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Abstract

We consider the semi-supervised clustering prob-
lem where we know (with varying degree of cer-
tainty) that some sample pairs are (or are not) in
the same class. Unlike previous efforts in adapt-
ing clustering algorithms to incorporate those
pairwise relations, our work is based on a dis-
criminative model. We generalize the standard
Gaussian process classifier (GPC) to express our (a) data and 2 pairwise relations (b) clustering result
classification preference. To use the samples not

involved in pairwise relations, we employ the Figure 1: Pairwise relations and the clustering on in a 3-

graph kernels (covariance matrix) based on the ~ component Gaussian mixture. (a): A must-link is specified
entire data set. Experiments on a variety of data ~ Petween samples linked by the solid line, and a cannot-link
sets show that our algorithm significantly outper- i denoted as the dashed line. (b): The clustering suggested
forms several state-of-the-art methods. by the pairwise relations shown in (a).

cluster”, which can be viewed as a cannot-link [2]. Pair-
wise relations may arise from knowledge of domain experts
[3], perceived similarity (or dissimilarity) [4], or everom-
There is an emerging interest in semi-supervised clugterinmon sense [5]. Unfortunately, those pairwise relations are

algorithms in the machine learning and data mining comyften determined in a subjective way [2] or with significant
munities. In addition to the data values, we assume thergncertainty [4].

are a number of instance-level constraints on clusterssig ) . o
ment. More specially, we consider the following two types Re_cently seve_ral auth(_)rs hgve Con3|de_red using pairwise re
of pairwise relations: lations to achieve an intelligent grouping of data [3, 4, 5,

6, 7, 8]. However, prior to this paper, pairwise relations
were typically viewed as some kind of side information to
a traditional clustering algorithm. Most authors focused
on adapting clustering methods, such as K-means [6, 8],
e Cannot-link constraints specify that two samples O Gaussian mixture models (GMM) [5, 4], to incorporate
should be assigned into different clusters. the pairwise relation constraints. These methods have sev-
eral inherent drawbacks associated with their basis in clus
tering (generative) model. Most saliently, they typically
need a substantigkoportion of samples involved in pair-
wise relations to give good results. Indeed, if we have the
Pairwise relations naturally occur in various domains anchumber of relations fixed and keep adding samples with-
applications. In gene classification, our knowledge that tw out any new relation, those algorithms will asymptotically
proteins co-occurring in processes can be viewed as a musiegenerate into unsupervised learning (clustering). An-
link[1]. In information retrieval, the expert critique iften  other drawback is their limited capability in modeling data
in the form “these two documents shouldn’t be in the samalistribution within a class. On the other hand, although

1 Introduction

e Must-link constraints specify that two samples should
be assigned into one cluster.

Figure 1 gives an illustration of pairwise relation con-
straints and how it affects clustering.



discriminative-model based semi-supervised learning-alg subset [13] (called partial labeling) or some pairwise re-
rithms had tremendous success in dealing with partial latations [3] such as discussed in Section 1. Consequently,
beling [9, 10, 11], they are not directly applicable to theinstead of one, we havesat of class assignmen®g con-
pairwise situations. sistent with our knowledge. Taking eadh as an atomic

In this paper, we propose a semi-supervised learnin modglvent’ our knowledge can be equivalently expressed as a
baper, we prop b 9 union of all feasible event¥, denoted a$2. For pairwise

for pairwise relations loosely based on Gaussian Process - ions. we have
classifiers (GPC) [12]. We choose the GPC over other dis- '
criminative models such as neural networks or the SVMQ = {Y|(y; = y;,¥ (4,5) € M)A (y; #y;,V (i,5) € C},
because it combines two useful properties. First, GPC (4)
has an explicit probabilistic interpretation, which facil whereM andC are respectively the set of must-links and
tates modeling the uncertainty associated with pairwise recannot-links. For an{2, the likelihood of the latent field

lations. Second, the covariance matrix (kernel) used ivould be the possibility th&@ happens giveifi:

GPC offers a way to use a input-dependent kernel design, N f(0)d(yi )
and therefore utilize those samples that bear no direct labeP(Q|f) = Z P(Y|f)= Z{P(Q|Y) H ——@y b
information. YeQ Y i el

5)
2 Gaussian Processes for Classification whereP(QY) = 1if Y € QandP(Q[Y) = 0 otherwise.

In reality, pairwise relations often come with significant u
For simplicity, we consider the binary classification prob-certainty, so it is desired foP(€2Y) to be asoft mem-
lem. Assume we have data st = {z;};7, from two  pership that reflects our confidence. We start with model-
classes with class labgl+1,—1}. The GPC assumes ing the conditional probability?(Y|§2) via the following

a latent Gaussian procegswith zero mean. Lef =  Gibbs distribution:
[f(z1), f(x2), ..., f(zn)]” be the values of atX, which ) )
follows a N-dimensional Gaussian distribution: P(Y|Q) = —e2i<s wia0Wivs) — — H ewisdii)
Tye—1 Zl Zl Pt
P(f) _ (27T)_N/2|K|_1/2€_f K™ 'f/2 (1) i<j

. _ _ _ (6)
whereK € RN*N s the covariance matrix (kernel). Given wherew;; is the weight for paifz;, z;) andZ; is the par-
the field value at any;, the probability that; is from class  ition function. We usew;; to express both the type of

+lis: of (1) pairwise relations betweedn;, x;) and its confidence value
P(y; = +1|zy, f) = Ty of@)’ (2)  ~i; (> 0.5) through

with y; the class index of;. LetY = {y;}}V, denote the e _ Lij (1, 1Lt )

class indices of samples X. The likelihood of the class 14 ews i i ’

labelsy’, given the latent variabl§, is whereL;; = 1if (z;,x;) is specified to be must-linked,
N N el @)y, ) andL,; = 0 for a cannot-link. It follows from Equation (7)

P(Y[f) = HP(?/i|f(Ii)) = H 14 ef(@) ©) thatw;; > 0 for a must-link betweefw;, z;), andw;; < 0

=1 =1

for a cannot-link. We sei;; = 0 if no prior knowledge is
Our efforts to harness pairwise relations consists of twgavailable on paiz;, ;). Clearly, jw;;| reflects our confi-

parts. First, in Section 3, we show that pairwise relationgdence sincel% = ;5. Using the Bayesian rule, we
can be treated as observations, and the corresponding likean getP(Q]Y) as follows
lihood off can be given through manipulating Equation (2)

and (3). Second, in Section 4, we discuss the prior form of P(QY) = P(Y[Q)P(%) _ 1 Hewij‘;(yi;yj)' (8)

f that can exploit the samples not involved in any pairwise P(Y) Zs

relations. This design of prior is realized by using soexll

semi-supervised kernels as thein Equation (1). In Sec- Here we assume a unifor?(Y) = 2, which is the
tion 5, we propose the Semi-supervised Pairwise Gaussia#fior probability before any information oX or € is
Process Classifier (SPGP) by combining our work on thé&nown®. In Section 3.3 we will show thaZ. will not af-
prior (Section 3) and on the likelihood (Section 4). fect the final result. From Equation (8)(2|Y) is larger if

Y satisfies the specified pairwise relations (and vice versa).
When|w;;| — oo, we haveP(QY) = 0if (y;,y;) vio-
lates the specified relation. In this case, we Haarel con-
straints between(z;, z;); otherwise, the relation isoft.

i<j

3 The Likelihood of Pairwise Relations

3.1 The Formula of Likelihood

. ) . . Do not confuse this assumption with the situation when co-
In a semi-supervised scenario, we have incomplete knowkariance matrix forf is known. In that caseP(Y) is generally
edge about the class label of samples: it can be a labelawht uniform from Equation (1) and (3).



When all specified pairwise relations are haPd{2|Y) de- O sample
generates to the extreme case described in Equation (4). K ik
Based on Equation (8), the likelihood btlefined in Equa-
tion (5) can be written as: ,Q

, 7458

N o(yi, 1) f (k)

1 Wi j YirYi) . —
P(Q|f) = Z;{He ) H eflzr) +1 }

i<j k=1

) 6 6

5 s o3
3.2 Approximation of P(Q|f) § . g,
One major difficulty of our method is efficiently estimating % LR
P(Q|f) effectively, since direct calculation is generally in- " s
tractable due to the summation over ¥l We first notice - ° g ran
that ) (b) log P(Qf) vs.log J(£, ) (c) log P(Qf) vs. lower bound
P(QIf) = By {] [ v}, (10)
2 i<j Figure 2: Comparison between two approximations of

whereFy {-} stands for the expectation under distribution 108 P(©2[f). In the toy problem, we randomly assign
P(Yf). We get an approximation aP(Q|f), denoted ~Pairwise relations (with weight N(0,100) ) among12
J(£,52), by exchanging the order df[ and Ey in Equa- samples. The field valugc R!? is randomly chosen from

tion (10): N(0,25112). (a): A typical example of pairwise rela-
tions that will be used in (b) and (c); (b): Scatter plot of
1 5 (s log P(Q2f) vs.log J(f, ©2) with 1000 randomf; (c): Scat-
JE.Q) =— T Ey {fewiidivs) g g J L, omt, _
(£,9) Z }:[ v{en 7} ter plot oflog P(Q2|f) vs. lower bound given in Equation
! (11) with 1000 randomt.
*LH evii {ef @) T (@) 41} 4 ef () pef (@)
2 (ef@) + 1) (ef(=3) + 1)

i<io Proposition 1:
wy
. . _ Ply; = +11Q) = [ P(y; = +1|f, Q)P(£|Q)df = 0.5,
It is easy to verify that/(f,Q?) = P(|f) when pair- (v = +119) /]RN (i = +1IE, D) P(E]R)
wise relations are disjoint: each sample is involveatin (. ._ | 5 .. u
most one pairwise relation. In practicd,(f, 2) yields a S o . _
good approximation when pairwise relations are scarceThe proof of Proposition 1 is simple if one notice that

For comparison, we also consider another approximatio®®(f[©2) = P(—f|), which can be easily verified using

of log P(Q[f) given by the Jensen’s inequality Equation (1) and (9). There are two ways to stay in the
standard GPC framework. For a two-class problem, we
log By {] [ e*#®@ ¥} > Ey{log [ [ es*wvs)}. can break the symmetry by assigning an arbitrary sam-
i<j i<j ple to class+1 (or —1), but this strategy does not work
_ for a multi-class situation. Another choice is to calcu-
In this case we get a lower bound la P(|f): late the probabilityP(y; = y,|X, Q) for all pair (z;,z,),

F @) i) 4 1 and then use this probability as a new measure of similar-
: . ity. However, this require®)(N?) inferences with GPC,

ef @) +1)(ef(72) 4+ 1) and is therefore computationally undesirable. Moreover,

(11)  one has to use another similarity-based clustering algo-

Figure 2 comparel®g J(f, 2) with the lower bound given  rithm to get the cluster assignments for samples. In this

in Equation (11) on a toy problem. It is clear from Figure 2 paper, we instead find the maximum a posteriori (MAP)

(b) and (c) thatog J (£, ©2) renders a better approximation solution off (or equivalently the solution that minimizes

of log P(Q[f). L(f)= —log P(£|2)). In practice we usd (f, 2) in place

of P(Qf), and optimize the following objective function:

log P(QIf) > —log Zo+Y  wi (
1<J

3.3 Why Use Maximum a Posteriori (MAP) GPC .
y ( ) f=argmfin{—logJ(f,Q)+1/2fTK_1f}. (12)
The principle Bayesian solution used for standard (super-

vised) GPC [12] integrates out the latent functiénsiow- e know from the form of/(f, 2) that Z, only appears
ever, this solution does not work for GPC when only pair-In & constant terniog Z,, and therefore will not affect the

wise relations are available, as elucidated by the follgwin  2clearly MAP solution appears in pairs, sing(f|Q) =
proposition: P(—f£]Q)



optimal solutionf. In Section 4 and 5, we shall show that 4.2 Semi-supervised Kernels
the optimization in Equation (12) can be simplified. Once

f is determined, the classification &f is carried out with ~ Our kernel design strategy largely follows previous work
Equation (2). on graph kernel [13, 14]. The key difference is that we fit

the kernel to the pairwise relations, instead of some labele
samples as in [10]. Let be the affinity matrix ofX with

4 The Prior Probability of Latent Field f S;; = e~llm==11*/s* The normalized graph Laplacian
_ is defined as\ = | — D~2SD~=, whereD is a diago-
4.1 The Role of the Unconstrained Samples nal matrix with entryD;; = 3~ S;;. Suppose the eigen-

- _ . decomposition ofA is:
We divide the data seX into the constrained s&X,. =

{z;|] 3j wiy; # 0} and unconstrained seX, = N
{:]V¥j w;; = 0}. We want the unconstrained set to ef- A= pigio; .
fectively influence the resulting classifier, much the same i=1

role played by the unlabeled set in the more familiar partial i )
labeling scenario. Not surprisingly, this intention canno Ve know from [11] that the eigenvectofs, } provide the

be realized with a conventional covariance matrix, as wd'armonic basis with frequency indicated by the eigenvalues
will show presently. Without loss of generality, we assumet/}- Roughly speaking, the higher frequency component

X. = {z1, - ,zn, }. Accordingly, we can decompose the has a larger eigenvalue, and vice versa. We build a semi-
ﬁec|d f as f70IIov’vs: ‘ ' supervised kerndK based on a transform ¢f; }:

fc N
f= , 13
<fu> (13) K => g(u)¢id; g(pi) > 0.
i=1
with f. corresponding to the field values &, and f, )
the field values atX,,. The covariance matri K can  The regularizef”’K~1f = Zf.vzl <£’(‘f;‘,)> should restrain
also be decom}oosed accordingly into four sub-matricesthe high frequency part and encourage the low frequency
K — (KC K7, . It can be shown that botR(€2/f) and part, wh|gh leads t(g(u_i) > _g(uj) for p; < p;. leferent
Ku. Ky _ N parametric forms of give different kernels. In this paper,
J(f,€2) depenconly on f.. The following proposition can  we study the following three types of kernels that have been
be easily verified using the conditional property of Gaus-proposed in literature [9, 10, 15]:
sian variables.

Proposition 2: The solution of the problem A < eyt

e Step function kernel: i
0 otherwise

f = argmin{R(f.) + 1fTKflf}
f 2 o Heat Diffusion kernel:g(u;) = Ae= i, t > 0;
for any lower-bounded function R can be written asf = e Lazy-Random-Walk kerné!; g(p;) = A(u; +o?)~ L.
(©)
~* ), where
f. For each chosen kernel, there are three parameters to be
decided: (1) the radius in the affinity matrix.S; (2) the
f. = arg min{R(f.) + lchKc_lfc} (14)  Heutt oro as parameter ig(-); and (3) the scalir!g factor
fe 2 . The first two parameters, denoted@scan be fit to the
f, = K.K;'f. (15)  pairwise relations2 with a modified kernel-target align-

ment. In the original kernel-target alignment [16], we find
For a “local” kernelK [13], e.g. RBF kernel, the entry K (or equivalently®) that maximizes the alignment score:
K;; only depends om; andz; andnot any other samples.
Proposition 2 tells us that with such a local kerk&l the AK,T) = <K, T>r ,
unconstrained s&X, is useless for the classification based V<K, K>p <T,T>p
on Equation (12). Indee&,, does not affect the optimiza- _ L
tion in Equation (14) (withR(£,) set to be— log J(£,0)),  WhereT € R™*¥ s the target matrix with entril; = 1
while in Equation (15)£, is simply interpolated fronf,. i y; = y;, and —1 otherwise. For binary class labels
To overcome this problem, we needawith information
of X, encoded in the entries &.. Such kernels will be ®In practice we us& -+ el as the kernel to make it positive
referred to as semi-supervised kernels since they are typitefinite, here = 0.001\.
cally designed to use samples bearing no label information. “Itis also known as Gaussian field kernel [13].

(16)

{+1,-1}, we haveT;; = y,y;. Unlike class labels,



pairwise relations generally do not contain enough infor-The objective function irstep 1 consists of two terms: the
mation for decidingT. Instead, we try to maximize the empirical error

expectation ofA(K,T) with respect toY: A(K,Q) =

Sy P(Y|Q)A(K, T). Itis straightforward to verify that ~ Y log w”{ef(f“”f ””J)+1}+ef i) 4 ef (#5)

B 1 B _ w; ;70
AK,Q) =+ <K, T>r<KK >,

and regularizeg 7 K 'f.. A closer look at the two terms
where T is a N x N matix with T;; = reveals that the empirical error term favors thédbat are

3 yiy; P(yi,y;]Q).  Direct evaluation Ofri!j can Cconsistent with the pairwise relations. Indeedyif > 0

Yiryj 7* v . .

be expensive due to the marginalization in calculatlng(mUSt'l'nk)' we tend to have largef(f, ) if f(z;) and
P(y:,y;|9). In this paper, we use a simple approxmauonf(xﬂ) are both large (positive) or both small (negative); if

for T,; by ignoring the pairwise relations that do not Wij < 0 (cannot-link),J (£, §2) is larger when one of (z;)
involvesa; or z;: and f(z;) is small (negative) and the other is large (posi-

tive). The regularizer term enforces a smofitisinceK is
non-local X, enters intdK . and therefore affects the opti-

Z yiyi{ M mal f. We solve the optimization iatep 1 with the quasi-
Yigi Letw Newton method (Matlab functiohm nunc). To find a
wikd (i yr) Fw; k8 (Ysux) good local optimum, we usually try multiple runs with dif-
H Z AT e (1 e . (A7) ferentinitialf.. We name the algorithm Semi-supervised
kiwge #£0 Uk et )(1+ ev) Pairwise Gaussian Process classifier (SPGP).

k#0
" A visualization of SPGP solution on 2D toy problem can
From Equation (17), the approximation®f; is non-zero  be found in Figure 3. In this toy problem shown in Figure
only if w;; # 0 or bothz; andz; connected to some sample 3 (), there exist two almost equally good partitions of data
x,. Performing the approximation for the entiferequires  into two groups (the upper two components + the lower
O(n?) time, wheren is the number of specified pairwise two components, or the left two components + the right
relations. This approximation is cheap since we are partwo components). The specified pairwise relations (one
ticularly interested in the situation whereis small. The must-link + two cannot-links) bias the solution towards the
scaling factor\ can not be fit in this way since it does not latter one. With a properly designed kernel, SPGP forces
affect the kernel-target alignment score. In our experimen the smoothness dfwhere the samples are dense, thus the
we use an empirical. More systemic methods, like cross sign off can only change in the area where the samples are
validation, are expected to yield better results. sparse, as shown in Figure 3 (b). The result given by the
MAP solution off leads to the second partition, as shown
5 Semi-supervised Pairwise Gaussian in Figure 3 (c).
Process Classifier Although in this paper we limited our discussion to two-
class cases, SPGP can be readily generalizéd {class

We can now combine the likelihood (and its approxima—(M > 2) situations by using/ latent processes.

tion) formulated in Equation (9) and (11), and a GaussiarUnlike constrained clustering algorithms [3, 6, 8], SPGP

prior based on the semi-supervised kernel. As mentionegequires at least one cannot-link to work: wihly must-

in Section 3.3, the classification is given by the MAP solu-links, SPGP assigns all samples into one class. This weak-

tion of f. According to Proposition 2, the optimization in ness can be alleviated by adding into the objective function

equation (12) can be divided into the following two steps: an extra term that penalizes the unbalanced distribution of
. S S samples among different classes. This extension will not

step 1. f. = arg mm{_fc Kot be discussed in this paper.
eWij {ef z)+f(95])+1}_|_€f(961 P ACT)

- golog (/@) 1 1)(e/@) 1 1) 6 Experiments
Wi

R R We test SPGP on both artificial data and real-world data,
step 2: f, = K, K 'f.. and compare the results with two recently proposed meth-
ods: (1) COP-Kmeans [6], a hard-clustering method based
on K-means, and (2) Penalized Probabilistic Clustering
(PPC)®[3], a soft-clustering method based on Gaussian

HereK is one of the graph kernels, and bd&handf are
decomposed as in Section 4.1. The decompositbtep(
1-step 2) effectively reduces the optimization ovEto a

subset,, which is substantially cheaper when only a small  5The method in [5] is equivalent to PPC with hard constraints,
portion of samples are constrained. so the result of it is not included.



0 = 1
_1 _2\/2 _l 0
y =3 -3 X

(a) data in x-y plane (b) MAP solution off (c) clustering result given by the MAP

Figure 3: SPGP on a two-dimensional toy problem. (a) Two ogtinks (dashed line) and one must-link (solid line) are
specified on the data set. (b) A MAP solutionfos function of coordinate, y). Note that discrete values 6f(the
black dots on the surface) have been interpolated to thelangegdor visualization purpose. We used heat diffusion &ern
for this example. (c) The clustering results given by the MARsee context in Section 5)

W
N

1

(a) Four-Gaussians (b) Xor (c) Doughnut (d) Two-Spirals
Figure 4: Artificial data sets. Classes are denoted by sysnbol

mixture models (GMM). The pairwise relations are ran-three kernels returns satisfying results, whereas PPC and
domly generated. The accuracy of each clustering is calcOP-Kmeans do not respond to them at all.

culated with a confusion matrix, and we report the classi-

f|c:_;1t|qn accuracy averaged ovr different realizations of 6.2 Real-World Data (Hard Constraints)

pairwise relations.

We also present results on six well-known real-world data
6.1 Artificial Data (Hard Constraints) sets with different characteristics. Bal ance- Scal e:

we use only class L and R, 576 samples, 5 dimensions;
The four 2-dimensional artificial data sets (Figure 4, dass Cr ab(species): 200 samples, 5 dimensiord; na: 768
denoted by symbols) are designed to highlight the problemsamples, 8 dimension4; 2 and Snal | - Bi g are hand-
that cannot be effectively solved by centroid-based ciuste written digits recognition tasks witlt4 dimension and
ing algorithms. Each data set consists of two classes witliround 370 samples for each digit. The- 2 contains
200 samples in each class. We consider the pairwise relaligits “1” and “2” in 739 samples. Thé&mal | - Bi g
tions as highly reliable knowledge and set them to be hards an artificial task with two classes (digits ‘1, 2, 3’ Vs.
constraints. Intuitively, the classification problems-pre ‘7, 8, 9’) and 2307 samples. For these two tasks, we
sented in the first two data sefsour - Gaussi ans and  use the first 20 principal components as the feature vec-
Noi sy- Xor ) can be solved with a constrained clustering,tor for PPC. Mac- W ndows is a text classification task
like COP-Kmeans or PPC. However, it requires many pairfrom the 20-newsgroup data set consisting of 7511-dim
wise relations to fight with the unconstrained data, whichTFIDF vectors and 1956 samples. Among these data sets,
clearly suggest a poor maximume-likelihood solution. TheCr ab andl1- 2 are relatively easy for centroid-based clus-
other two data setpughnut and Two- Spi ral s)are tering algorithmsBal ance and Snal | - Bi g are exam-
tasks that are not achievable with a centroid-based clusteples of highly non-Gaussian distribution of samples within
ing algorithm. Figure 5 shows classification results for theeach classPi ma is difficult even for sophisticated super-
four data sets with a varying number of pairwise relationsvised learning methods [12].Mac- W ndows has high-
With a small number of pairwise relations, SPGP with all dimensional and sparse feature vectors, which makes PPC
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Figure 5: Classification accuracy Vs. number of relationsdificial data set result. In the legend, HDK: heat diffursio
kernel, RWK: lazy-random-walk kernel, SFK: step functia@rikel, PPC: Penalized Probabilistic Clustering, COP: COP-
Kmeans.
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Figure 6: Real-world data. Classification accuracy Vs. neinab relations

and COP-Kmeans inapplicable. Therefore on this data wéations, and compare it with SPGP with hard constraints
only present SPGP results. Figure 6 summaries the claghard-SPGP), PPC with soft relations (soft-PPC), PPC with
sification results of the three methods. On all data exthard constraints (hard-PPC), and COP-Kmeans. We try
ceptCr ab, SPGP outperforms PPC and COP-Kmeans. Onwo different noise levelsy = 0.1 andg = 0.2, and set

Cr ab, SPGP is still the best when pairwise relations arethe weight of specified relations for soft-SPGP and soft-
scarce € 20) whereas PPC gives the highest classificationPPC using Equation (7) wit);; = ¢. Table 1 summarizes
accuracy after 20 relations. We also notice that no singlehe performance of the five algorithms with noisy relations
kernel is consistently better than the others. on the six real-world data sets used in Section 6.2. For
SPGP, we use the heat-diffusion kernel. In most occasions,
soft-SPGP gives the best results among all five methods. In

6.3 Real-World Data (Soft Relations
( ) other occasions, hard-SPGP gives slightly better or compa-

We also consider the situation where our pairwise relalable results.
tions come with significant uncertainty. Here we simu-

late this uncertainty by randomly flipping the specified re-

lations with probabilityg. We assess the performance of

SPGP with soft relations (soft-SPGP) on those noisy re-



dataset Soft-SPGP| Hard-SPGP| Soft-PPC| Hard-PPC| COP-Kmeans

Balance ¢ =0.1 0.9568 0.9477 0.6406 0.6997 0.7870
(60) qg=0.2 0.9417 0.6427 0.6406 0.6846 0.7766
Crab g=0.1 0.9030 0.9010 0.8045 0.8933 0.5933
(40) qg=0.2 0.8448 0.8520 0.6577 0.7800 0.5902
Pima g=0.1 0.7317 0.6936 0.6510 0.6510 0.6510
(200) qg=02 0.7197 0.6863 0.6510 0.6510 0.6510
1-2 qg=0.1 0.9955 0.9922 0.9698 0.9684 0.9753
(30) qg=02 0.9902 0.9902 0.9697 0.9662 0.9740
Small-Big ¢ = 0.1 0.9357 0.9332 0.6092 0.7201 0.6542
(40) qg=0.2 0.9176 0.6433 0.5928 0.7076 0.6487
Mac-Win ¢ = 0.1 0.8150 0.7533 N/A N/A N/A

(40) qg=02 0.7799 0.5580 N/A N/A N/A

Table 1: Classification accuracy with noisy pairwise relasi. Each row contains results for one data set with tworeiffe
¢, and the number of relations is in the parenthesis. The laalel iumber is the best result among all five methods.

7 Conclusion

We proposed a semi-supervised learning method (SPGP)

[6] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Con-

strained K-means clustering with background knowledge. In
Proceedings of the 18th ICML, 2001.

for pairwise relations based on MAP Gaussian process[7] D. Klein, S. Kamvar, and C. Manning. From instance level

classifiers. The major contribution of this paper is to give

a probabilistic framework, in which classification prefer-

ence, like pairwise relations, can also be treated as ob-
servations. With this probabilistic model, we are able to [8] S. Basu, A. Banerjee, and R. Mooney.
design discriminative-model based algorithms for semi-
supervised clustering with pairwise relation constraints
Also, our model provides a natural way to encode the un-

to space-level constraints: making the most of prior knowl-
edge in data clustering. IRroceedings of the 19th ICML,
2002.

Active Semi-
Supervision for Pairwise Constrained Clustering. Pio-
ceedings of the SAM International Conference on Data
Mining, 2004.

certainty information associated with pairwise relations [9] O. Chapelle, J. Weston, and B. Scholkopf. Cluster Kisrne

Experiments on a variety of data sets show that, compared
to traditional constrained clustering methods, our method

for Semi-Supervised Learning. Kwdvances in NIPS, vol-
ume 15, 2003.

can achieve decent clustering with significantly fewer-pair (1] x. zhy, J. Kandola, Z. Ghahramani, and J. Lafferty. Non-

wise relations.
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