
Recall Systems: Efficient Learning and Use of Category Indices

Omid Madani
Yahoo! Research

Burbank, CA 91504
madani@yahoo-inc.com

Wiley Greiner
Los Angeles Software

Santa Monica, CA 90405
w.greiner@lasoft.com

David Kempe
University of Southern California

Los Angeles, CA 90089-0781
clkempe@usc.edu

Mohammad R. Salavatipour
University of Alberta

Edmonton, AB T6G2E8
mreza@cs.ualberta.ca

Abstract

We introduce the framework of recall systems
for efficient learning and retrieval of categories
when the number of categories is large. A recall-
system here is a simple feature-based interme-
diate filtering step which reduces the potential
categories for an instance to a small manage-
able set. The correct categories from this set can
then be determined using traditional classifiers.
We present a formalization of the index learning
problem and establish NP-hardness and approxi-
mation hardness. We proceed to give an efficient
heuristic for learning indices, and evaluate it on
several large data sets. In our experiments, the
index is learned within minutes, and reduces the
number of categories by several orders of magni-
tude, without affecting the quality of classifica-
tion overall.

1 Introduction
A core problem in machine learning and artificial intelli-
gence is to recognize into which of many candidate cate-
gories a given instance falls. This problem has many nat-
ural applications, including: (1) categorizing web pages
into the Yahoo! topic hierarchy (http://dir.yahoo.com)
[LYW+05, GM98], (2) predicting words or modeling lan-
guage [Goo01, EZR00], and (3) determining the visual cat-
egories for image tagging and object recognition [WLW01,
FP03]. Beyond the natural classification formulation, these
example applications share another crucial property: the
number of training instances is very large or practically un-
bounded, and the number of categories can be extremely
large as well. This leads to challenges in ensuring that both
learning of categories and categorization of items be effi-
cient in their usage of time and space.

In this paper, we propose a solution approach we term re-
call system. A recall system is based on introducing a layer
of indirection between instances and categories, namely
features. The number of useful features is significantly

smaller than the number of instances. We use supervised
learning to learn an index, i.e., a mapping from features
to categories, from training examples that consist of in-
stances labeled with correct applicable features and cate-
gories. When retrieving categories for an instance, the re-
call system will return all the categories indexed by at least
one of the instance’s features.

As a result, a recall system will have very few false nega-
tives, but may have more false positives. In other words,
the focus is on excellent recall, while allowing for worse
precision. In order to improve precision, the recall system
can then be used within a recognition system, which ap-
plies more specific classifiers to all categories returned by
the recall system, in order to narrow down the number of
categories the whole system returns. Figure 1 gives a high
level overview of a simple recall and recognition system.

In Sec. 2, we formally define the index learning problem,
and establish both NP-hardness and approximation hard-
ness. We then present a simple and efficient heuristic which
learns an index in an online mistake-driven manner, and
show its convergence in an ideal setting. Sec. 3 describes
the data set we use for the experimental evaluation of our
algorithm, and presents the experimental results. We test
our framework both for text categorization and for word
prediction [LYRL04, EZR00]. Word prediction in particu-
lar has thousands of categories and practically unbounded
instances, and thus demonstrates the potential of the ap-
proach for making massive discriminative learning feasi-
ble. Text categorization is attractive as a testbed because
the choice of features is generally agreed on (see, e.g.,
[LYRL04]). In addition, much training data is now often
available. We find that learning the index is relatively fast,
on the order of minutes for thousands of categories and
hundreds of thousands of instances. (On the other hand,
standard training of all the classifiers would take on the or-
der of hours or days.) The recall system significantly ac-
celerates training, as it tends to reduce the number of clas-
sifiers to be updated from hundreds or thousands to tens.
The accuracy achieved is similar to when the same online
learners are trained on all instances. In Sec. 4 we discuss

Classifier Application

x

Recognition
System

Recognized categories for x

Recall System

Reduced candidate categories

Repeat
1. Input instance x
2. Retrieve candidate categories for x
3. Apply corresponding classifiers to x
// During learning:
4. Update the retrieval subsystem
5. Update the retrieved classifiers

f1

Features

C(f1)
F(c1)

c1

f2

Categories

Figure 1: The basic structure of category retrieval in a recall system, and the execution cycle of a simple recognition system as two
stage process. The recall system consists of steps 1 and 2 and, when learning, step 4. Right: View of an index as a bipartite graph. The
edge set is learned. Not all features necessarily index (map to) a category.

related work, and conclude in Sec. 5.

2 Indexing Categories

An ideal recall system, when presented with an instance,
will quickly reduce the set of possible categories to a few
without loosing the right categories. Our recall system is
realized by an inverted index which maps each feature to a
set of zero or more categories.

We say a feature is active in an instance if it has positive
value. In this paper, for learning the index (and not the
classifiers), we treat features as boolean, either active or
not. An instance belongs to one or more categories. Let
v[i] denote the value of feature i in vector v. An instance x
may be viewed as a pair 〈Fx, Yx〉, where Fx denotes the set
of features active in x, and Yx 6= ∅ the set of categories x
belongs to. S is a finite set or an infinite sequence of such
instances. We use Ỹx to denote a set of candidate categories
calculated for instance x by a recall system.

It is helpful to view an index as a bipartite graph of features
and categories (Fig. 1). There is an edge connecting feature
f and category c iff f maps to c in the index. Let C(f) be
the set of categories that feature f maps to. Then, the recall
system, on input x, retrieves the set Ỹx =

⋃
f∈Fx

C(f).
Thus, the index implements a disjunction condition for the
retrieval of each category, meaning that if a category c is
indexed by features f and f ′, then c is retrieved whenever
at least one of f or f ′ is active: f ∈ Fx or f ′ ∈ Fx.

The execution cycle of a simple recall and recognition sys-
tem at a high level is given in Fig. 1. We seek a system
which on average quickly outputs an approximate set of
categories Ỹx with the property that: (1) Yx ⊆ Ỹx, and (2)
|Ỹx \ Yx| is small. Further processing may then be per-
formed on x and Ỹx, for example sorting or ranking Ỹx.
In this paper, (binary) classifiers corresponding to the cat-
egories in Ỹx are applied to the instance to more precisely
determine the categories of the instance. The binary classi-
fiers may also be trained while learning the index. Note that
the recall system imposes a distribution on the instances
presented to the learning algorithms of each category. In

order to be able to learn the classifiers within the system,
they themselves have to be online, as that is the way in
which instances will be presented to them. Thus, Percep-
tron and Winnow [Ros58, Lit88], among others, are natural
choices for step 5 in Fig. 1.

2.1 Problem Formulation and Complexity

A first question is the computational complexity of the
problem: are there efficient algorithms which, given any
problem instance, can find an index that does well on the
training set? A problem instance here is a finite set S of
(training) instances, 〈Fx, Yx〉, specified by features and true
categories for each instance.

In order to evaluate the quality of a computed index, we use
the following notation. Let Φ−(x) denote the set of false
negative categories on instance x, i.e., the set of all true cat-
egories missed by the index on x: Φ−(x) = Yx \ Ỹx. Sim-
ilarly, let Φ+(x) denote the set of false positive categories
retrieved by the index on instance x: Φ+(x) = Ỹx \ Yx.
The false negative count is the total number of false neg-
atives for all instances: φ− =

∑
x∈S |Φ−(x)|; similarly,

the false positive count is φ+ =
∑

x∈S |Φ+(x)|. We define
a (θ−, θ+)-index (on a finite training set) as an index with
φ− ≤ θ− and φ+ ≤ θ+. The decision problem is: given a
finite set S of training instances and desired thresholds θ−
and θ+, is there an (θ−, θ+)-index?

Theorem 2.1 Given a learning problem with instance set
S as well as thresholds θ− and θ+, let θ∗+ be the minimum
fp-count in an index with fn-count at most θ−. For any
ε > 0: (1) it is NP-hard to compute an (θ−, θ+)-index with
θ+ < θ∗+(1 − ε) ln B with B being the maximum number
of instances to which a feature belongs; (2) it is NP-hard
to compute an (θ−, θ+)-index with θ+ < θ∗+(k − 1 − ε)
with k ≥ 3 being the maximum number of features in an
instance.

Proof. We give a reduction from the SET COVER problem
[GJ79]. An instance I of SET COVER consist of a set U =
{e1, . . . , en} of elements and a set S = {S1, . . . , Sm} of
subsets of U . The goal is to find a smallest subset S ′ ⊆ S

Original Instances

Extra Instances

f1

f

x1

x

Features

c

c

2

1

n
m

Figure 2: Reduction of minimum set cover problem to the
(0,θ+)-index problem.

such that
⋃

Si∈S′ = U . Given a SET COVER instance I,
we construct an instance of the indexing problem with only
two categories c1 and c2 such that there is a SET COVER
solution of size C for I iff there is a (0, θ+)-index with fp-
count θ+ = C. There is one feature fi corresponding to
each set Si ∈ S, for a total of m features. There is also
one instance xj for each element ej ∈ U (1 ≤ j ≤ n),
and xj contains feature fi (xj is connected to fi) iff the
element ej belongs to the set Si. These instances, called the
“original instances”, belong to both categories c1 and c2. In
addition, there are m “extra” instances, one for each set (or
each feature). Each of these extra instances contains only
the feature it corresponds to, and belongs only to category
c2 (see Fig. 2).

We will be concerned only with indices with an fn-count
of 0. First, note that for any such index in this indexing
problem, every feature in the index must be connected to
c2, as c2 must be retrieved for all the instances. Now, if the
SET COVER instance has a cover of size C, then the index
in which only the corresponding features are connected to
c1 has an fp-count of C on the extra instances (only C of
the extra instances incur a false positive cost), for a total
fp-count of C. The converse can also be verified to be true:
if there is an index with fp-count C, then there must exist a
corresponding cover of size C.

Relaxing θ− to be positive does not make the problem eas-
ier: one can add extra instances that cannot be covered. Re-
laxing θ+ to be greater does not make the problem easier
either: one can add extra categories and instances to each
feature in the reduction.

It is known [Fei98, Tre01] that approximating SET COVER
instances with set sizes bounded by B to within a factor of
(1−ε) lnB is NP-hard. Also, Dinur et al. [DGKR03] show
that approximating SET COVER instances in which every
element belongs to at most k sets (for k ≥ 3) to within a
factor of k − 1 − ε is NP-hard. From these two result, the
theorem follows immediately. 2

Empirically, in high dimensional problems, the number of
features is large and in fact the problems are often closer to
being under-constrained. And we really seek indices that
have adequate generalization, and not just perform well
on the given training set. For a fixed index, let the fn-
rate and the fp-rate be the expectations of |Φ−(x)| and
|Φ+(x)|: fn-rate = Ex∼X |Φ−(x)| = Ex∼X |Yx \ Ỹx|,
fp-rate = Ex∼X |Φ+(x)| = Ex∼X |Ỹx \ Yx|, where x ∼ X
means drawing instance x from distribution X , and E de-
notes the expectation. A good index has low fn and fp rates.
We will see in Sec. 3 that our algorithms presented next ef-
ficiently find good indices on real data sets. A good ques-
tion is whether one can characterize realistic problems ad-
equately so that we can better explain the observations that
sufficiently good indices exist and can be found quickly.

2.2 Algorithms

In light of the approximation hardness results proved
above, for the rest of the paper, we focus on a fast and
simple heuristic, and evaluate its performance in practice.
The index is learned by the indexer algorithm shown in
Fig. 2.2. The indexer algorithm has two parameters, a toler-
ance τ ≥ 0 and a learning rate r > 1. It maintains, for each
category c, a sparse vector vc of feature weights. These
vectors are initialized to be all 0. In each iteration, we will
have a temporary index, in which a category is indexed by
those features whose weights in the category vector exceed
a specified inclusion threshold g. That is, c ∈ C(fi) iff
vc[i] > g.

When an instance x causes a false negative or false positive,
the indexer calls an update subroutine. In the case of a
false negative c ∈ Φ−(x), all features of the instance x are
promoted: their vector entries vc[i] are multiplied by the
learning rate r. This aggressive rule follows our intent to
ensure good recall, i.e., few false negatives. False positives
c ∈ Φ+(x) only trigger an update if the number of false
positives exceeds the the given threshold (Φ+(x) > τ), in
which case all features fi ∈ Fx are demoted, by reducing
their weights for all false positive categories c by a factor
of r. Afterwards, the index is updated according to the
threshold g, i.e., edges are removed or inserted.

Given that the update rules are multiplicative, we need a
special rule for the first promotion of a feature. Our ex-
periments suggest that initializing a feature fi’s weight to
1/df(i), where df(i) is feature i’s “document frequency”
(the number of instances in which the feature has been
seen so far) is a significantly better choice than using unit
weights. Hence, all our experiments use this initialization.
The measure is related to the common tfidf weighting and
its variants [LYRL04]; we are using it here not to weigh the
features in the documents, but as a bias in initializing fea-
ture weights in the category vectors. The normalization by
the max feature weight (step 2 in Update) guarantees that

Algorithm Indexer(S, τ, r, g)
1. Begin with an empty index:
∀f ∈ F , C(f)← ∅, and ∀c ∈ C, vc ← ~0

2. For each instance x in the sample S:
2.1 Retrieve categories:

⋃
fi∈Fx

C(fi)

2.2 Promote for each false negative
category c ∈ Φ−(x):

Update(x, c, r, g)
2.3 If fp count exceeds tolerance τ,

then demote for each false positive
category c ∈ Φ+(x):

Update(x, c, 1/r, g)
2.4 For each of the retrieved

categories, apply their classifiers;
update the classifiers as necessary.

Subroutine Update(x, c, r, g)
1. For every feature fi ∈ Fx,

If (vc[i] is 0, and r > 1),
then vc[i]← 1/df(i),
else vc[i]← vc[i] · r

2∗. Max normalize vc : ∀i, vc[i]←
vc[i]

maxj vc[j]

3. Update index for c so this condition
holds again: c ∈ C(fi) iff vc[i] > g

Figure 3: The Indexer algorithm for computing an index. S is a
set of training instances, τ > 0 is a tolerance on the false positive
count, r > 1 is the learning rate, and g > 0 is the inclusion
threshold.

every category, once seen during training, is indexed by at
least one feature, and may be especially beneficial for rare
categories. However, in our experiments, we have not seen
it impact the average recall (or the false negative rate). We
see it as optional and leave it in the description of the algo-
rithm, as in our experiments it was performed by default.

2.3 Running Time and Convergence

The update subroutine takes time O(|x| + |vc|)1. Note that
the algorithm is presented conceptually; we implement in-
dividual operations efficiently. For example, in step 1 of the
indexer algorithm, we may not know the number of features
or categories a priori, and so do not initialize value explic-
itly. Similarly, in steps 1 and 2 of the update routine, the
algorithm only goes through the features that are explicitly
given in Fx and vc. The index is implemented by a doubly
linked list of features, and there are pointers from features
active in vc to their entries in the index. Thus, step 3 takes
time O(|vc|) as well. The indexer algorithm has been de-
signed intentionally to be simple and fast, leaving the task
of more accurate classification to the classifiers.

The indexer algorithm is guaranteed to converge to a per-
fect (0, 0)-index if one exists and tolerance is set to 0. Here,
we assume the online setting, where instances are presented

1If a sparse vector representation is used for vc, and the max
normalization step is removed, then the update can be imple-
mented in time O(|x|).

one after another. A feature f is “pure” for a category c, if,
whenever an instance contains f , then the instance belongs
to category c. Thus, a pure feature is never demoted for its
category. Therefore, if all features’ weights are initialized
to 1, then pure features remain at 1. In fact, assuming the
average number of features in an instance is `, and a cat-
egory has k pure features, the category is a false negative
at most k times, each time a pure feature is encountered
by the indexer for the first time. At every such point, the
remaining possibly irrelevant features, on average ` − 1,
are added to the index as well, and each take O(1) demo-
tions to disappear from the index. Therefore, the number
of demotions is at most O(k`), and the total number of
updates is also O(k`). The convergence time has a depen-
dence on both ` and k. While idealized, this analysis is
worst-case in the following sense: it assumes that each pure
feature will require O(`) demotions of the remaining irrel-
evant features, regardless of the other pure features. Since
we proved above (in Theorem 2.1) that the problem is NP-
hard for θ+ > 0, we of course cannot expect convergence
to the best possible index in those cases. However, as we
will see in the next section, the performance of the algo-
rithm in practice is quite good.

3 Experiments
In this section, we describe experiments with the indexer
algorithm on several massive data sets. Our goal is to eval-
uate both the efficiency of the algorithm and the recall and
accuracy of the index it produces. Clearly, there will be
dependencies: combining the recall system with category
classifiers will lead to slower learning, but higher accuracy.
Also, the number of passes2 that the indexer algorithm per-
forms through the data will affect the recall and accuracy
level, in addition to increasing the running time.

We used four large categorization data sets (Figure
4): Reuters, Ads, ODP (Open Directory Project,
http://dmoz.org/), and the concatenation of six on-
line novels by Jane Austen from Project Gutenberg
(http://www.gutenberg.org/). The categories for Reuters,
Ads, and ODP formed a hierarchy. Each document was la-
beled with all of the categories on the paths to the nodes
that it was categorized under. The Reuters data is a tok-
enized version of the Reuters RCV1 corpus [LYRL04]. We
obtained the Ads data from Yahoo! The ODP data was ob-
tained by standard crawling and tokenizing using the Nutch
search engine of the pages in the Open Directory Project.
To speed up the experiments, we used only a random 330k
subsample of the crawled pages. Our preprocessing (e.g.,
unigrams and bigrams as features, stop word removal, and
l2 normalization) is standard; we leave the details as well
as more information on the categories in the data sets to the
tech report [MG06].

2While the algorithm works in an online manner, the same
instances can be presented multiple times, and this often improves
the performance (like other online algorithms).

Domains M N |C| l Cavg

Reuters 804, 414 47, 236 453 75.7 3.9
Ads 2,576,118 662,280 12,827 27.3 4.2
ODP 326,338 3,422,164 70,431 331 4.9
J. Austen 906,072 94,444 13,346 11.8 1

Figure 4: Domains: M is number of instances, N is the number
of features, |C| is the number of categories, l is the average vector
length, and Cavg is the average number of categories per instance.

W (1) FP (1) FP (2) FN (1) FN (2) FN (10)

Reuters, d(1) = 1m, d(10) = 1.4m, d(20) = 1.8m, T (20) = 0.46h
Train 68 37 40 0.3 0.2 0.18
Test 72 38 41 0.23 0.23 0.22
Ads, d(1) = 0.8m, d(10) = 0.75m, d(20) = 0.8m, T (20) = 0.26h
Train 89 46 44 0.1 0.016 0.003
Test 89 47 46 0.15 0.136 0.11
ODP, d(1) = 74m, d(2) = 56m, d(20) = 0.43m,T (20) = 4.15h

Train 237 147 59 2.38 0.38 0.004
Test 144 86 55 2.16 2.22 2.27

Figure 5: Indexer’s performance. W (i) is average number of
categories touched during retrieval in pass i, FP (i) and FN (i)

denote the fp and fn-rates at pass i (eg the average fp count per
instance), d(i) denotes time taken in pass i, and T (i) total time
taken after finishing pass i (m =minutes, h=hours).

In order to test the generalization properties of our algo-
rithm, we randomly selected 30% of the data to be held out
for each data set. In the case of repeated runs, the same
30% was held out. In all our experiments, unless otherwise
specified, the learning rate is set to 1.2, the false positive
tolerance is 100, and the inclusion threshold is g 0.1. The
choice of 100 for the false positive threshold is chosen as
a trade-off between efficiency and recall. Our experiments
suggest that so long as the learning rate r is between 1.2 and
2, neither efficiency nor recall are significantly affected by
the exact value. The inclusion threshold was kept constant
at 0.1 for all of our experiments. In the cases when we used
classifiers in addition to the recall system, we used only de-
fault parameter values, and did not tune the classifiers. All
of our experiments were run on 2.4 GHz AMD Opteron
processor with 64 GB of RAM.

In the description of the experiments, each pass consists of
touching each training instance once. We report on perfor-
mance after both a single pass as well as several passes.

3.1 Indexer’s Performance

Fig. 5 shows the indexer’s performance after a selection of
passes. The average number of categories “touched” dur-
ing retrieval, denoted by W =

∑
f∈Fx

|C(f)|, is a mea-
sure of work per instance at classification time. For exam-
ple, Fig. 5 shows that on Reuters, during the first pass on
the training set, on average 68 categories were touched per
instance, and 37 unique categories were false positive per

instance. It is possible that the fp-rate can exceed the toler-
ance: the algorithm only strives to bring the fp-rate down,
and it may not succeed, at least in the initial passes (ODP).
Note that W and the fp-rates are comparable between the
training and test data: the system appears to generalize well
on this aspect. We also see that W is less than twice the fp-
rate. We observe that the fp-rate converges to about half the
specified tolerance τ . As demotion is only applied when
the false positive count exceeds τ , the maximum fp-count
is close to τ , but the average fp-rate can be significantly
lower.

For both the Reuters and Ads data sets, the fp-rate and
W did not change much with more passes (they converge
quickly). For ODP, the fp-rate decreases continuously but
slowly. With more passes, the training and test fn-rates im-
prove except for ODP, but the change is more significant
over the training data. In one experiment, we removed fea-
tures with frequency less than 3 from the ODP data. As a
result, the test performance did not change, but the training
fn-rate increased and became very close to the test fn-rate.
This suggests that the indexer can indeed “memorize” in-
frequent features, which could hurt generalization.

To estimate the variance, we ran the indexer for 10 differ-
ent random splits on the Reuters and Ads data sets. The
standard deviation over fn-rates at pass 20 were 0.04 for
Reuters and 0.0021 for Ads. The deviation over fp-rate and
W were relatively small (less than 5).

The indexer takes the longest on ODP (over 4 hours for
20 passes), while it takes less than an hour for the other
two domains. Factors such as average vector length and the
noise level contribute to the difficulty of ODP. The last pass
for ODP takes under a minute, while the first two passes
take around an hour.

3.2 Performance When Using Classifiers

Since recall systems themselves achieve their good perfor-
mance through a focus on recall (at the expense of some
loss in precision), it is a natural approach to combine recall
systems with a second stage of learning and applying to ev-
ery instance the classifiers that correspond to the retrieved
categories, in order to improve precision. Here, we com-
pare the performance (in terms of accuracy and time) of
a hybrid system against a pure classifier-based system that
uses one-versus-rest training and classification [RK04]. We
use the online sparse mistake-driven perceptron algorithm
as the learning algorithm3. Since one-versus-rest learning
requires training the classifiers on all instances for all the
categories, only the Reuters set (with less than 500 cate-
gories) was amenable to a full comparison. On the remain-
ing two domains, we compared the accuracy only for a sub-

3It begins with the 0 vector. Features are added to the percep-
tron with nonzero weight only in the case of a promotion (false
negative).

No Yes
FP (1) 0.908 0.903
FN (1) 0.982 1.06

FP (1) + FN (1) 1.89 1.91
FP (10) 0.982 0.878
FN (10) 0.853 0.94

FP (10) + FN (10) 1.84 1.82
T (1) 2.6 h 0.74 h
T (10) 52h 16h

F
(1)
1 F

(2)
1 F

(10)
1 F

(20)
1 T (1) T (20)

Reuters (50 sample categories)
No 0.432 0.475 0.542 0.555 0.36h 14.3h
Yes 0.421 0.464 0.531 0.524 0.05h 1.75h

Ads (76 sample categories)
No 0.451 0.578 0.715 0.731 0.22h 18.6h
Yes 0.471 0.579 0.700 0.736 0.01h 0.5h

ODP (108 sample categories)
No 0.032 0.07 0.14 0.17 0.34h 19h
Yes 0.059 0.10 0.14 0.15 1.3h 4.5h

Figure 6: Top: Performance (average false positive and false
negative) and total time taken when training classifiers for all cate-
gories in the Reuters dataset without using the recall system (NO),
and using it (YES). Bottom: Classifiers’ F1 scores with and with-
out the recall system when trained on a sample of categories, and
total times.

set of the categories.

The top of Fig. 6 shows the fp-rate and the fn-rate on the
Reuters data set. We observe that the performances in terms
of accuracy and recall are comparable for our recall system
and the approach of learning classifiers for all categories.
Notice, however, that the recall system speeds up the learn-
ing process by about a factor of three.

Next, we tracked the F1 scores (the harmonic mean of pre-
cision and recall [LYRL04]) on a random sample of cat-
egories (Table 6). When the recall system was not used,
the classifiers for those categories were trained on all train-
ing instances. When the system was used, classifiers were
trained only when they were retrieved or were a false neg-
ative. The recall system (the index) was trained for all the
categories. Again, we observe comparable accuracy, but
substantial savings in time in both tables. The only excep-
tion is for ODP for the first pass, where the indexer alone
takes 74 minutes (d(1)). In ODP, the indexer overhead hides
classifier training costs, but note that we are training clas-
sifiers for a small subset of all categories. The ODP data
set yielded the lowest accuracy. This is probably due to the
fact that we used simple feature extraction techniques, and
web pages are noisy. Nevertheless, we see that the use of
the recall system only slightly degrades accuracy on any
data set.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120 140

E
rr

or

Tolerance

FAlSE POSITIVE ERROR
FALSE NEGTIVE ERROR

Totol Error

Figure 7: Accuracy of the system with classifiers (after 10
passes) as a function of tolerance, on Reuters’ leaf node cate-
gories (average of two categories per instance). The total error
is the sum of false positives and false negatives. The overall error
remains steady, but the system is faster with lower tolerance.

3.3 Tolerance-Accuracy Trade-off

Fig. 7 shows the overall accuracy of the system when train-
ing perceptron classifiers within the system. It shows the
dependency on the tolerance parameter, on a subset of the
Reuters data set. As expected, the number of false nega-
tives decreases down with increasing tolerance, while the
number of false positives increases. Interestingly, the sum
of the two errors remains nearly constant. The total time
taken increases with higher tolerance, as expected. In this
experiment, we only considered the 450 leaf categories of
the data set, averaging just over two categories per instance.
We have seen a similar pattern on the other data sets as tol-
erance is decreased from 100: the overall error remains the
same or even goes down (while false negative error goes
up).

3.4 Prediction in Text

Prediction tasks such as word prediction are a natural fit
for classification into many categories [Goo01, EZR00,
Mad06]. In these problems ample training data is avail-
able, although the labels (classes) may be viewed as noisy.
These tasks find applications in speech recognition, optical
handwriting recognition, and machine translation, among
others.

In our experiments, we chose unigrams (single words) to
predict. Any word is a candidate class (category), so each
word occurrence generates an instance. For example, “I
rode my bike.” generates 4 instances. Features were up to
3 words in the window before and after the word, subject to
sentence boundaries. Individual words in different relative
positions were considered different features (e.g., “rode” is
a different feature in position -1 for the target class “my”
and position -2 for the target class “bike”).

We concatenated six of Jane Austen’s novels and obtained
almost 14000 unique words (Fig. 4). A random 30% of

the instances were used for testing. Since we are inter-
ested in predicting words, there is only one correct cat-
egory for each instance. For our experiments, we used
an approach based on ranking all the categories retrieved
by the recall system. Specifically, we considered two ap-
proaches: (1) Rank categories by the sum of the feature
weights for the features that caused the category to be re-
trieved, or (2) Rank categories by the raw Perceptron clas-
sifier outputs (apply those classifiers that correspond to the
retrieved categories). We then tracked the number of times
the true category (the actual word to predict) was among
the top 5 ranked categories, which we refer to as recall at
5. The results after one pass are shown in Fig. 8. Some
well predicted words include: “sir”, “young”, and “frank”.
This discriminative approach is quite flexible: using stem-
ming, parsing, or other techniques, it is possible to utilize
different kinds of features [EZR00].

3.5 Misc. Comparisons
SVMs are the state of the art in text classification [LYRL04,
LYW+05]. Committees of online classifiers yield accura-
cies close to SVMs [CC06, BC03, HHK+03], but carry
the advantages of being online. The committee size and
number of passes can be adjusted to trade off time ver-
sus accuracy. Our experience confirms their competitive
accuracy: we found that often, most of the gain in accu-
racy is achieved already with a small number of passes and
committee members. For example, we compared commit-
tees of 10 perceptrons using 10 passes against linear SVMs
[KD05] on the 20 news group data set [Lan95]. We ob-
tained an average 01-error of 0.022 for linear SVMs, and
a 0.024 error for the committee. With a committee of 10
randomly initialized perceptrons for each category, the ac-
curacy (F (20)

1 scores) of our recall system improved from
0.53 to 0.59 (for Reuters), from 0.74 to 0.79 (for Ads) and
from 0.15 to 0.19 (for ODP). Lewis et. al. [LYRL04] re-
port F1 scores for the Reuters data set comparable to our
results: their macro average is roughly 0.3 for Industries
and roughly 0.6 for Topic categories. They use linear SVM
training and optimize the regularization parameter, but train
on a smaller training set (and a chronological split).

How would simpler indexer algorithms compare? To sim-
plify our recall system approach further, one could consider
omitting category weight vectors, and instead adding edges
to the index on every false-negative. Thus, one would con-
nect the false-negative category to all features of the in-
stance, and drop appropriate edges whenever the fp-count
exceeds the tolerance, by disconnecting the false-positive
category from all features of the instance. While this sim-
ple algorithm uses less memory, it can be seen to be un-
stable, and we have observed that the index accuracy and
fn-rate suffer significantly (e.g., fn-rate doubled).

4 Related Work
While batch methods for learning often provide better ac-
curacy, past studies have pointed out the many advantages

of online learning methods. These include time and mem-
ory efficiency, as well as simplicity and versatility (see,
e.g., [CC06, BC03, EZR00, HHK+03]). For example, on-
line training does not require instances to be stored on disk
or kept in memory. For instance, in training to categorize
web pages in an online fashion, each page in the training
set, say from the Yahoo! topic hierarchy, can be crawled
and tokenized, its vector extracted and used to update the
classifiers, and then discarded. The same holds for apply-
ing discriminative learning to the problem of word predic-
tion on large corpora. Madani [Mad06] describes and moti-
vates prediction tasks, akin to word prediction, that need to
deal with practically unbounded streams of input. In such
settings, methods such as KNN [HTF01] and current mu-
ticlass versions of SVMs quickly become impractical. In
addition, as alluded to by our experiments in Sec. 3.5 and
shown by prior research (e.g., [CC06, BC03, HHK+03]),
online methods often provide competitive accuracy. In
many applications, simplicity and efficiency during train-
ing and classification outweigh the potential loss in accu-
racy. We note that many multiclass learning methods (such
as multiclass Naı̈ve Bayes) are not applicable to multilabel
settings without alterations, as they assign exactly one cat-
egory to each instance. Large scale discriminative learning
using top-down (hierarchical) training of classifiers such as
SVMs is fairly efficient both at training time and classifi-
cation time, although the classification time depends on the
depth of the taxonomy [LYW+05]. However, this approach
requires prior knowledge in the form of a taxonomy, which
may not be available for some tasks, such as word predic-
tion and object recognition. Other drawbacks include the
engineering effort required to program the taxonomy struc-
ture into the training and classification architecture.

In the past, indexing has been used for efficient retrieval
of explicit objects, most notably documents. In our case,
categories are implicit (groupings). Grobelnik et al. also
use an index of features to categories [GM98]. Their algo-
rithm is similar to a traditional construction of an inverted
index, i.e., it connects a feature to all categories that con-
tain some document with that feature. Thus, a category is
the union of its positive documents. This lowers the num-
ber of categories considered per instance to less than only
half of the total number of categories [GM98], which is still
high. They use top-down (hierarchical) training for obtain-
ing classifiers (e.g., [LYW+05]). Our learning approach
makes the construction of the index dynamic and driven by
an objective. To the best of our knowledge, this is the first
time that index learning has been investigated.

5 Summary
In this paper, we investigated the challenging task of ef-
ficiently learning and recognizing a large number of cate-
gories. We proposed an approach termed “recall system”,
based on learning an index of categories. A recall system
quickly reduces the number of categories under consider-

no classifiers, b3a3 b3a3 b3a0 b0a3 b2a2 b1a1
recall at top 5 0.273 0.395 0.275 0.297 0.40 0.379

Figure 8: Word prediction: Recall at top 5 when the retrieved categories (words) are ranked, after one pass. bMaN means use M words
before and N words after as features. All results except noted use classifiers’ (raw) outputs, trained within the recall system. Use of
classifiers and use of words appearing after and before improves ranking. Each experiment took less than 2 minutes. Tolerance was set
at 20.

ation to a feasible number, at which time classifiers corre-
sponding to the remaining categories can be applied to the
instance for a more precise categorization. We presented a
formalization of the problem, and established NP-hardness
and approximation hardness. We then described an online
index learning algorithm which performs well empirically.
We showed how online learning algorithms such as per-
ceptrons can utilize the recall system in order to efficiently
learn classifiers for every category. An operational (ade-
quately fast and accurate) system was quickly obtained via
learning with relatively little programming or use of prior
knowledge. Future work includes exploring alternative re-
call criteria, for instance learning indices that do not just
retrieve categories, but also rank the retrieved categories,
and alternative algorithms, possibly with provable approx-
imation guarantees. In addition, we plan to further explore
the application of our approach in various domains.

Acknowledgements
We thank Thomas Pierce, Dennis DeCoste, and Kevin Lang
for pointers, discussions, or assistance, and the anonymous
reviewers for their comments and suggestions. Mohammad
Salavatipour’s research was supported by NSERC grant
No. G121210990.

References
[BC03] L. Bottou and Y. Le Cun. Large scale online learning.

In NIPS, 2003.

[CC06] V. Carvalho and W. Cohen. Single-pass online learn-
ing: Performance, voting schemes and online feature
selection. In International Conference on Knowledge
Discovery and Data Mining (KDD), 2006.

[DGKR03] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A
new multilayered PCP and the hardness of hyper-
graph vertex cover. In Proc. of the 35th ACM STOC,
2003.

[EZR00] Y. Even-Zohar and D. Roth. A classification ap-
proach to word prediction. In Annual meeting of the
North Amercian Association of Computational Lin-
guistics (NAACL), 2000.

[Fei98] U. Feige. A threshold of ln n for approximating set
cover. J. of the ACM, 45(4):634–652, 1998.

[FP03] D. A. Forsyth and J. Ponce. Computer Vision. Pren-
tice Hall, 2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[GM98] M. Grobelnik and D. Mladenic. Efficient text catego-
rization. In Text Mining Workshop at ECML. 1998.

[Goo01] J. T. Goodman. A bit of progress in language mod-
eling. Computer Speech and Language, 15(4):403–
434, October 2001.

[HHK+03] E. Harrington, R. Herbrich, J. Kivinen, J. C. Platt,
and R. C. Williamson. Online Bayes point machines.
In Proc. 7th Pacific-Asia Conference on Knowledge
Discovery, 2003.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning. Springer, 2001.

[KD05] S. Keerthi and D. DeCoste. A modified finite newton
method for fast solution of large scale linear svms.
JMLR, 2005.

[Lan95] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the Twelfth International Conference
on Machine Learning, pages 331–339, 1995.

[Lit88] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1988.

[LYRL04] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397, 2004.

[LYW+05] T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and
W. Ma. Support vector machines classification with
very large scale taxonomy. SIGKDD Explorations,
7, 2005.

[Mad06] O. Madani. Prediction games in infinitely rich
worlds. In Utility Based Data Mining workshop at
KDD, 2006.

[MG06] O. Madani and W. Greiner. Learning when concepts
abound. Technical report, Yahoo! Research, 2006.

[RK04] R. Rifkin and A. Klautau. In defense of one-vs-all
classification. JMLR, 5, 2004.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 65(6):386–408, 1958.

[Tre01] L. Trevisan. Non-approximability results for opti-
mization problems on bounded degree. In Proc. of
the 33rd ACM STOC, 2001.

[WLW01] J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity:
Semantics-sensitive integrated matching for picture
libraries. IEEE PAMI, 23(9):947–963, 2001.

