent since except the smallest element,
all remaining elements of its minimizer are 1. Con-
sequently, the argmax rule cannot be uniquely de-

termined and thus the loss is not Fisher consistent
when k ≥ 3 no matter how the Pj ’s are distributed.

Consistency of Loss (b):

Lemma 2. The minimizer f∗ of E[
∑

j 6=Y [1 +

fj(X)]+|X = x] subject to
∑k

j fj(x) = 0 satisfies
the following: f∗j (x) = k − 1 if j = argmaxjPj(x)
and −1 otherwise.

Proof: Note that E[
∑

j 6=Y [1 + fj(X)]+] =
E[E(

∑
j 6=Y [1 + fj(x)]+|X = x)]. Thus, it is suffi-

cient to consider the minimizer for a given x and
E(

∑
j 6=Y [1 + fj(x)]+|X = x) =

∑k
l=1

∑
j 6=l[1 +

fj(x)]+Pl(x).

Next, we show the minimizer f∗ satisfies f∗j ≥ −1
for ∀j = 1, . . . , k. To show this, suppose a so-
lution f1 having f1

j < −1. Then we can con-
struct another solution f2 with f2

j = −1 and f2
l =

f1
l − A, where A = (−1 − f1

j )/(k − 1) > 0. Then∑
l f

2
l = 0 and f2

l < f1
l ; ∀l 6= j. Consequently,∑k

l=1

∑
j 6=l[1 + f2

j ]+Pl <
∑k

l=1

∑
j 6=l[1 + f1

j ]+Pl.
This implies that f1 cannot be the minimizer.
Therefore, the minimizer f∗ satisfies f∗j ≥ −1 for
∀j.
Using the property of f∗, we only need to con-
sider f with fj ≥ −1 for ∀j. Thus,

∑k
l=1

∑
j 6=l[1+

fj ]+Pl =
∑k

l=1 Pl

∑
j 6=l(1 + fj) =

∑k
l=1 Pl(k− 1 +∑

j 6=l fj) =
∑k

l=1 Pl(k−1−fl) = k−1−∑k
l=1 Plfl.

Consequently, minimizing
∑k

l=1

∑
j 6=l[1 + fj ]+Pl

is equivalent to maximizing
∑k

l=1 Plfl. Then the
problem reduces to

max
f

k∑

l=1

Pl(x)fl(x) (7)

subject to
k∑

l=1

fl(x) = 0; fl(x) ≥ −1, ∀l.(8)

It is easy to see that the solution satisfies f∗j (x) =
k − 1 if j = argmaxjPj(x) and −1 otherwise.

Lemma 2 implies that Loss (b) yields the
Bayes classification boundary asymptotically, con-
sequently it is a Fisher consistent loss. A similar
result was also established by Lee et al. (2004).

Inconsistency of Loss (c):

Lemma 3. Consider k = 3 with 1/2 > P1 > P2 >
P3. Then minimizer(s) of E[

∑
j 6=Y [1− (fY (X)−

fj(X))]+|X = x] is(are) as follows:

• P2 = 1/3: Any f∗ = (f∗1 , f∗2 , f∗3 ) satisfying
f∗1 ≥ f∗2 ≥ f∗3 and f∗1 −f∗3 = 1 is a minimizer.

• P2 > 1/3: f∗ = (f∗1 , f∗2 , f∗3 ) satisfying f∗1 ≥
f∗2 ≥ f∗3 , f∗1 = f∗2 , and f∗2 − f∗3 = 1.

• P2 < 1/3: f∗ = (f∗1 , f∗2 , f∗3 ) satisfying f∗1 ≥
f∗2 ≥ f∗3 , f∗2 = f∗3 , and f∗1 − f∗2 = 1.
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Proof: Note that E[
∑

j 6=Y [1 − (fY (X) −
fj(X))]+|X = x] can be rewritten as∑k

l=1 Pl

∑
j 6=l[1 − (fl(x) − fj(x))]+. By the

non-increasing property of [1− u]+, the minimizer
f∗ must satisfy f∗1 ≥ . . . ≥ f∗k if P1 ≥ . . . Pk.

Next we focus on k = 3. Consider f1 ≥ f2 ≥ f3

with f1 − f2 = A ≥ 0 and f2 − f3 = B ≥ 0. Then
the objective function becomes

L(A,B) = P1[[1−A]+ + [1− (A + B)]+](9)
+P2[1 + A + [1−B]+] (10)
+P3[1 + A + B + 1 + B]. (11)

Before proving the lemma, we first need to prove
that the minimizer must satisfy that A + B ≤ 1.
To this end, we prove it in two steps: (1) A ≤ 1,
B ≤ 1; (2) A + B ≤ 1.

To prove (1), suppose that the minimizer satis-
fies A > 1. Using contradiction, we can con-
sider another solution f1 with A1 = A − ε > 1
with ε > 0 and B1 = B. It is easy to see that
L(A− ε, B) < L(A,B). Thus, the minimizer must
have A ≤ 1. Similarly, we can show B ≤ 1.

To prove (2), we know A ≤ 1 and B ≤ 1 by prop-
erty (1). Suppose the minimizer have A + B > 1.
Using contradiction, consider another solution f1

with A1 +B1 = A+B− ε > 1 and A1 = A− ε and
B1 = B. Then by the fact that P1 < P2 + P3, we
have

L(A1, B1)−L(A, B) = P1ε−P2ε−P3ε < 0. (12)

This implies A + B ≤ 1.

Using properties (1) and (2), minimizing L(A,B)
can be reduced as follows:

min
A,B

(−2P1 + P2 + P3)A + (−P1 − P2 + 2P3)B

s.t. A + B ≤ 1, A ≥ 1, B ≥ 1. (13)

If P2 = 1/3, then (−2P1 +P2 +P3) = (−P1−P2 +
2P3) < 0. Therefore, the solution of (13) satisfies
A + B = 1, implying f∗1 − f∗3 = 1. If P2 > 1/3,
then 0 > (−2P1 + P2 + P3) > (−P1 − P2 + 2P3)
and consequently the solution satisfies A = 0 and
B = 1, i.e., f∗1 = f∗2 and f∗2 − f∗3 = 1. If P2 < 1/3,
then 0 > (−P1 − P2 + 2P3) > (−2P1 + P2 + P3)
and consequently the solution satisfies A = 1 and
B = 0, i.e., f∗1 − f∗2 = 1 and f∗2 = f∗3 . The desired
result then follows.

Lemma 3 tells us that Loss (c) may be Fisher in-
consistent. In fact, in the case of k = 3 with
1/2 > P1 > P2 > P3, Loss (c) is Fisher consis-
tent only when P2 < 1/3.

Remark: Lee et al. (2004) considered a spe-
cial case with P2 > 1/3. Our Lemma 3 here
is more general. Interestingly, for the case of
P2 = 1/3, there are infinite minimizers al-
though the loss is convex. For example, if

(P1, P2, P3) = (5/12, 1/3, 1/4), both (1/2, 0,−1/2)
and (1/3, 1/3,−2/3) are minimizers. In general,
one cannot claim uniqueness of the minimizer un-
less the objective function to be minimized is
strictly convex.

Inconsistency of Loss (d):

Denote g(f(x), y)) = {fy(x) − fj(x); j 6= y} and
H1(u) = [1 − u]+. Then Loss (d) can written as
H1(min g(f(x), y)).
Lemma 4. The minimizer f∗ of
E[H1(min g(f(X), Y ))|X = x] has the fol-
lowing properties:
(1). If maxj Pj > 1/2, then argmaxjf

∗
j =

argmaxjPj and min g∗(f(x), argmaxjf
∗
j ) = 1;

(2). If maxj Pj < 1/2, then f∗ = 0.

Proof: Note E[H1(min g(f(X), Y ))] can be writ-
ten as

E[E(H1(min g(f(x), Y ))|X = x)]

= E[
k∑

j=1

Pj(X)H1(min g(f(X), j))]

= E[
k∑

j=1

Pj(X)(1−min g(f(X), j))+].

For any given X = x, let gj = min g(f(x), j);
j = 1, · · · , k. The problem reduces to minimizing∑k

j=1 Pj(1− gj)+. To prove the lemma, we utilize
two properties of the minimizer f∗: (1) The mini-
mizer satisfies max g∗j ≤ 1; (2) Let j0 = argmaxg∗j .
For ∀l 6= j0, g∗l equals to −max g∗j = −g∗j0 . Using
property (1), we have

k∑

j=1

Pj(1− g∗j )+ = 1−
k∑

j=1

Pjg
∗
j .

Therefore, minimizing
∑k

j=1 Pj(1− g∗j )+ is equiv-

alent to maximizing
∑k

j=1 Pjg
∗
j . Using property

(2), the problem reduces to

max
f

(2Pj0 − 1)gj0 for gj0 ∈ [0, 1].

Clearly, the minimizer satisfies the following condi-
tions: If Pj0 > 1/2, gj0 = 1; if Pj0 < 1/2, gj0 = 0.
The desired result of the lemma then follows.

We are now left to show the two properties of f∗.
Property (1): The minimizer f∗ satisfies max g∗j ≤
1.
To show this property, we note (1 − g∗j0)+ = 0 for
g∗j0 ≥ 1. However, for l 6= j0,

min
j 6=l

{f∗l − f∗j } = f∗l − f∗j0

≤ −min
l 6=j0

{f∗j0 − f∗l }
= −g∗j0 = −max g∗j , (14)

which is less than −1 if max g∗j > 1. Therefore, f∗

cannot be a minimizer if max g∗j > 1. Property (1)
then follows.
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Property (2): For ∀l 6= j0, g∗l equals to −max g∗j =
−g∗j0 .
Since g∗l ≤ −g∗j0 for ∀l 6= j0 as shown in (14), to
maximize

∑k
j=1 Pjg

∗
j , property (2) holds.

Lemma 4 suggests that H1(min g(f(x), y)) is
Fisher consistent when maxj Pj > 1/2, i.e., when
there is a dominating class. Except for the Bayes
decision boundary, this condition always holds for
a binary problem. For a problem with k > 2, how-
ever, existence of a dominating class may not be
guaranteed. If maxj Pj(x) < 1/2 for a given x,
then f∗(x) = 0 and consequently the argmax of
f∗(x) cannot be uniquely determined. The Fisher
inconsistency of Loss (d) was also noted by Zhang
(2004) and Tewari and Bartlett (2005).

4 A Consistent Hinge Loss with
Bounded Constraints

In Section 3, we show that Losses (a), (c), and
(d) may not always be Fisher consistent while in
contrast, Loss (b) is always Fisher consistent. An
interesting observation we have is that although
Loss (a) is inconsistent while Loss (b) is consistent,
the reduced problems (5) and (7) in the derivation
of their asymptotic properties are very similar. In
fact, the only difference is that Loss (b) has the
constraint fl(x) ≥ −1 for ∀l, and in contrast, Loss
(a) has the constraint fl(x) ≤ 1 for ∀l. Our obser-
vation is that one can add additional constraints
on f to force Loss (a) to be consistent. In fact,
if additional constraints fj ≥ −1/(k − 1) for ∀j
are imposed on (5), then the minimizer becomes
f∗j (x) = 1 if j = argmaxjPj(x) and −1/(k − 1)
otherwise. Consequently, the corresponding loss is
Fisher consistent.

To be specific, we can modify the scale of Loss (a)
and propose the following new loss:
[k − 1 − fy(x)]+ subject to

∑k
j fj(x) = 0 and

fl(x) ≥ −1 for ∀l.
Clearly, this loss can be reduced to

(e). −fy(x) subject to
∑k

j fj(x) = 0 and
−1 ≤ fl(x) ≤ k − 1 for ∀l.

Consistency of Loss (e):
Lemma 5. The minimizer f∗ of E[−fY (X)], sub-
ject to

∑k
j fj(x) = 0 and −1 ≤ fl(x) ≤ k − 1

for ∀l, satisfies the following: f∗j (x) = k − 1 if
j = argmaxjPj(x) and −1 otherwise.

Proof: The proof is analogous to that of Lemma
1. It is easy to see that the problem can be reduced
to

max
f

k∑

l=1

Pl(x)fl(x) (15)

s.t.
k∑

l=1

fl(x) = 0;−1 ≤ fl(x) ≤ k − 1, ∀l.

f(x)=−1

f(x)=1

f(x)=0

Figure 2: Illustration of the binary SVM classifier
using the hinge loss (a).

f(x)=−1

f(x)=1f(x)=0

Figure 3: Illustration of the binary SVM classifier
using the bounded hinge loss (e).

Thus, the solution satisfies f∗j (x) = k − 1 if j =
argmaxjPj(x) and −1 otherwise.

It is worthwhile to point out that Losses (b) and
(c) can be reduced to Loss (e) using bounded con-
straints. Specifically, for Loss (b), if −1 ≤ fl(x) ≤
k − 1 for ∀l and

∑k
l=1 fl(x) = 0, then

∑
y 6=j [1 +

fj ]+ =
∑

y 6=j(1+fj) = k−1−fy. Thus, it is equiv-
alent to Loss (e). For Loss (c), we can rewrite it in
an equivalent form as

∑
j 6=y[k− (fy − fj)]+. Then

if −1 ≤ fl(x) ≤ k − 1, ∀l and
∑k

l=1 fl(x) = 0,∑
j 6=y[k − (fy − fj)]+ =

∑
j 6=y(k − (fy − fj)) =

k(k − 1) − kfy. Thus, it is equivalent to Loss (e)
as well.

As a remark, we want to point out that the con-
straint −1 ≤ fl(x) ≤ k−1 for ∀l can be difficult to
implement for all x ∈ S. For simplicity of learning,
we suggest to relax such constraints on all train-
ing points only, that is −1 ≤ fl(xi) ≤ k − 1 for
i = 1, . . . , n and l = 1, . . . , k. Then we have the
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following multicategory learning method:

min
f

k∑

j=1

‖fj‖22 − C

n∑

i=1

fyi
(xi) (16)

s.t.
k∑

j

fj(xi) = 0; fl(xi) ≥ −1;

l = 1, . . . , k, i = 1, . . . , n.

To further understand learning using the proposed
Loss (e), we discuss the binary case with y ∈ {±1}.
Recall in the separable case, the standard SVM
tries to find a hyperplane with maximum sepa-
ration, i.e., the distance between f(x) = ±1 is
maximized. As we can see Figure 2, only a small
subset of the training data, the so called support
vectors, determines the solution. In contrast, us-
ing the relaxed bounded constraints in Loss (e)
amounts to forcing f(xi) ∈ [−1, 1] for all train-
ing points. As a result, in the separable case,
this new classifier tries to find a hyperplane so
that the total “distance” of all training points to
the classification boundary,

∑n
i=1 yif(xi), subject

to f(xi) ∈ [−1, 1]; i = 1, . . . , n, is maximized as
shown in Figure 3. Thus, all points play a role
in determining the final solution. In summary, we
can conclude that Loss (e) aims for a different clas-
sifier from that of Loss (a) due to the bounded
constraints.

Note that in contrast to the notion of support vec-
tors of the SVM, the new classifier in (16) utilizes
all training points to determine its solution, as il-
lustrated in Figure 3. In order to make the classi-
fier sparse in training points, one can select a frac-
tion of training points to approximate the classi-
fier using the whole training set without jeopardiz-
ing the performance in classification. Using such
a sparse classifier may help to reduce the compu-
tational cost, especially for large training datasets.
The idea of Import Vector Machine (IVM, Zhu and
Hastie, 2005) may be proven useful here.

Although Losses (a), (b) and (c) can all be reduced
to Loss (e) using bounded constraints, Loss (d)
appears to behave differently. Currently, we are
not able to make Loss (d) Fisher consistent using
bounded constraints due to special properties of
the min function. In Section 5, we propose to use
truncation to make Loss (d) Fisher consistent.

5 Fisher Consistent Truncated
Hinge Loss

In many applications, outliers may exist in the
training sample and unbounded losses can be sen-
sitive to such points (Shen et al. 2003, Liu et al,
2005, Liu and Shen, 2006). The hinge loss is un-
bounded and truncating unbounded hinge losses
may help to improve robustness of the correspond-
ing classifiers. In this section, we explore the idea

−3 0 1 3
0

1

2

3

4

z

H
1

−3 s 0 3
0

1

2

3

4

z

H
s

−3 s 0 1 3
0

1

2

3

4

z

T s

Figure 4: The left, middle, and right panels display
functions H1(u), Hs(u), and Ts(u) respectively.

of truncation on Loss (d). We show that the trun-
cated version of Loss (d) can be Fisher consistent
for certain truncating locations.

Define Ts(u) = H1(u) − Hs(u). Then
Ts(min g(f(x), y)) with s ≤ 0 becomes a trun-
cated version of Loss (d). Figure 4 shows functions
H1(u), Hs(u), and Ts(u). We first show in Lemma
6 that for a binary problem, Ts is Fisher consis-
tent for any s ≤ 0. For multicategory problems,
truncating H1(min g(f(x), y)) can make it Fisher
consistent even in the situation of no dominating
class as shown in Lemma 7.

The following lemma establishes Fisher consis-
tency of the truncated hinge loss Ts for the binary
case:

Lemma 6. The minimizer of E[Ts(Y f(X))|X =
x] has the same sign as P (x)− 1/2 for any s ≤ 0.

Proof: Notice E[Ts(Y f(X))] =
E[E(Ts(Y f(X))|X = x)]. We can
minimize E[Ts(Y f(X))] by minimizing
E(Ts(Y f(X))|X = x) for every x.

For any fixed x, E(Ts(Y f(X))|X = x) can be
written as P (x)Ts(f(x)) + (1 − P (x))Ts(−f(x)).
Since Ts is a non-increasing function, the mini-
mizer f∗ must satisfy that f∗(x) ≥ 0 if P (x) > 1/2
and f∗(x) ≤ 0 otherwise. Thus, it is sufficient
to show that f = 0 is not a minimizer. With-
out loss of generality, assume P (x) > 1/2, then
E(Ts(0)|X = x) = 1. Consider another solu-
tion f(x) = 1. Then E(Ts(Y f(X))|X = x) =
(1 − P )Ts(−1) ≤ 2(1 − P ) < 1 for any s ≤ 0.
Therefore, f(x) = 1 gives a smaller value of
E(Ts(Y f(X))|X = x) than f(x) = 0, which im-
plies that f = 0 is not a minimizer. We can
then conclude that f∗(x) has the same sign as
P (x)− 1/2.

Truncating Loss (d):

Lemma 7. The minimizer f∗ of
E[Ts(min g(f(X), Y ))|X = x] satisfies that
argmaxjf

∗
j = argmaxjPj, for any s ∈ [− 1

k−1 , 0].

Proof: Note that E[Ts(min g(f(X), Y ))] =
6



E[
∑k

j=1 Ts(min g(f(X), j)Pj(X))]. For any given

x, we need to minimize
∑k

j=1 Ts(gj)Pj where gj =
min g(f(x), j). By definition and the fact that∑k

j=1 fj = 0, we can conclude that maxj gj ≥ 0
and at most one of gj ’s is positive. Let jp sat-
isfy that Pjp

= maxj Pj . Then using the non-
increasing property of Ts, the minimizer f∗ sat-
isfies that g∗jp

≥ 0.

We are now left to show that g∗jp
6= 0, equiv-

alently that 0 cannot be a minimizer. To this
end, assume Pjp

> 1/k and consider another so-
lution f0 with f0

jp
= (k − 1)/k and f0

j = −1/k

for ∀j 6= jp. Then g0
jp

= 1 and g0
j = −1 for

∀j 6= jp. Clearly,
∑k

j=1 Ts(g0
j )Pj ≤ (1 + 1/(k −

1))(1 − Pjp
) < 1. Therefore, f0 gives a smaller

value of
∑k

j=1 Ts(gj)Pj than 0 and consequently
g∗jp

> 0. The desired result then follows.

Remark: The truncation operation can be ap-
plied to many other losses such as Loss (b). De-
note H∗

s (u) = [u − s]+. Then Loss (b) can be
expressed as

∑k
j=1 I(y 6= j)H∗

−1(fj(x)). Define
T ∗s (u) = H∗

−1(u) − H∗
s (u) for s ≥ 0. Then the

truncated version of Loss (b) becomes
∑k

j=1 I(y 6=
j)T ∗s (fj(x)). It can be shown that the truncated
loss (b) is Fisher consistent for any s ≤ 0 (Wu and
Liu, 2006a).

6 Discussion

Fisher consistency is a desirable property for a
loss function in classification. It ensures the cor-
responding classifier delivers the Bayes classifica-
tion boundary asymptotically. Consequently, we
view Fisher consistency a necessary property for
any “good” loss to have.

In this paper, we focus on the method of the SVM
and discuss Fisher consistency of several commonly
used multicategory hinge losses. We study four dif-
ferent losses and three out of four are Fisher incon-
sistent. For Fisher inconsistent losses, we propose
two methods to make them Fisher consistent.

Our first approach is to add bounded constraints
to force the corresponding hinge loss to be always
Fisher consistent. This results in a very interesting
new loss (Loss (e)) and a new learning algorithm.
In contrast to the notion of support vectors in the
standard SVM, the new classifier utilizes all points
to determine the classification boundary. Imple-
mentation of the new loss involves convex mini-
mization and solves a similar quadratic program-
ming problem as that of the standard SVM. For
our future research, we will explore performance of
the new classifier and compare it with the standard
SVM both theoretically and numerically. With
Fisher consistency of the new loss for both binary
and multicategory problems, we believe this new
classifier is promising.

Our second approach is to use truncation to make
Loss (d) Fisher consistent. Interestingly, trunca-
tion not only helps to remedy Fisher inconsistency,
it also improves robustness of the resulting clas-
sifier as discussed in Wu and Liu (2006b). One
drawback of the truncated losses, however, is that
the corresponding optimization is nonconvex. For
a truncated hinge loss, one can decompose it into a
difference of two convex functions and then apply
the d.c. algorithm (Liu et al., 2005).
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