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Abstract

We consider the semi-supervised clustering prob-
lem where we know (with varying degree of cer-
tainty) that some sample pairs are (or are not) in
the same class. Unlike previous efforts in adapt-
ing clustering algorithms to incorporate those
pairwise relations, our work is based on a dis-
criminative model. We generalize the standard
Gaussian process classifier (GPC) to express our
classification preference. To use the samples not
involved in pairwise relations, we employ the
graph kernels (covariance matrix) based on the
entire data set. Experiments on a variety of data
sets show that our algorithm significantly outper-
forms several state-of-the-art methods.

1 Introduction

There is an emerging interest in semi-supervised clustering
algorithms in the machine learning and data mining com-
munities. In addition to the data values, we assume there
are a number of instance-level constraints on cluster assign-
ment. More specially, we consider the following two types
of pairwise relations:

• Must-link constraints specify that two samples should
be assigned into one cluster.

• Cannot-link constraints specify that two samples
should be assigned into different clusters.

Figure 1 gives an illustration of pairwise relation con-
straints and how it affects clustering.

Pairwise relations naturally occur in various domains and
applications. In gene classification, our knowledge that two
proteins co-occurring in processes can be viewed as a must-
link[1]. In information retrieval, the expert critique is often
in the form “these two documents shouldn’t be in the same
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Figure 1: Pairwise relations and the clustering on in a 3-
component Gaussian mixture. (a): A must-link is specified
between samples linked by the solid line, and a cannot-link
is denoted as the dashed line. (b): The clustering suggested
by the pairwise relations shown in (a).

cluster”, which can be viewed as a cannot-link [2]. Pair-
wise relations may arise from knowledge of domain experts
[3], perceived similarity (or dissimilarity) [4], or even com-
mon sense [5]. Unfortunately, those pairwise relations are
often determined in a subjective way [2] or with significant
uncertainty [4].

Recently several authors have considered using pairwise re-
lations to achieve an intelligent grouping of data [3, 4, 5,
6, 7, 8]. However, prior to this paper, pairwise relations
were typically viewed as some kind of side information to
a traditional clustering algorithm. Most authors focused
on adapting clustering methods, such as K-means [6, 8],
or Gaussian mixture models (GMM) [5, 4], to incorporate
the pairwise relation constraints. These methods have sev-
eral inherent drawbacks associated with their basis in clus-
tering (generative) model. Most saliently, they typically
need a substantialproportion of samples involved in pair-
wise relations to give good results. Indeed, if we have the
number of relations fixed and keep adding samples with-
out any new relation, those algorithms will asymptotically
degenerate into unsupervised learning (clustering). An-
other drawback is their limited capability in modeling data
distribution within a class. On the other hand, although



discriminative-model based semi-supervised learning algo-
rithms had tremendous success in dealing with partial la-
beling [9, 10, 11], they are not directly applicable to the
pairwise situations.

In this paper, we propose a semi-supervised learning model
for pairwise relations loosely based on Gaussian process
classifiers (GPC) [12]. We choose the GPC over other dis-
criminative models such as neural networks or the SVM,
because it combines two useful properties. First, GPC
has an explicit probabilistic interpretation, which facili-
tates modeling the uncertainty associated with pairwise re-
lations. Second, the covariance matrix (kernel) used in
GPC offers a way to use a input-dependent kernel design,
and therefore utilize those samples that bear no direct label
information.

2 Gaussian Processes for Classification

For simplicity, we consider the binary classification prob-
lem. Assume we have data setX = {xi}N

i=1 from two
classes with class label{+1,−1}. The GPC assumes
a latent Gaussian processf with zero mean. Letf =
[f(x1), f(x2), ..., f(xN )]T be the values off atX, which
follows aN -dimensional Gaussian distribution:

P (f) = (2π)−N/2|K|−1/2e−f
T
K

−1
f/2 (1)

whereK ∈ R
N×N is the covariance matrix (kernel). Given

the field value at anyxi, the probability thatxi is from class
+1 is:

P (yi = +1|xi, f) =
ef(xi)

1 + ef(xi)
, (2)

with yi the class index ofxi. Let Y = {yi}N
i=1 denote the

class indices of samples inX. The likelihood of the class
labelsY , given the latent variablef , is

P (Y |f) =
N
∏

i=1

P (yi|f(xi)) =
N
∏

i=1

ef(xi)δ(yi,+1)

1 + ef(xi)
. (3)

Our efforts to harness pairwise relations consists of two
parts. First, in Section 3, we show that pairwise relations
can be treated as observations, and the corresponding like-
lihood off can be given through manipulating Equation (2)
and (3). Second, in Section 4, we discuss the prior form of
f that can exploit the samples not involved in any pairwise
relations. This design of prior is realized by using so-called
semi-supervised kernels as theK in Equation (1). In Sec-
tion 5, we propose the Semi-supervised Pairwise Gaussian
Process Classifier (SPGP) by combining our work on the
prior (Section 3) and on the likelihood (Section 4).

3 The Likelihood of Pairwise Relations

3.1 The Formula of Likelihood

In a semi-supervised scenario, we have incomplete knowl-
edge about the class label of samples: it can be a labeled

subset [13] (called partial labeling) or some pairwise re-
lations [3] such as discussed in Section 1. Consequently,
instead of one, we have aset of class assignmentsY con-
sistent with our knowledge. Taking eachY as an atomic
event, our knowledge can be equivalently expressed as a
union of all feasible eventsY, denoted asΩ. For pairwise
relations, we have

Ω = {Y|(yi = yj , ∀ (i, j) ∈ M)∧(yi 6= yj, ∀ (i, j) ∈ C},
(4)

whereM andC are respectively the set of must-links and
cannot-links. For anyΩ, the likelihood of the latent fieldf
would be the possibility thatΩ happens givenf :

P (Ω|f) =
∑

Y∈Ω

P (Y|f) =
∑

Y

{P (Ω|Y)

N
∏

i=1

ef(xi)δ(yi,+1)

1 + ef(xi)
},

(5)
whereP (Ω|Y) = 1 if Y ∈ Ω andP (Ω|Y) = 0 otherwise.

In reality, pairwise relations often come with significant un-
certainty, so it is desired forP (Ω|Y) to be asoft mem-
bership that reflects our confidence. We start with model-
ing the conditional probabilityP (Y|Ω) via the following
Gibbs distribution:

P (Y|Ω) =
1

Z1
e

P

i<j
wijδ(yi,yj) =

1

Z1

∏

i<j

ewijδ(yi,yj),

(6)
wherewij is the weight for pair(xi, xj) andZ1 is the par-
tition function. We usewij to express both the type of
pairwise relations between(xi, xj) and its confidence value
γij (> 0.5) through

ewij

1 + ewij
= γ

Lij

ij (1 − γij)
1−Lij , (7)

whereLij = 1 if (xi, xj) is specified to be must-linked,
andLij = 0 for a cannot-link. It follows from Equation (7)
thatwij > 0 for a must-link between(xi, xj), andwij < 0
for a cannot-link. We setwij = 0 if no prior knowledge is
available on pair(xi, xj). Clearly,|wij | reflects our confi-

dence since e|wij |

1+e|wij | = γij . Using the Bayesian rule, we

can getP (Ω|Y) as follows

P (Ω|Y) =
P (Y|Ω)P (Ω)

P (Y)
=

1

Z2

∏

i<j

ewijδ(yi,yj). (8)

Here we assume a uniformP (Y) = 2−N , which is the
prior probability before any information onX or Ω is
known1. In Section 3.3 we will show thatZ2 will not af-
fect the final result. From Equation (8),P (Ω|Y) is larger if
Y satisfies the specified pairwise relations (and vice versa).
When |wij | → ∞, we haveP (Ω|Y) = 0 if (yi, yj) vio-
lates the specified relation. In this case, we havehard con-
straints between(xi, xj); otherwise, the relation issoft.

1Do not confuse this assumption with the situation when co-
variance matrix forf is known. In that case,P (Y) is generally
not uniform from Equation (1) and (3).



When all specified pairwise relations are hard,P (Ω|Y) de-
generates to the extreme case described in Equation (4).
Based on Equation (8), the likelihood off defined in Equa-
tion (5) can be written as:

P (Ω|f) =
1

Z2

∑

Y

{
∏

i<j

ewij δ(yi,yj) ·
N
∏

k=1

eδ(yi,+1)f(xk)

ef(xk) + 1
}.

(9)

3.2 Approximation of P (Ω|f)

One major difficulty of our method is efficiently estimating
P (Ω|f) effectively, since direct calculation is generally in-
tractable due to the summation over allY. We first notice
that

P (Ω|f) =
1

Z2
EY{

∏

i<j

ewijδ(yi,yj)}, (10)

whereEY{·} stands for the expectation under distribution
P (Y|f). We get an approximation ofP (Ω|f), denoted
J(f , Ω), by exchanging the order of

∏

andEY in Equa-
tion (10):

J(f , Ω) =
1

Z2

∏

i<j

EY{ewijδ(yi,yj)}

=
1

Z2

∏

i<j

wij6=0

ewij{ef(xi)+f(xj)+1} + ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
.

It is easy to verify thatJ(f , Ω) = P (Ω|f) when pair-
wise relations are disjoint: each sample is involved inat
most one pairwise relation. In practice,J(f , Ω) yields a
good approximation when pairwise relations are scarce.
For comparison, we also consider another approximation
of log P (Ω|f) given by the Jensen’s inequality

log EY{
∏

i<j

ewijδ(yi,yj)} ≥ EY{log
∏

i<j

ewijδ(yi,yj)}.

In this case we get a lower bound onlog P (Ω|f):

log P (Ω|f) ≥ − log Z2+
∑

i<j

wij
ef(xi)+f(xj) + 1

(ef(xi) + 1)(ef(xj) + 1)
.

(11)
Figure 2 compareslog J(f , Ω) with the lower bound given
in Equation (11) on a toy problem. It is clear from Figure 2
(b) and (c) thatlog J(f , Ω) renders a better approximation
of log P (Ω|f).

3.3 Why Use Maximum a Posteriori (MAP) GPC

The principle Bayesian solution used for standard (super-
vised) GPC [12] integrates out the latent functionsf . How-
ever, this solution does not work for GPC when only pair-
wise relations are available, as elucidated by the following
proposition:

(a) Pairwise Relations
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Figure 2: Comparison between two approximations of
log P (Ω|f). In the toy problem, we randomly assign10
pairwise relations (with weight∼ N(0, 100) ) among12
samples. The field valuef ∈ R

12 is randomly chosen from
N(0, 25I12). (a): A typical example of pairwise rela-
tions that will be used in (b) and (c); (b): Scatter plot of
log P (Ω|f) vs. log J(f , Ω) with 1000 randomf ; (c): Scat-
ter plot of log P (Ω|f) vs. lower bound given in Equation
(11) with1000 randomf .

Proposition 1:

P (yi = +1|Ω) =

∫

RN

P (yi = +1|f , Ω)P (f |Ω)df = 0.5,

for i = 1, 2, · · · , N .

The proof of Proposition 1 is simple if one notice that
P (f |Ω) = P (−f |Ω), which can be easily verified using
Equation (1) and (9). There are two ways to stay in the
standard GPC framework. For a two-class problem, we
can break the symmetry by assigning an arbitrary sam-
ple to class+1 (or −1), but this strategy does not work
for a multi-class situation. Another choice is to calcu-
late the probabilityP (yi = yj |X, Ω) for all pair (xi, xj),
and then use this probability as a new measure of similar-
ity. However, this requiresO(N2) inferences with GPC,
and is therefore computationally undesirable. Moreover,
one has to use another similarity-based clustering algo-
rithm to get the cluster assignments for samples. In this
paper, we instead find the maximum a posteriori (MAP)2

solution of f (or equivalently the solution that minimizes
L(f)= − logP (f |Ω)). In practice we useJ(f , Ω) in place
of P (Ω|f), and optimize the following objective function:

f̂ = argmin
f

{− logJ(f , Ω) + 1/2 f
T
K

−1
f}. (12)

We know from the form ofJ(f , Ω) that Z2 only appears
in a constant termlog Z2, and therefore will not affect the

2Clearly MAP solution appears in pairs, sinceP (f |Ω) =
P (−f |Ω)



optimal solution̂f . In Section 4 and 5, we shall show that
the optimization in Equation (12) can be simplified. Once
f̂ is determined, the classification ofX is carried out with
Equation (2).

4 The Prior Probability of Latent Field f

4.1 The Role of the Unconstrained Samples

We divide the data setX into the constrained setXc =
{xi| ∃j wij 6= 0} and unconstrained setXu =
{xi|∀j wij = 0}. We want the unconstrained set to ef-
fectively influence the resulting classifier, much the same
role played by the unlabeled set in the more familiar partial
labeling scenario. Not surprisingly, this intention cannot
be realized with a conventional covariance matrix, as we
will show presently. Without loss of generality, we assume
Xc = {x1, · · · , xNc

}. Accordingly, we can decompose the
field f as follows:

f =

(

fc

fu

)

, (13)

with fc corresponding to the field values atXc and fu

the field values atXu. The covariance matrixK can
also be decomposed accordingly into four sub-matrices:

K =

(

Kc K
T
uc

Kuc Ku

)

. It can be shown that bothP (Ω|f) and

J(f , Ω) dependonly on fc. The following proposition can
be easily verified using the conditional property of Gaus-
sian variables.

Proposition 2: The solution of the problem

f̂ = arg min
f

{R(fc) +
1

2
f
T
K

−1
f}

for any lower-bounded function R can be written as f̂ =
(

f̂c

f̂u

)

, where

f̂c = argmin
fc

{R(fc) +
1

2
f
T
c K

−1
c fc} (14)

f̂u = KucK
−1
c f̂c. (15)

For a “local” kernelK [13], e.g. RBF kernel, the entry
Kij only depends onxi andxj andnot any other samples.
Proposition 2 tells us that with such a local kernelK, the
unconstrained setXu is useless for the classification based
on Equation (12). Indeed,Xu does not affect the optimiza-
tion in Equation (14) (withR(fc) set to be− log J(f , Ω)),
while in Equation (15),̂fu is simply interpolated from̂fc.
To overcome this problem, we need aK with information
of Xu encoded in the entries ofKc. Such kernels will be
referred to as semi-supervised kernels since they are typi-
cally designed to use samples bearing no label information.

4.2 Semi-supervised Kernels

Our kernel design strategy largely follows previous work
on graph kernel [13, 14]. The key difference is that we fit
the kernel to the pairwise relations, instead of some labeled
samples as in [10]. LetS be the affinity matrix ofX with
Sij = e−||xi−xj ||

2/s2

. The normalized graph Laplacian
is defined as∆ = I − D− 1

2 SD− 1

2 , whereD is a diago-
nal matrix with entryDii =

∑

j Sij . Suppose the eigen-
decomposition of∆ is:

∆ =

N
∑

i=1

µiφiφ
T
i .

We know from [11] that the eigenvectors{φi} provide the
harmonic basis with frequency indicated by the eigenvalues
{µi}. Roughly speaking, the higher frequency component
has a larger eigenvalue, and vice versa. We build a semi-
supervised kernelK based on a transform of{µi}:

K =

N
∑

i=1

g(µi)φiφ
T
i , g(µi) ≥ 0.

The regularizerfT
K

−1
f =

∑N
i=1

<f ,φi>
2

g(µi)
should restrain

the high frequency part and encourage the low frequency
part, which leads tog(µi) ≥ g(µj) for µi ≤ µj . Different
parametric forms ofg give different kernels. In this paper,
we study the following three types of kernels that have been
proposed in literature [9, 10, 15]:

• Step function kernel3:

{

λ µi ≤ µcut

0 otherwise;

• Heat Diffusion kernel:g(µi) = λe−tµi , t > 0;

• Lazy-Random-Walk kernel:4, g(µi) = λ(µi + σ2)−1.

For each chosen kernel, there are three parameters to be
decided: (1) the radiuss in the affinity matrixS; (2) the
µcut, t or σ as parameter ing(·); and (3) the scaling factor
λ. The first two parameters, denoted asΘ, can be fit to the
pairwise relationsΩ with a modified kernel-target align-
ment. In the original kernel-target alignment [16], we find
K (or equivalentlyΘ) that maximizes the alignment score:

A(K,T) =
< K,T >F√

< K,K >F < T,T >F
, (16)

whereT ∈ R
N×N is the target matrix with entryTij = 1

if yi = yj, and−1 otherwise. For binary class labels
{+1,−1}, we haveTij = yiyj . Unlike class labels,

3In practice we useK + ǫI as the kernel to make it positive
definite, hereǫ = 0.001λ.

4It is also known as Gaussian field kernel [13].



pairwise relations generally do not contain enough infor-
mation for decidingT. Instead, we try to maximize the
expectation ofA(K, T ) with respect toY: Ā(K, Ω)

.
=

∑

Y
P (Y|Ω)A(K,T). It is straightforward to verify that

Ā(K, Ω) =
1

N
< K, T̄ >F < K,K >

−1/2
F ,

where T̄ is a N × N matrix with T̄ij =
∑

yi,yj
yiyjP (yi, yj |Ω). Direct evaluation ofT̄ij can

be expensive due to the marginalization in calculating
P (yi, yj |Ω). In this paper, we use a simple approximation
for T̄ij by ignoring the pairwise relations that do not
involvesxi or xj :

T̄ij ≈
∑

yi,yj

yiyj{
ewijδ(yiyj)

1 + ewij

∏

k:wik 6= 0

wjk 6= 0

∑

yk

ewikδ(yi,yk)+wjkδ(yj ,yk)

(1 + ewik)(1 + ewjk)
}. (17)

From Equation (17), the approximation ofT̄ij is non-zero
only if wij 6= 0 or bothxi andxj connected to some sample
xk. Performing the approximation for the entireT̄ requires
O(n2) time, wheren is the number of specified pairwise
relations. This approximation is cheap since we are par-
ticularly interested in the situation wheren is small. The
scaling factorλ can not be fit in this way since it does not
affect the kernel-target alignment score. In our experiment,
we use an empiricalλ. More systemic methods, like cross
validation, are expected to yield better results.

5 Semi-supervised Pairwise Gaussian
Process Classifier

We can now combine the likelihood (and its approxima-
tion) formulated in Equation (9) and (11), and a Gaussian
prior based on the semi-supervised kernel. As mentioned
in Section 3.3, the classification is given by the MAP solu-
tion of f . According to Proposition 2, the optimization in
equation (12) can be divided into the following two steps:

step 1: f̂c = argmin
fc

{1

2
f
T
c K

−1
c fc

−
∑

wij6=0

log
ewij{ef(xi)+f(xj)+1}+ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
}

step 2: f̂u = KucK
−1
c f̂c.

HereK is one of the graph kernels, and bothK andf are
decomposed as in Section 4.1. The decomposition (step
1-step 2) effectively reduces the optimization overf to a
subsetfc, which is substantially cheaper when only a small
portion of samples are constrained.

The objective function instep 1 consists of two terms: the
empirical error

−
∑

wij 6=0

log
ewij{ef(xi)+f(xj)+1}+ef(xi)+ef(xj)

(ef(xi) + 1)(ef(xj) + 1)
,

and regularizer12 f
T
c K

−1
c fc. A closer look at the two terms

reveals that the empirical error term favors thosef that are
consistent with the pairwise relations. Indeed, ifwij > 0
(must-link), we tend to have largerJ(f , Ω) if f(xi) and
f(xj) are both large (positive) or both small (negative); if
wij < 0 (cannot-link),J(f , Ω) is larger when one off(xi)
andf(xj) is small (negative) and the other is large (posi-
tive). The regularizer term enforces a smoothf . SinceK is
non-local,Xu enters intoKc and therefore affects the opti-
mal f̂ . We solve the optimization instep 1 with the quasi-
Newton method (Matlab functionfminunc). To find a
good local optimum, we usually try multiple runs with dif-
ferent initial fc. We name the algorithm Semi-supervised
Pairwise Gaussian Process classifier (SPGP).

A visualization of SPGP solution on 2D toy problem can
be found in Figure 3. In this toy problem shown in Figure
3 (a), there exist two almost equally good partitions of data
into two groups (the upper two components + the lower
two components, or the left two components + the right
two components). The specified pairwise relations (one
must-link + two cannot-links) bias the solution towards the
latter one. With a properly designed kernel, SPGP forces
the smoothness off where the samples are dense, thus the
sign off can only change in the area where the samples are
sparse, as shown in Figure 3 (b). The result given by the
MAP solution off leads to the second partition, as shown
in Figure 3 (c).

Although in this paper we limited our discussion to two-
class cases, SPGP can be readily generalized toM -class
(M > 2) situations by usingM latent processes.

Unlike constrained clustering algorithms [3, 6, 8], SPGP
requires at least one cannot-link to work: withonly must-
links, SPGP assigns all samples into one class. This weak-
ness can be alleviated by adding into the objective function
an extra term that penalizes the unbalanced distribution of
samples among different classes. This extension will not
be discussed in this paper.

6 Experiments

We test SPGP on both artificial data and real-world data,
and compare the results with two recently proposed meth-
ods: (1) COP-Kmeans [6], a hard-clustering method based
on K-means, and (2) Penalized Probabilistic Clustering
(PPC) 5[3], a soft-clustering method based on Gaussian

5The method in [5] is equivalent to PPC with hard constraints,
so the result of it is not included.
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Figure 3: SPGP on a two-dimensional toy problem. (a) Two cannot-links (dashed line) and one must-link (solid line) are
specified on the data set. (b) A MAP solution off as function of coordinates(x, y). Note that discrete values off (the
black dots on the surface) have been interpolated to the x-y plane for visualization purpose. We used heat diffusion kernel
for this example. (c) The clustering results given by the MAPf . (see context in Section 5)

(a) Four-Gaussians (b) Xor (c) Doughnut (d) Two-Spirals

Figure 4: Artificial data sets. Classes are denoted by symbols

mixture models (GMM). The pairwise relations are ran-
domly generated. The accuracy of each clustering is cal-
culated with a confusion matrix, and we report the classi-
fication accuracy averaged over30 different realizations of
pairwise relations.

6.1 Artificial Data (Hard Constraints)

The four 2-dimensional artificial data sets (Figure 4, classes
denoted by symbols) are designed to highlight the problems
that cannot be effectively solved by centroid-based cluster-
ing algorithms. Each data set consists of two classes with
200 samples in each class. We consider the pairwise rela-
tions as highly reliable knowledge and set them to be hard
constraints. Intuitively, the classification problems pre-
sented in the first two data sets (Four-Gaussians and
Noisy-Xor ) can be solved with a constrained clustering,
like COP-Kmeans or PPC. However, it requires many pair-
wise relations to fight with the unconstrained data, which
clearly suggest a poor maximum-likelihood solution. The
other two data sets (Doughnut and Two-Spirals) are
tasks that are not achievable with a centroid-based cluster-
ing algorithm. Figure 5 shows classification results for the
four data sets with a varying number of pairwise relations.
With a small number of pairwise relations, SPGP with all

three kernels returns satisfying results, whereas PPC and
COP-Kmeans do not respond to them at all.

6.2 Real-World Data (Hard Constraints)

We also present results on six well-known real-world data
sets with different characteristics. Balance-Scale:
we use only class L and R, 576 samples, 5 dimensions;
Crab(species): 200 samples, 5 dimensions;Pima: 768
samples, 8 dimensions;1-2 and Small-Big are hand-
written digits recognition tasks with64 dimension and
around 370 samples for each digit. The1-2 contains
digits “1” and “2” in 739 samples. TheSmall-Big
is an artificial task with two classes (digits ‘1, 2, 3’ Vs.
‘7, 8, 9’) and 2307 samples. For these two tasks, we
use the first 20 principal components as the feature vec-
tor for PPC. Mac-Windows is a text classification task
from the 20-newsgroup data set consisting of 7511-dim
TFIDF vectors and 1956 samples. Among these data sets,
Crab and1-2 are relatively easy for centroid-based clus-
tering algorithms.Balance and Small-Big are exam-
ples of highly non-Gaussian distribution of samples within
each class.Pima is difficult even for sophisticated super-
vised learning methods [12].Mac-Windows has high-
dimensional and sparse feature vectors, which makes PPC
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(a) Four-Gaussians
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(b) Noisy-Xor
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(c) Doughnut
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(d) Two-Spirals

Figure 5: Classification accuracy Vs. number of relations onartificial data set result. In the legend, HDK: heat diffusion
kernel, RWK: lazy-random-walk kernel, SFK: step function kernel, PPC: Penalized Probabilistic Clustering, COP: COP-
Kmeans.
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(a) Balance
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(b) Crab (species)
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(c) Pima
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(d) 1-2
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(e) Small-Big
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Figure 6: Real-world data. Classification accuracy Vs. number of relations

and COP-Kmeans inapplicable. Therefore on this data we
only present SPGP results. Figure 6 summaries the clas-
sification results of the three methods. On all data ex-
ceptCrab, SPGP outperforms PPC and COP-Kmeans. On
Crab, SPGP is still the best when pairwise relations are
scarce (< 20) whereas PPC gives the highest classification
accuracy after 20 relations. We also notice that no single
kernel is consistently better than the others.

6.3 Real-World Data (Soft Relations)

We also consider the situation where our pairwise rela-
tions come with significant uncertainty. Here we simu-
late this uncertainty by randomly flipping the specified re-
lations with probabilityq. We assess the performance of
SPGP with soft relations (soft-SPGP) on those noisy re-

lations, and compare it with SPGP with hard constraints
(hard-SPGP), PPC with soft relations (soft-PPC), PPC with
hard constraints (hard-PPC), and COP-Kmeans. We try
two different noise levels:q = 0.1 andq = 0.2, and set
the weight of specified relations for soft-SPGP and soft-
PPC using Equation (7) withγij = q. Table 1 summarizes
the performance of the five algorithms with noisy relations
on the six real-world data sets used in Section 6.2. For
SPGP, we use the heat-diffusion kernel. In most occasions,
soft-SPGP gives the best results among all five methods. In
other occasions, hard-SPGP gives slightly better or compa-
rable results.



dataset Soft-SPGP Hard-SPGP Soft-PPC Hard-PPC COP-Kmeans
Balance q = 0.1 0.9568 0.9477 0.6406 0.6997 0.7870
(60) q = 0.2 0.9417 0.6427 0.6406 0.6846 0.7766
Crab q = 0.1 0.9030 0.9010 0.8045 0.8933 0.5933
(40) q = 0.2 0.8448 0.8520 0.6577 0.7800 0.5902
Pima q = 0.1 0.7317 0.6936 0.6510 0.6510 0.6510
(200) q = 0.2 0.7197 0.6863 0.6510 0.6510 0.6510
1-2 q = 0.1 0.9955 0.9922 0.9698 0.9684 0.9753
(30) q = 0.2 0.9902 0.9902 0.9697 0.9662 0.9740
Small-Big q = 0.1 0.9357 0.9332 0.6092 0.7201 0.6542
(40) q = 0.2 0.9176 0.6433 0.5928 0.7076 0.6487
Mac-Win q = 0.1 0.8150 0.7533 N/A N/A N/A
(40) q = 0.2 0.7799 0.5580 N/A N/A N/A

Table 1: Classification accuracy with noisy pairwise relations. Each row contains results for one data set with two different
q, and the number of relations is in the parenthesis. The bold face number is the best result among all five methods.

7 Conclusion

We proposed a semi-supervised learning method (SPGP)
for pairwise relations based on MAP Gaussian process
classifiers. The major contribution of this paper is to give
a probabilistic framework, in which classification prefer-
ence, like pairwise relations, can also be treated as ob-
servations. With this probabilistic model, we are able to
design discriminative-model based algorithms for semi-
supervised clustering with pairwise relation constraints.
Also, our model provides a natural way to encode the un-
certainty information associated with pairwise relations.
Experiments on a variety of data sets show that, compared
to traditional constrained clustering methods, our method
can achieve decent clustering with significantly fewer pair-
wise relations.
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