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Abstract

This paper studies the problem of inferring
a partition (or a graph cut) of an undirected
deterministic graph where the labels of some
nodes are observed - thereby bridging a gap
between graph theory and probabilistic in-
ference techniques. Given a weighted graph,
we focus on the rules of weighted neighbors
to predict the label of a particular node. A
maximum margin and maximal average mar-
gin based argument is used to prove a gener-
alization bound, and is subsequently related
to the classical MINCUT approach. From
a practical perspective a simple and intu-
itive, but efficient convex formulation is con-
structed. This scheme can readily be imple-
mented as a linear program which scales well
till a few thousands of (labeled or unlabeled)
data-points. The extremal case is studied
where one observes only a single label, and
this setting is related to the task of unsuper-
vised clustering.

Keywords: Graph Cuts, Transductive In-
ference, Statistical Learning, Clustering,
Combinatorial and Convex Optimization

1 Introduction

The problems of minimal graph cuts (MINCUT) and
related algorithms have an interesting history which
can be traced back to the earlier work on linear and
integer programming (see [14, 19] for a history), and
appears often in a context of NP hardness results. Re-
cent research witnessed a renewed surge of interest in
the MINCUT problem, culminating in the theoretical
seminal paper [13], and the paper [22] which is of great
practical interest.

The theory of learning without reference to a paramet-
ric class of underlying stochastic models was advanced

by the seminal work of Vapnik, see e.g. [23] for an
overview. Its relevance in practical situations was the
topic of the earlier work on maximal margin methods,
see e.g. [2] and structural risk minimization in terms
of data-dependent quantities [20]. A key achievement
was booked through the practical and theoretical anal-
ysis of the Support Vector Machine (SVM), see e.g.
[21]. The benefits of transductive inference were pin-
pointed e.g. in [23, 9], and integrated in practical
methods as the transductive SVMs [4] and SDP relax-
ations as in [11]. The transduction of labels on graphs
resulted in established methods as e.g. the so-called
Spectral Graph Transducer (SGT) [15], label propa-
gation [24], and other related approaches as described
e.g. in [8]. Transductive inference on graphs triggered
research in machine learning in different ways, illus-
trated e.g. by the work on learning convex combina-
tions of subgraphs, see e.g. [3].

This paper considers the specific problem of transduc-
tive inference on a deterministic graph, i.e. the graph
topology (and the corresponding weighting terms) is
fully observed, i.e. not governed by any probabilis-
tic rules. Given the labels of a few nodes, transduc-
tive inference concerns the prediction of the labels of
the remaining nodes. A key element for starting an
analysis was put into play by considering a random
mechanism on the sample of nodes whose labels are
observed. From a theoretical point of view, the contri-
bution of this paper is that we indicate the importance
of the role of a predictor rule (even in the case of de-
terministic transduction) for restricting the hypothesis
space. This idea is exemplified via the adoption of an
all-neighborhood rule, and the mechanism of maximal
margin and maximal average margin. This paper how-
ever works on the above deterministic assumption, and
does not yet consider the challenging problem consid-
ering inference on random graphs and related conver-
gence issues when the number of nodes increases (i.e.
the semi-supervised and inductive case).

From an algorithmical point of view, the main insight



of this paper is as follows. Let a graph with n nodes
be divided in a set of positive and negative nodes, say
q ∈ {−1, 1}n. Let the fixed weights of all undirected
edges between different nodes be denoted as {wij ≥ 0}.
Then the weight of the cut corresponding to q can be
formalized as

CUT(q) =
∑

ij| qi 6=qj

wij =
1

4

n
∑

i,j=1

wij(qi − qj)
2 (1)

=
1

2

n
∑

i,j=1

wij(1 − qiqj),(2)

resulting in the eigenvalue relaxation (also called spec-
tral relaxation, see e.g. [12, 22]) and the Semi-Definite
Programming (SDP) relaxation respectively (see e.g.
[13, 11]). This paper rewrites the weight of a cut q

instead in terms of absolute values as follows:

CUT(q) =
∑

ij|qi 6=qj

wij =
1

2

n
∑

i,j=1

wij |qi − qj | , (3)

resulting in a linear programming relaxation. Advan-
tages are found in the flexibility of this approach (e.g.
it becomes straightforward to incorporate additional
prior knowledge, modified cost criteria or extra con-
straints), the connection with one of the most thor-
oughly studied algorithmical fields (namely linear pro-
gramming), and its implication for hardness results of
combinatorial optimization. Moreover, the relaxation
yields in most cases (at least in practice) solutions
which satisfy the original integer constraints exactly,
thereby avoiding the need for an extra post-processing
step (as thresholding, K-means or random projections)
as are used in other relaxations.

This paper is organized as follows. Section 2 studies
the theoretical properties of the class of neighborhood
rules, the maximal margin derivation and the relation-
ship with MINCUT approaches. Section 3 discusses
the convex approach for learning based on the above
principles and its implications for clustering. Section 4
gives a proof of concept based on an artificial example.

2 Transductive Inference on a

Deterministic Graph

2.1 Transductive Graph Cuts

Let Gn ⊂ (V,W) be a fixed observed graph with n

nodes V = {vi}n
i=1 and corresponding edges W =

{wi = (wi1, . . . , win)T ∈ R
n
+}n

i=1 with positive terms
wij ≥ 0 denoting the weight of the connection be-
tween vi and vj . An undirected and loopless graph is
assumed, such that wij = wji for all i, j = 1, . . . , n,
and wii = 0 for all i = 1, . . . , n. Let S denote the set

containing the indices of nodes having an observed la-
bel yi. Let the degrees di be defined as

∑n
j=1 wij = di

for all i = 1, . . . , n. Let a general labeling of all n

nodes be denoted as q ∈ {−1, 1}n. Let the hypothesis
set H

n be defined as

H
n = {q ∈ {−1, 1}n} , (4)

containing a finite number - namely 2n - of different
hypotheses. Note that this is essentially different from
the inductive setting as an hypothesis does not repre-
sent a predictor function, or a parameter set. Assume
there is a unique binary vector y ∈ {−1, 1}n denot-
ing the true (but not necessarily observed) labels of
each node. Transductive inference of all labels of the
deterministic graph Gn picks a single element q̂ from
the hypothesis class H

n which agrees maximally with
the given partial labels ys ∈ {−1, 1}ns associated with
the nodes {vj}j∈S and where ns = |S|. The working
assumption of transductive inference is that a proper
restriction of the hypothesis space H

n will allow one
to infer a good matching of q̂ with the complete vector
y based on a few observations S.

Formally, let (yK , qK , wK) denote the actual label, the
hypothetical label and the connections associated to
the Kth (unspecified) node vK ∈ {v1, . . . , vn}. One
way to formalize the risk is as follows [23, 17]:

R(q) = E[I(yKqK < 0)], (5)

where I(u < 0) equals 1 if u < 0 and zero otherwise,
and where the expectation E is taken over the uniform
choice of K, denoting which node vK is considered.
The empirical counterpart becomes

RS(q) =
∑

k∈S
I(ykqk < 0) =

nS −∑k∈S ykqk

2
, (6)

where S is the iid sample of labeled nodes and nS =
|S|. The following probabilistic bound holds:

Theorem 1 (Generalization Bound) Let S ⊂
{1, . . . , n} be uniformly sampled without replacement.
Consider a set of hypothetical labelings H

′ ⊂ H
n having

a cardinality of |H′| ∈ N. Then the following inequality
holds with probability higher than (1 − δ) < 1.

sup
q∈H′

R(q) −RS(q)

≤
√

2(n − ns + 1)

nsn
(log(|H′|) − log(δ)). (7)

Proof: This statement follows directly from Serfling’s
inequality, used similarly as in [17], Theorem 14.
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The following two subsections study how to construct
an appropriate restriction of the hypothesis space
based on the adoption of a suitable prediction rule,
and the use of a maximal margin principle.

2.2 A Maximal Margin Approach

We now consider the construction of an appropriate
hypothesis set H

′. At first, consider the All-Neighbors
Rule rq (ANR) defined for a given vector q ∈ {−1, 1}n,
and evaluated on node v∗ as

rq(v∗) = sign





n
∑

j=1

w∗jqj



 = sign(wT
∗ q). (8)

Note the relation with the common K-NN rules. The
key element is to restrict attention to those hypothet-
ical labelings q ∈ H which are to a certain degree con-
sistent with themselves: a label qi is consistent with
the corresponding ANR rule if

rq(vi) = qi ⇔ qi(w
T
i q) ≥ 0, (9)

and thus can be predicted accurately based solely on
its neighborhood. Remark that the property of wii =
0 hints at a leave-one-out setting, as explored in e.g.
[5, 6]. The margin of the classifier on the ith node
sign(wT

i q), and the corresponding label qi ∈ {−1, 1} is
defined as

mi(q) =
qi(w

T
i q)

√

qT q

=
1√
n

∑

j| qi=qj

wij −
1√
n

∑

j| qi 6=qj

wij

=
1√
n

n
∑

j=1

wij −
2√
n

∑

j| qi 6=qj

wij

=
di√
n
− 1√

n

n
∑

j=1

wij |qi − qj |, (10)

since qT q = n by construction. Restricting the hy-
pothesis set to all hypothetical labelings which are con-
sistent with the ANR rule with at least margin ρ > 0
gives

Hρ =
{

q ∈ {−1, 1}n
∣

∣

∣
mi(q) ≥ ρ, ∀i = 1, . . . , n

}

,

(11)
where the rule rq acts as a restriction of the hypothesis
space, not as a predictor. From a practical perspective
this gives the following learning problem for a fixed ρ

q̂ = arg min
q∈{−1,1}n

Jρ(q) = −
∑

k∈S
qkyk

s.t.
1√
n

n
∑

j=1

wij |qi − qj | ≤
di√
n
− ρ, ∀i, (12)

which can be solved as an integer programming prob-
lem. A relaxation in terms of a linear programming
problem (LP) gives: q̂ = arg minq∈[−1,1]n J ′

ρ(q) =

−
∑

k∈S qkyk s.t. 1√
n

∑n
j=1 wij |qi − qj | ≤ di√

n
− ρ,

∀i = 1, . . . , n. It follows that the solution is unique
when ρ is taken high enough. Note that the predicted
labels q̂ can also be derived from the consistent ANR
rule with parameters q̂. Numerical case-studies how-
ever indicate that this relaxation is not behaving very
well in practice. Instead of advancing to dedicated
integer programming approaches as based on cutting
plane algorithms (see e.g. [19]), a slightly different
formulation is proposed in the following subsection.
From a theoretical point of view, it turns out that the
maximal number of hypotheses q in Hρ can be ap-
proximated well as indicated in the paper [18]. There-
for, the authors introduced a measure denoted as the
Kingdom-capacity ϑ(ρ) of a deterministic graph. This
capacity is based on the analogy with a strategy game
asking the following: “what is the maximum number
of kings which have a large enough kingdom to en-
force their will.” This definition is closely related to
coloring capacities and Shannon capacity of a graph
[16], and resembles closely the definition of informa-
tion capacity of a network (see e.g. [1]). A key differ-
ence with this work on capacities is however the no-
tion of margin, which appears to be new to the discus-
sion. The Kingdom-capacity of a deterministic graph
actually equals the classical VC dimension of the de-
scribed hypothesis class Hρ equipped with the ANR
rule. Naming convention is however kept different to
discriminate with the VC dimension of a graph as dis-
cussed e.g. in [10]. The number of elements in the set
Hρ can then be bounded using a simple combinatorial

argument as in [18], namely |Hρ| ≤
∑ϑ(ρ)

d=0

(

n
d

)

. Note
the correspondence with Sauer’s Lemma, see e.g. [2].

2.3 A Maximal Average Margin Approach

An alternative construction of the hypothesis class H
′

is considered: we restrict attention to all labelings hav-
ing margins which are on the average larger than a
certain pre-specified value ρ > 0. The average margin
can be written as follows

ρ ≤ m(q) =
1

n

n
∑

i=1

mi(q)

=
1

n

n
∑

i=1





di√
n
− 1√

n

n
∑

j=1

wij |qi − qj |





=
1

n
√

n

n
∑

i=1

di −
1

n
√

n

∑

i<j

2wij |qi − qj |, (13)
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Figure 1: Numerical results of the problem (15) for 20
different values of ρ̄. Results on the Ripley data with 250
labeled and 100 unlabeled (test) samples. The Ripley sam-
ples are generated from 2 overlapping distributions, mak-
ing a tuning for ρ̄ crucial. The figure displays the test
set performance on the 100 unlabeled samples, training set
performance Rn(q̂) as in (6), and the generalization bound
(7) corrected for the 20 different prespecified values ρ̄.

and the hypothesis class Hρ can be written as

Hρ =
{

q ∈ {−1, 1}n
∣

∣

∣

∑

i<j

2wij |qi − qj | ≤
n
∑

i=1

di − n
√

nρ
}

. (14)

Such sets form by construction a properly nested struc-
ture of hypothesis classes such that one can write
Hρk

⊆ Hρl
whenever ρk ≥ ρl. This enables struc-

tural risk minimization in this context. Neglecting
all constants in expression (14), it becomes clear that
minimizing the cardinality of this set can be done by
minimizing

∑

i<j 2wij |qi−qj |. Minimizing the volume
of Hρ can as such be done by using the MINCUT al-
gorithm, as e.g. in [13, 22]. We approach the related
problem of finding the hypothesis q from Hρ which co-
incides optimally with the observed labels. The maxi-
mal consistent hypothesis q ∈ {−1, 1}n which belongs
to the minimal set Hρ can be found by solving the
following integer programming problem:

q̂ = arg min
q∈{−1,1}n

Jρ(q) = −
∑

k∈S
qkyk

s.t.
∑

i<j

2wij |qi − qj | ≤
n
∑

i=1

di − n
√

nρ. (15)

Note that here the labels q̂i do not necessarily have the
same sign as the corresponding rule sign(wT

i q̂) for any
i = 1, . . . , n. The following section discusses a practi-
cal approach. We proceed by deriving a bound on the
cardinality |Hρ| based on the eigenvalue spectrum of
the Laplacian of the graph.

Theorem 2 (Cardinality of Hρ) Let {σi}n
i=1 de-

note the eigenvalues of the graph Laplacian L = D−W

where D = diag(d1, . . . , dn) ∈ R
n×n. The cardinality

of the set Hρ can then be bounded as

|Hρ| ≤
nσ(ρ)
∑

d=0

(

n

d

)

≤
(

en

nσ(ρ)

)nσ(ρ)

, (16)

where nσ(ρ) is defined as

nσ(ρ) =

∣

∣

∣

∣

∣

{

σk : σk ≤ 2

(

n
∑

i=1

di − n
√

nρ

)}∣

∣

∣

∣

∣

. (17)

Proof: Let for notational convenience ρ′ be defined
as ρ′ =

∑n
i=1 di − n

√
nρ. At first, the MINCUT crite-

rion
∑

i<j 2wij |qi−qj | is written in terms of the graph
Laplacian L as follows:

∑

i<j

2wij |qi − qj | =
∑

i<j

wij(qi − qj)
2

=
1

2
qT (D − W )q ,

1

2
qT Lq.

The reasoning of the proof goes as follows: if for a
specific q ∈ {−1, 1}n the inequality qT Lq ≤ 2ρ′ holds,
then such a q can always be found as a signed version of
an element in the smallest eigenspace of L. Formally,
let In ∈ R

n×n be the identity matrix of size n. Let
L = UΣUT denote the Singular Value Decomposition
(SVD) of the Lagrangian, such that UUT = UT U =
In, Σ = diag(σ1, . . . , σn) and 0 = σ1 ≤ · · · ≤ σn. It
follows that any q ∈ {−1, 1}n can be decomposed in
terms of the singular vectors q =

∑n
i=1 siUi, where

s = (s1, . . . , sn)T ∈ R
n.

Given the definition of nσ(ρ), one can write that σi >

2ρ′ for all i = nσ(ρ) + 1, . . . , n. Assume qT Lq ≤ 2ρ′,
then the following inequality follows

2ρ′ ≥ qT Lq =

n
∑

i=1

s2
i σi ≥

n
∑

i=nσ(ρ)+1

s2
i σi > 2ρ′

n
∑

i=nσ(ρ)+1

s2
i ,

(18)
and hence

∑n
i=nσ(ρ)+1 s2

i < 1. Moreover, given 1 ≤
j ≤ n fixed, one has

∑n
i=nσ(ρ)+1 U2

ij ≤ 1 since

U jT
U j = 1 where U j ∈ R

1×n denotes the jth row
of the matrix U . Thus, the following inequality holds

∥

∥

∥

∥

∥

∥

n
∑

i=nσ(ρ)+1

siUij

∥

∥

∥

∥

∥

∥

2

≤
n
∑

i=nσ(ρ)+1

s2
i

n
∑

i=nσ(ρ)+1

U2
ij < 1,

(19)
for all j = 1, . . . , n. Thus one can write any element
q satisfying qT Lq ≤ 2ρ′ as a signed version of a vector
in the nσ(ρ)-dimensional subspace, i.e. omitting the



expansion in the principal eigenvalues will not yield a
pointwise difference larger than one. Thus:

qj = sign





nσ(ρ)
∑

i=1

siUij



 , ∀j = 1, . . . , n, (20)

where sign(z) equals −1 if z < 0 and 1 otherwise. Now
the result follows from Rado’s theorem - stating that
the VC-dimension of a linear threshold rule in a nσ(ρ)-
dimensional subspace is at most nσ(ρ) - combined with
Sauer’s Lemma.

�

This theorem directly motivates the combinatorial
learning problem (15) where the average margin ρ̄ is
fixed a priori. Figure 1 displays the training error, test
error and generalization bound based on the Ripley
dataset, for a finite number of a priori fixed constants
ρ̄, illustrating the use of the generalization bound to
pick a proper ρ̄. We would like to point out that if ρ̄

is also to be found from the data, one needs an extra
correction of the above derivation, making the union
bound for all hypothesis sets Hρ̄ with varying cardi-
nality determined through nσ(ρ̄), see e.g. [20].

3 A Convex Algorithm

3.1 A Linear Programming Approach

This section considers a simple but powerful and flex-
ible relaxation to the combinatorial problem (15) - in
terms of a linear programming problem. Here we opt
to show the version where the regularization-accuracy
trade-off is made as a bi-criterion loss function in terms
of µ because of practical considerations. We note again
that the theoretical analysis of this version based on
an empirical margin would require a correction w.r.t.
the fixed margin case as described e.g. in [20].

Definition 1 (Linear Programming TGC) Let
µ > 0 be a fixed constant, then the TGC follows from
solving the following LP:

q̂ = arg min
q∈[−1,1]n

J ′
µ(q) = −

∑

i∈S
yiqi + µ

∑

i<j

wij |qi − qj |.

(21)

An apparent disadvantage of this formulation is the
fact that one needs 1

2n(n− 1) slack variables to trans-
late all terms in the sum

∑

i<j wij |qi − qj |. Remark
however that algorithms which are based on SDP-
relaxations scale similarly. This is because one param-
eterizes the problem there as a function of the squared
matrix Λ ∈ R

n×n, representing Λ = qqT [12, 13].
A major advantage of the LP formulation however is
that any sparseness in the weights results directly in

a reduction of computational complexity as the terms
wij |qi − qj | become obsolete when wij = 0. In case ev-
ery node is on the average connected to d neighboring
nodes, the problem can be solved with a complexity
O((nd)3). It is furthermore to be expected that struc-
ture can be exploited to find a more efficient algorithm
using a graph labeling algorithm as common in the lit-
erature on combinatorial optimization.

Practice suggests that solutions q̂ will often satisfy q̂i ∈
{−1, 1} for any i = 1, . . . , n. This is a consequence of
the box constraints in the LP. We can however not
guarantee this property, as easily seen when µ is taken
much too high: in that case all values q̂i will roughly
equal one single value strictly between −1 and 1. This
observation however makes an additional thresholding
step as common in spectral or SDP approaches often
obsolete.

3.2 The Dual Minimal Overflow Problem

The dual problem can be written as follows. Let
Y ∈ {−1, 0, 1}n denote the labels if given such
that Y = (y′

1, . . . , y
′
n)T , y′

i = yi if i ∈ S and 0
otherwise. Let the matrix ∆w ∈ R

M×n denote the
weighted first order difference matrix such that for
each m = 1, . . . ,M , there exists a unique combination
(i, j) with 1 ≤ i < j ≤ n where ∆w

mq = wij(qi − qj).
Note that the matrix ∆ corresponds with the
incidence matrix in case of an unweighted
graph. The Laplacian L(q, ξ;α+, α−, β+, β−)
- abbreviated as L(q, ξ; ·) - of (21) becomes
L(q, ξ; ·) = −

∑

i∈S yiqi + µ
∑

m:i<j wijξm

−∑n
i=1

(

α+
i (1 + qi) + α−

i (1 − qi)
)

−
∑M

m=1 (β+
m(∆w

mq + ξm) + β−
m(ξm − ∆w

mq)), with
multipliers α+

i , α−
i ≥ 0 for all i = 1, . . . , n and

β+
m, β−

m ≥ 0 for all m = 1, . . . ,M . The first or-

der conditions for optimality
∂L(q, ξ; ·)

∂qi

= 0 and

∂L(q, ξ; ·)
∂ξi

= 0 give the equalities










yi = (α+
i − α−

i ) + (β+ − β−)T ∆w,i i ∈ S
0 = (α+

i − α−
i ) + (β+ − β−)T ∆w,i i 6∈ S

(β+
m + β−

m) = µwij ∀m.

(22)

As Slater‘s condition holds [7], the duality gap be-
comes zero, and the dual problem can be written
as max

α+,α−,β+,β−≥0
min
q,ξ

L(q, ξ;α+, α−, β+, β−), can be

written as

min
α,β

n
∑

i=1

|αi| s.t.











αi + βT ∆w,i = yi i ∈ S
αi + βT ∆w,i = 0 i 6∈ S
|βm| ≤ wijµ ∀m,

(23)

where we define αi = (α+
i −α−

i ) for all i = 1, . . . , n, and
βm = (β+

m −β−
m) for all m = 1, . . . ,M . By eliminating



α, the problem can be rewritten as

min
|βm|≤µwij

‖Y − ∆wT
β‖1. (24)

This dual problem turns out to give the solution to a
similar problem. Consider the problem of establishing
an optimal flow between a set of source nodes, and
a set of sink nodes. Let ν > 0 be a fixed constant.
Let G be a loopless graph with nodes {vi}n

i=1, but let
{νwij}i6=j denote the maximal capacity of a flow from
node vi to vj , in either direction (i.e. |fij | ≤ wij for all
i 6= j). Now the problem of generalized max flow is to
look for a configuration of flows {fij}i6=j redirecting
the flow from all sources to all sinks, i.e. as far as
can be handled by the graph. Therefor, let the vector
z = (z1, . . . , zn)T ∈ {−1, 0, 1}n be defined as

∀i = 1, . . . , n :











zi = +1 iff vi is a source node

zi = −1 iff vi is a sink node

zi = 0 otherwise.

(25)
In case a node is a sink nor a source, the sum of the
flows has to be zero as any overhead causes flooding
the graph. This yields the following formulation

∃{|fij | ≤ νwij}i6=j :
∑

j 6=i

fij = zi, ∀i = 1, . . . , n.

(26)
Allowing for small deviations for handling the case
when the graph cannot handle the total flow properly
yields the minimal overflow problem which we define
as follows

Definition 2 (The minimal Overflow Problem)
Let ν > 0 be fixed, then the flows wich will cause
minimal overflow are given as the solution of a
optimization problem as follows

f̂ = arg min
|fij |≤νwij

Jν(f) =
n
∑

i=1

∣

∣

∣

∣

∣

∣

zi −
∑

j 6=i

fij

∣

∣

∣

∣

∣

∣

. (27)

Theorem 3 (Duality MOP - LPcut) By compar-
ison of problem (24) and problem (27), the LP for-
mulation (21) is seen to be the dual to the minimal
overflow problem where µ = ν.

Note the direct relationship of this duality result with
the well-known Max-Flow Min-Cut theorem by Ford
and Fulkerson, see e.g. [19].

3.3 Transductive Graph Cuts with One-Class
Labels

The idea of balancing the unsupervised labels (i.e. im-
posing that there are roughly a fixed amount of (unsu-
pervised) nodes corresponding with each label) was al-
ready explored in various publications, see e.g. [9, 15].
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Figure 2: A toy example of 1000 samples, iid sampled from
2 stochastic Yin-Yang like intertwined sources (stars and
crosses). The extremal nodes (big marks) were labeled with
+1 and −1 respectively, the labels of the remaining sam-
ples (denoted as square or diamond) were found, satisfying
exactly q̂ ∈ {−1, 1}1000. The algorithm assigns a wrong
label to only 3 out of 998 samples due to the overlapping
distributions (false positive predictions are indicated by a
diamond, true negative predictions by a square).

The same idea is used here to construct an algorithm
for datasets with only positive observed labels. The
technique of balancing here is used to counteract the
effect of the positive labels, avoiding the trivial solu-
tion where all labels equal +1. A sufficient counter-
weight to those positive samples is found in the con-
straint of having at least a certain amount of labels
to be negative. Note that this translates the intuition
that one wants to find a class of limited size. Incorpo-
rating this constraint gives the following formulation:

Definition 3 (TGC with Balancing) Let B be a
positive known constant. A graph cut belonging to
the hypothesis set Hρ containing at least a portion of
Bn ≤ n negative samples can be found (if it exists) by
solving the following integer programming problem:

min
q∈{−1,1}n

Jρ,B(q) =
∑

i∈S
−yiqi

s.t.

{

∑n
i=1(qi − 1) ≤ −2Bn

∑

i<j 2wij |qi − qj | ≤ 2ρ′.
(28)

As previously, we suggest to approximate this problem
by a linear programming problem through relaxing the
constraints qi ∈ {−1, 1} as qi ∈ [−1, 1]. Note that
in (28), the regularization term

∑

i<j 2wij |qi − qj | is
written as a hard constraint

∑

i<j 2wij |qi − qj | ≤ 2ρ′

in order to emphasize the different components.

At this stage, it is instructive to discuss the implica-
tions for a clustering algorithm based on MINCUT.
The idea is that one can perform this transductive in-
ference algorithm for the graph with each node labeled
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Figure 3: Similar toy example with 1000 samples, with 50
points positive (’+’), and 950 negative (’*’). Now only one
(!) label is given (big diamond), and the learning machine
looks for a minimal cut such that one has at least nB = 900
negative labels. The figure displays the result: remarkably,
most labels are predicted well (except the three as indicated
by the diamonds).

+1 exactly once. Nodes (vi, vj) which are closely re-
lated will have an associated solution q̂i and q̂j which
coincides. Indeed, the regularization terms based on
q̂i and q̂j will coincide (if vi has the same class label
as vj for both runs). If the nodes vi and vj are loosely
connected, the balancing constrained will enforce that
vi has a different class assigned in both q̂i and q̂j than
vj . It becomes clear that the balancing constraint reg-
ulates implicitly the size of each cluster: the higher
the required amount of negative samples, the smaller
the classes of positive points. There remain a cou-
ple of issues to be resolved for this implementation to
be a practical successful strategy. The first is that
previously, we relied on the fact that the solution q̂

satisfies exactly the integer constraints q̂ ∈ {−1, 1}n.
Although occurring remarkably often, it appears not
to be guaranteed a priori for all n runs. Related to
this fact is that the original integer program can have
multiple optima, disturbing somewhat the reasoning.
The third point is that it becomes computational dif-
ficult to perform the n tasks if n ≫ 1000. However,
it is observed that the CPLEX implementation can ef-
fectively exploit the sparse structure of the matrices
based on a classical labeling algorithm (see e.g. [19]
and references). From a theoretical point of view, it
remains a challenge to apply the generalization bound
as in Theorem 1 based on Serfling’s inequality. The
main difficulty is found in the apparent disagreement
of the implied sampling of only postive nodes, ver-
sus the assumption of random sampling the observed
nodes.

Class 1 (500) Class 2 (500)

SGT [15] 11.18 10.96
SDP [11] 4.21 5.30
tSVM [8] 10.23 12.12

TGC eq. (21) 5.13 4.45
Class 1 (950) Class 2 (50)

SGT [15] 3.80 20.20
SDP [11] 5.01 1.00
tSVM [8] 5.3 17.23

TGC eq. (21) 4.55 0.88

Table 1: Numerical results of a benchmark study -
expressed in the number of nodes in a class which are
mispredicted. In the first case a 500-500 partition was
generated, The second case considers datasets with a
true unbalanced 950-50 partition. The algorithms were
in both cases provided with exactly 2 opposite lables,
as in this case the proposed algorithm performs clearly
better than the remaining algorithms.

4 Experiments

Figure 2 gives a visual example of the TGC algorithm
of eq. (21) at work on a two dimensional artificially
constructed dataset of 1000 nodes. Only two nodes
were assigned the labels 1 and −1. The graph be-
tween nodes was constructed as follows: two different
nodes vi and vj were connected (wij = 1) when they
belong to the 20 closest neighbors of either, and the
value wij was set to zero otherwise. The algorithm
found a global optimum where q̂i was either 1 or −1
for all i = 1, . . . , n. Figure 3 was constructed analo-
gously, but using only 50 labeled nodes of the positive
class. Imposing a balancing of 90% against the single
(!) provided positive sample gave the displayed result.
Table 1 gives results on both datasets in terms of num-
ber of misclassified labels per class. Three other ex-
isting algorithms for transductive inference were used
for benchmarking purposes. At first, the medium size
algorithm based on an SDP relaxation as discussed in
[11] was used. Secondly, the results of Joachims graph
transducer [15] based on a spectral relaxation was re-
ported. Thirdly, we used a large scale refinement as in
[8] based on the transductive SVM formulation [4].

5 Conclusions

This paper discusses a novel approach towards the task
of transductive inference of the labels of a determin-
istic weighted graph. The derivation follows from the
definition of an appropriate hypothesis, implementing
the maximum margin principle. The relationship with
a MINCUT approach, and a suitable generalization
bound are developed. From a practical perspective, an
efficient and intuitive convex approach is formulated,
which is capable for handling datasets with over thou-



sand data-points. Extensions towards tasks with only
positive labels, and fully unsupervised clustering prob-
lems are discussed. An current open question concerns
the extension of the method to newly emerging graph
nodes, and the handling of empirical observed graphs.
We currently investigate the application and tuning
of this approach in a large-scale task of information
retrieval and in a specific task of gene prioritization.
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