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Abstract

In the multi-view approach to semi-
supervised learning, we choose one predictor
from each of multiple hypothesis classes,
and we �co-regularize� our choices by pe-
nalizing disagreement among the predictors
on the unlabeled data. We examine the
co-regularization method used in the co-
regularized least squares (CoRLS) algorithm
[12], in which the views are reproducing
kernel Hilbert spaces (RKHS's), and the
disagreement penalty is the average squared
di�erence in predictions. The �nal predictor
is the pointwise average of the predictors
from each view. We call the set of predictors
that can result from this procedure the
co-regularized hypothesis class. Our main
result is a tight bound on the Rademacher
complexity of the co-regularized hypothesis
class in terms of the kernel matrices of each
RKHS. We �nd that the co-regularization
reduces the Rademacher complexity by
an amount that depends on the distance
between the two views, as measured by
a data dependent metric. We then use
standard techniques to bound the gap
between training error and test error for
the CoRLS algorithm. Experimentally,
we �nd that the amount of reduction in
complexity introduced by co-regularization
correlates with the amount of improvement
that co-regularization gives in the CoRLS
algorithm.

1 Introduction

In the multi-view approach to semi-supervised learn-
ing, we have several classes of predictors, or �views.�
The goal is to �nd a predictor in each view that per-

forms well on the labeled data, such that all the cho-
sen predictors give similar predictions on the unlabeled
data. This approach is motivated by the assumption
that each view contains a predictor that's approxi-
mately correct. Roughly speaking, predictors that are
approximately correct are also approximately equal.
Thus we can reduce the complexity of our learning
problem by eliminating from the search space all pre-
dictors that don't have matching predictors in each of
the other views. Because of this reduction in complex-
ity, it's reasonable to expect better test performance
for the same amount of labeled training data. This pa-
per provides a more precise understanding of the ways
in which the agreement constraint and the choice of
views a�ect complexity and generalization.

Early theoretical results on the multi-view approach
to semi-supervised learning, in particular [5] and the
original co-training paper [3], assume that the predic-
tors of each view are conditionally independent given
the labels they try to predict. This assumption is dif-
�cult to justify in practice, yet there are scant other
theoretical results to guide the choice of views. In
[1], the authors present a theoretical framework for
semi-supervised learning that nicely contains multi-
view learning as a special case. Although their re-
sults do not assume independent views, their sample
complexity results are in terms of the complexity of
the space of �compatible predictors,� which in the case
of multi-view learning corresponds to those predictors
that have matching predictors in the other views. To
apply these results to a particular multi-view learning
algorithm, one must compute the complexity of the
class of compatible predictors. This problem is ad-
dressed to some extent in [6], in which they compute
an upper bound on the Rademacher complexity of the
space of compatible predictors. However, their bound
is given as the solution to an optimization problem.

In this paper, we consider the co-regularized least
squares (CoRLS) algorithm, a two-view, semi-
supervised version of regularized least squares (RLS).



The algorithm was �rst discussed in [12], and a similar
algorithm was given earlier in [10]. Although CoRLS
has been shown to work well in practice for both clas-
si�cation [12] and regression [4], many would-be users
of the algorithm are deterred by the requirement of
choosing two views, as this often seems an arbitrary
process. We attempt to improve this situation by
showing how the choice of views a�ects generalization
performance, even in settings where we can't make any
probabilistic assumptions about the views.

In CoRLS, the two views are reproducing kernel
Hilbert spaces (RKHS's), call them F and G. We �nd
predictors f∗ ∈ F and g∗ ∈ G that minimize an objec-
tive function of the form

Labeled Loss(f, g) + Complexity(f, g)

+λ
∑

x∈{unlabeled points}

[f(x)− g(x)]2.

The last term is the �co-regularization,� which encour-
ages the selection of a pair of predictors (f∗, g∗) that
agree on the unlabeled data. We follow [4, 6] and con-
sider the average predictor ϕ∗ := (f∗ + g∗)/2, which
comes from the class

Jave := {x 7→ [f(x) + g(x)] /2 : (f, g) ∈ F × G} .

For typical choices of F and G, this class is too large to
admit uniform generalization bounds. In Section 3.1,
however, we see that under a boundedness condition on
the labeled loss, the complexity and coregularization
terms force ϕ∗ to come from a much smaller class Jλ,
where λ ≥ 0 is the coe�cient of the co-regularization
term in the objective function. As λ increases, it is
clear that the size of Jλ decreases, and we'd expect
this to improve generalization. We make this precise
in Theorem 2, where we use standard arguments to
bound the gap between training error and test error in
terms of the Rademacher complexity of Jλ.

The main contribution of this paper is Theorem 3,
which gives an explicit expression for the Rademacher
complexity of Jλ, up to a small constant factor. For
ordinary kernel RLS (i.e. single view and fully super-
vised), it is known that the squared Rademacher com-
plexity is proportional to the trace of the kernel matrix
(see e.g. [11, Thm 7.39, p. 231]). We �nd that for the
two-view case without coregularization (i.e. λ = 0),
Jλ has squared Rademacher complexity equal to the
average of the traces of the two labeled-data kernel
matrices. When λ > 0, the coregularization term re-
duces this quantity by an amount that depends on
how di�erent the two views are, and in particular on
the average distance between the two views' represen-
tations of the labeled data, where the distance metric
is determined by the unlabeled data.

In Section 2, we give a formal presentation of the
CoRLS algorithm. Our results are presented in Sec-
tion 3, discussed in Section 4, and proved in Section 5.
In Section 6, we present an empirical investigation of
whether the e�ect of co-regularization on test perfor-
mance is correlated with its e�ect on Rademacher com-
plexity.

2 Co-Regularized Least Squares

We consider the case of two views, though both the
algorithm [4] and the analysis can be extended to
multiple views. Our views are RKHS's F and G
of functions mapping from an arbitrary space X to
the reals. The CoRLS algorithm takes labeled points
(x1, y1), . . . , (x`, y`) ∈ X × Y, and unlabeled points
x`+1, . . . , x`+u ∈ X , and solves the following minimiza-
tion problem:

(f∗, g∗) = arg min
f∈F,g∈G

L̂(f, g) + γF ||f ||2F + γG ||g||2G

+ λ

`+u∑
i=`+1

[f(xi)− g(xi)]2

for some loss functional L̂ that depends only on the
labeled data, and regularization parameters γF , γG ,
and λ. The �nal output is ϕ∗ := (f∗ + g∗)/2.

In [12, 4], the loss functional considered was

L̂(f, g) =
1
2`

∑̀
i=1

([
f(xi)− yi

]2 +
[
g(xi)− yi

]2)
If we use this loss and set λ = 0, the objective function
decouples into two single-view, fully-supervised kernel
RLS regressions. We also propose the loss functional

L̂(f, g) =
1
`

∑̀
i=1

(
f(xi) + g(xi)

2
− yi

)2

as one that seems natural when the �nal prediction
function is 1

2 (f + g), as in [4, 6]. Our analysis applies
to both of these loss functionals, as well as many more
that depend on the labeled data only and that satisfy a
boundedness condition speci�ed in Section 3.1. Thus
we take the �S� in CoRLS to refer to the squares in
the complexity and co-regularization terms, which our
analysis requires, rather than to the squares in the loss
functional, which we don't require.

2.1 Notation and Preliminaries

We'll denote the reproducing kernels corresponding
to F and G by kF : X × X → R and kG :
X × X → R, respectively. It's convenient to in-
troduce notation for the �span of the data� in each



space: LF := span{kF (xi, ·)}`+u
i=1 ⊂ F and LG :=

span{kG(xi, ·)}`+u
i=1 ⊂ G. By the Representer Theo-

rem, it's clear that (f∗, g∗) ∈ LF × LG . That is, we
can write the CoRLS solution as

f∗(·) =
u+∑̀
i=1

αikF (xi, ·) ∈ LF

g∗(·) =
u+∑̀
i=1

βikG(xi, ·) ∈ LG

for α = (α1, . . . , αu+`) ∈ Ru+`

and β = (β1, . . . , βu+`) ∈ Ru+`.

We'll denote an arbitrary element of LF by fα =∑u+`
i=1 αikF (xi, ·), and similarly for elements of LG .

De�ne the kernel matrices (KF )ij = kF (xi, xj) and
(KG)ij = kG(xi, xj), and partition them into blocks
corresponding to labeled and unlabeled points:

KF =
(

Au×u Cu×`

C ′
`×u B`×`

)
KG =

(
Du×u Fu×`

F ′
`×u E`×`

)
.

We can now write the agreement term as

`+u∑
i=`+1

[fα(xi)− gβ(xi)]2 = ||(A C) α− (D F ) β||2 ,

and it follows from the reproducing property that
||fα||2F = α′KFα and ||gβ ||2G = β′KGβ. For each of
the loss functionals presented in the beginning of this
section, the whole objective function is quadratic in α
and β, and thus a solution (f∗, g∗) can be found by dif-
ferentiating and solving a system of linear equations.
See [12, 4] for more details.

3 Results

3.1 Bounding the CoRLS Function Class

We assume the loss functional L̂ : F × G → [0,∞)
satis�es

L̂(0, 0) ≤ 1.

That is, L̂(f, g) ≤ 1 for f ≡ 0 and g ≡ 0. This is
true, for example, for the two loss functionals given
in Section 2, provided that Y = [−1, 1]. Assuming
L̂(0, 0) ≤ 1, we now derive the �co-regularized� func-
tion class1 J ⊂ Jave, from which the CoRLS predic-
tors are drawn.

Recall that our original problem was to minimize

Q(f, g) :=L̂(f, g) + γF ||f ||2F + γG ||g||2G

+ λ
`+u∑

i=`+1

[f(xi)− g(xi)]2

1We now suppress λ in the Jλ from Section 1.

over F × G. Plugging in the trivial predictors f ≡ 0
and g ≡ 0 gives the following upper bound:

min
f,g

Q(f, g) ≤ Q(0, 0) = L̂(0, 0) ≤ 1

Since all terms of Q(f, g) are nonnegative, we conclude
that any (f∗, g∗) minimizing Q(f, g) is contained in

H :=

{
(f, g) : γF ||f ||2F + γG ||g||2G

+ λ
`+u∑

i=`+1

|f(xi)− g(xi)|2 ≤ 1

}
,

and the �nal predictor for the CoRLS algorithm is cho-
sen from the class

J := {x 7→ [f(x) + g(x)] /2 : (f, g) ∈ H} .

Note that the function classes H and J do not depend
on the labeled data, and thus are deterministic after
conditioning on the unlabeled data.

3.2 Setup for the Theorems

We will use empirical Rademacher complexity as our
measure of the size of a function class. The empirical
Rademacher complexity of a function class F = {ϕ :
X → Y} for a sample x1, . . . , x` ∈ X is de�ned as

R̂`(F) = Eσ

[
sup
ϕ∈F

∣∣∣∣∣2` ∑̀
i=1

σiϕ(xi)

∣∣∣∣∣
]

,

where the expectation is with respect to σ =
{σ1, . . . , σ`}, and the σi are i.i.d. Rademacher random
variables2.

In our semi-supervised context, we assume that the la-
beled points (x1, y1), . . . , (x`, y`) are drawn i.i.d. from
a distribution D on X × Y, but make no assumptions
about the unlabeled points x`+1, . . . , x`+u ∈ X . In-
deed, our claims are conditional on the unlabeled data,
and thus remain true no matter what distribution the
unlabeled points are drawn from.

For a given loss function L : Y2 → [0, 1], and for any
choice of ϕ ∈ J , we are interested in bounds on the ex-
pected loss EDL(ϕ(X), Y ). Typically, L would be the
loss used to de�ne the labeled empirical risk functional
L̂, but it need not be.

Our generalization bound in Theorem 2 is based on
the following theorem (see e.g. [11, Thm 4.9, p. 96]):

2We say σ is a Rademacher random variable if P (σ =
1) = P (σ = −1) = 1

2
.



Theorem 1. Fix δ ∈ (0, 1), and let Q be a class of
functions mapping from X ×Y to [0, 1]. With probabil-
ity at least 1− δ over the sample (X1, Y1), . . . , (X`, Y`)
drawn i.i.d. from D, every q ∈ Q satis�es

EDq(X, Y ) ≤ 1
`

∑̀
i=1

q(Xi, Yi) + R̂`(Q) + 3

√
ln(2/δ)

2`
.

The expression EDq(X, Y ) is deterministic, but un-
known to us because we do not know the data gener-
ating distribution D. The terms 1

`

∑`
i=1 q(Xi, Yi) and

R̂`(Q) are random, but with probability at least 1− δ,
the inequality holds for the observed values of these
random quantities, and for every q ∈ Q.

3.3 Theorems

In Theorem 2, we give generalization bounds for the
class J in terms of the empirical Rademacher com-
plexity R̂`(J ). In Theorem 3, we give upper and
lower bounds on R̂`(J ) that can be written explic-
itly in terms of blocks of the kernel matrices KF and
KG .

Theorem 2. Suppose that L : Y2 → [0, 1] satis�es the
following uniform Lipschitz condition: for all y ∈ Y
and all ŷ1, ŷ2 ∈ Y with ŷ1 6= ŷ2,

|L(ŷ1, y)− L(ŷ2, y)|
|ŷ1 − ŷ2|

≤ B.

Then conditioned on the unlabeled data, for any δ ∈
(0, 1), with probability at least 1− δ over the sample of
labeled points (X1, Y1), . . . , (X`, Y`) drawn i.i.d. from
D, we have for any predictor ϕ ∈ J that

EDL(ϕ(X), Y ) ≤ 1
`

∑̀
i=1

L(ϕ(Xi), Yi) + 2BR̂`(J )

+
1√
`

(
2 + 3

√
ln(2/δ)/2

)
Note that for Y = [−1, 1], the conditions of this theo-
rem are satis�ed by the loss function

L(ŷ, y) = (τ(ŷ)− y)2/4,

where τ(y) = min(1,max(−1, y)).

The following theorem is the main result of the paper.
Recall that A and D are the unlabeled kernel subma-
trices, B and E are the labeled kernel submatrices,
and C and F involve the cross-terms.

Theorem 3. For the CoRLS function class J ,

1
4
√

2
U

`
≤ R̂`(J ) ≤ U

`
,

where

U2 = γ−1
F tr(B) + γ−1

G tr(E)− λtr
(
J ′ (I + λM)−1

J
)

,

with I the identity matrix, and

J = γ−1
F C − γ−1

G F M = γ−1
F A + γ−1

G D.

4 Discussion

4.1 Unlabeled Data Improves the Bound

The regularization parameter λ controls the amount
that the unlabeled data constrains the hypothesis
space. It's obvious from the de�nition of the hypoth-
esis class J that if λ1 ≥ λ2 ≥ 0, then Jλ1 ⊆ Jλ2 , and
thus R̂`(Jλ1) ≤ R̂`(Jλ2). That is, increasing λ reduces
the Rademacher complexity R̂`(Jλ). The amount of
this reduction is characterized by the expression

∆(λ) := λtr
(
J ′ (I + λM)−1

J
)

from Theorem 3. When λ = 0, the algorithm ignores
the unlabeled data, and the reduction is indeed ∆(0) =
0. As we would expect, ∆(λ) is nondecreasing in λ and
has a �nite limit as λ →∞. We collect these properties
in a proposition:

Proposition 1. ∆(0) = 0, ∆(λ) is nondecreasing on
λ ≥ 0, and limλ→∞ ∆(λ) = tr(J ′M−1J), provided the
inverse exists.

Proof. The limit claim is clear if we write the re-
duction as ∆(λ) = tr(J ′(λ−1I + M)−1J). Since A
and D are Gram matrices, their positive combination
M is positive semide�nite (psd). Thus we can write
M = Q′DQ, with diagonal D ≥ 0 and orthogonal Q.
Then

∆(λ) = tr
(
J ′Q′ (λ−1I + D

)−1
QJ

)
=

∑̀
i=1

u∑
j=1

(QJ)2ij
(
λ−1 + Djj

)−1

From this expression, it's clear that ∆(λ) is nonde-
creasing in λ on (0,∞). Since ∆(λ) is continuous at
λ = 0, it's nondecreasing on [0,∞). �

4.2 Interpretation of Improvement

Here we take some steps towards interpreting the
reduction in complexity ∆(λ). For simplicity, take
γF = γG = 1. Then the reduction is given by

∆(λ) = λ(C − F )′(I + λM)−1(C − F )

Note that the jth column of matrix C gives a rep-
resentation of the jth labeled point by its F-inner



product with each of the unlabeled points. That
is, for j = 1, . . . , ` and for i = 1, . . . , u, we have
Cij = 〈kF (x`+i, ·), kF (xj , ·)〉. Similarly, F represents
each labeled point by its G-inner product with each
of the unlabeled points. Since (I + λM)−1 is psd, it
de�nes a semi-norm. Thus we can write the reduction
in complexity as

∆(λ) = λ
∑̀
i=1

||C·i − F·i||2(I+λM)−1

=
∑̀
i=1

||C·i − F·i||2(I/λ+M)−1 (for λ > 0)

We see that ∆(λ) grows with the distance between the
two di�erent representations of the labeled points. For
very small λ, this distance is essentially measured us-
ing the Euclidean norm. As λ grows, the distance ap-
proaches that determined by M−1, where M is the sum
of the two unlabeled data kernel matrices. Loosely
summarized, the reduction is proportional to the dif-
ference between the representations of the labeled data
in the two di�erent views, where the measure of dif-
ference is determined by the unlabeled data.

5 Proofs

5.1 Proof of Theorem 2.

De�ne the loss class

Q = {(x, y) 7→ L(ϕ(x), y) : ϕ ∈ J }.

By assumption, any function inQmaps into [0, 1]. Ap-
plying Theorem 1, we have for any ϕ ∈ J , with proba-
bility at least 1−δ over the labeled sample (Xi, Yi)`

i=1,
that

EDL(ϕ(X), Y ) ≤1
`

∑̀
i=1

L(ϕ(Xi), Yi)

+ R̂`(Q) + 3

√
ln(2/δ)

2`
.

The following lemma completes the proof:

Lemma 1. R̂`(Q) ≤ 2BR̂`(J ) + 2√
`
.

Proof. De�ne the functions gy = L(0, y) and hy(ŷ) =
L(ŷ, y) − L(0, y). Then L(ϕ(x), y) = gy + hy(ϕ(x)),
and

Q = gy + hy ◦ J .

Since |gy| ≤ 1 for all y, we have

R̂`(Q) ≤ R̂`(hy ◦ J ) +
2√
`
,

by a property of Rademacher complexity (see e.g. [11,
Thm 4.15(v), p. 101]). For all y, hy(·) is Lipschitz
with constant B, and hy(0) = 0. Thus by the Ledoux-
Talagrand contraction inequality [9, Thm 4.12, p.112]
we have

R̂`(hy ◦ J ) ≤ 2BR̂`(J )

The bound in Lemma 1 is sometimes of the right order
of magnitude and sometimes quite loose. Consider the
space X × Y = R × {−1, 0, 1} and the loss L(ŷ, y) =
(τ(ŷ) − y)2/4, where τ(y) = min(1,max(−1, y)). As-
sume P (y = 0) = 1. Then for any class J of predic-
tors that map into {−1, 1}, with probability 1 we have

L(ϕ(x), y) = 1, and thus R̂(Q) = 2
` Eσ

∣∣∣∑`
i=1 σi

∣∣∣. By

the Kahane-Khintchine inequality (c.f. Section 5.2.3),
we conclude R̂(Q) = Θ(`−1/2). If we choose J small,

say J = {x 7→ 1}, then R̂`(J ) = 2
` Eσ

∣∣∣∑`
i=1 σi

∣∣∣ =

Θ(`−1/2), and the bound is tight. If we choose J as
large as possible, and we assume that x has a contin-
uous distribution, then R̂`(J ) = 2 almost surely, and
the bound is loose.

5.2 Proof of Theorem 3

We prove this theorem in several steps, starting from
the de�nition

R̂`(J ) = Eσ

[
sup

(f,g)∈H

∣∣∣∣∣1` ∑̀
i=1

σi(f(xi) + g(xi))

∣∣∣∣∣
]

,

where as usual the expectation is w.r.t. σ. We �rst
convert from a supremum over the function space H to
a supremum over a �nite-dimensional Euclidean space
that we can solve directly. Next, we use the Kahane-
Khintchine inequality to bound the expectation over σ
above and below by expectations that we can compute
explicitly. Finally, with some matrix algebra we can
write R̂`(J ) in terms of blocks of the original kernel
matrices.

5.2.1 Converting to Euclidean Space

Since (f, g) ∈ H implies (−f,−g) ∈ H, we can drop
the absolute value. Next, note that the expression in-
side the supremum depends only on the values of f
and g at the sample points. By the reproducing kernel
property, it's easy to show that f(xj) = (ProjLF f)(xj)
and g(xj) = (ProjLGg)(xj) for any sample point xj .

Thus the supremum in the expression for R̂`(J ) is
unchanged if we restrict the supremum to (f, g) ∈



(LF × LG) ∩H. Applying these observations we get

R̂`(J ) =
1
`
Eσ sup

{∑̀
i=1

σi(f(xi) + g(xi)) :

(f, g) ∈ (LF × LG) ∩H

}
.

Finally, we can write the set (LF × LG) ∩H as{
(fα, gβ) : γFα′KFα+γGβ′KGβ

+λ
`+u∑

i=`+1

|fα(xi)− gβ(xi)|2 ≤ 1

}

=
{

(fα, gβ) : (α′ β′)N
(

α
β

)
≤ 1

}
,

where

N :=
(

γFKF 0
0 γGKG

)
+ λKC ,

KC :=


A
C ′

−D
−F ′

 (A C −D − F )

Now we can write

R̂`(J ) =
1
`
Eσ

[
sup
α,β

{
σ′(C ′ B)α + σ′(F ′ E)β

s.t. (α′ β′)N
(

α
β

)
≤ 1

}]
.

5.2.2 Evaluating the Supremum

For a symmetric positive de�nite (spd) matrix M ,
it's easy to show that supα:α′Mα≤1 v′α =

∣∣∣∣M−1/2v
∣∣∣∣.

However, our matrix N may not have full rank. Note
that each entry of the column vector (C ′ B)α is an
inner product between α and a row (or column, by
symmetry) of KF . Thus if α|| = ProjColSpace(KF )α,
then (C ′ B)α = (C ′ B)α||. Similar reasoning shows
that (F ′ E)β = (F ′ E)β||, for β|| = ProjColSpace(KG)β,
and that the quadratic form (α′ β′)N(α′ β′)′ is un-
changed when we replace (α, β) by (α||, β||). Thus the
supremum can be rewritten as

sup
α||∈ColSpace(KF )

β||∈ColSpace(KG)

{ ∣∣σ′(C ′ B)α|| + σ′(F ′ E)β||
∣∣

s.t. (α′|| β′||)N(α′|| β′||)
′ ≤ 1

}
Changing to eigenbases cleans up this expression and
clears the way for substantial simpli�cations in later

sections. Diagonalize the psd kernel matrices to get
orthonormal bases for the column spaces of KF and
KG :

V ′KFV = ΣF W ′KGW = ΣG
where ΣF and ΣG are diagonal matrices containing
the nonzero eigenvalues, and the columns of V and
W are bases for the column spaces of KF and KG ,
respectively. Now introduce a and b such that

α|| = V a β|| = Wb

Applying this change of variables to the quadratic
form, we get

(α′|| β′||)N
(

α||
β||

)
= (a′ b′)T

(
a
b

)
where

T = Σ + λRR′

with

Σ :=

�
γFΣF 0

0 γGΣG

�
R :=

�
V ′ 0
0 W ′

�0B@
A
C′

−D
−F ′

1
CA

The matrix T is spd, since it's the sum of the spd di-
agonal matrix Σ and the psd matrix λRR′. For com-
pactness, de�ne W = (C ′ B F ′ E) ( V 0

0 W ). We can
now write

R̂`(J ) =
1
`
Eσ

[
sup
a,b

{
|σ′W ( a

b )|

s.t. (a′ b′)T (a′ b′)′ ≤ 1
}]

.

Since T is spd, we can evaluate the supremum as de-
scribed above to get

R̂`(J ) =
1
`
Eσ

∣∣∣∣T−1/2W ′σ
∣∣∣∣

5.2.3 Bounding R̂`(J ) above and below

We make use of the following lemma3:

Lemma 2 (Kahane-Khintchine inequality).
For any vectors a1, . . . , an in a Hilbert space and inde-
pendent Rademacher random variables σ1, . . . , σn, we
have

1√
2
E

�����
�����

nX
i=1

σiai

�����
�����
2

≤

 
E

�����
�����

nX
i=1

σiai

�����
�����
!2

≤ E

�����
�����

nX
i=1

σiai

�����
�����
2

Taking the columns of T−1/2W ′ to be the ai's, we can
apply this lemma to our expression for R̂`(J ) to get

1
4
√

2
U

`
≤ R̂`(J ) ≤ U

`

3See [8] for a proof of the lower bound. The upper
bound is Jensen's inequality.



where

U2 := Eσ
∣∣∣∣∣∣T−1/2W ′σ

∣∣∣∣∣∣2
= Eσtr

[
WT−1W ′σσ′

]
= tr

[
WT−1W ′]

To get the second line we expanded the squared norm,
took the trace of the scalar quantity inside the expec-
tation, and rotated the factors inside the trace. To get
the last equality we interchanged the trace and the ex-
pectation and noted that Eσσ′ is the identity matrix.

5.2.4 Writing our Expression in terms of the

Original Kernel Matrices

It will be helpful to divide V and W into labeled and
unlabeled parts. We note the dimensions of V and W
are (`+u)× rF and (`+u)× rG , where rF and rG are
the ranks of KF and KG , respectively. So we have

KF =
(

A C
C ′ B

)
=

(
Vu

V`

)
ΣF (V ′

u V ′
` ) (1)

KG =
(

D F
F ′ E

)
=

(
Wu

W`

)
ΣG(W ′

u W ′
`) (2)

Rearranging the diagonalization, we also have

V ′
(

A C
C ′ B

)
= ΣF (V ′

u V ′
` ) (3)

W ′
(

D F
F ′ E

)
= ΣG(W ′

u W ′
`) (4)

By equating blocks in these four matrix equations, we
attain all the substitutions we need to write U2 in
terms of the original kernel submatrices A,B,C, D, E,
and F . For example, by equating the top left subma-
trices in Equation 1, we get A = VuΣFV ′

u. Using these
substitutions, we can write:

W ′ =
(

V ′ 0
0 W ′

) 
C
B
F
E

 =
(

ΣF 0
0 ΣG

) (
V ′

`

W ′
`

)

R =
(

V ′ 0
0 W ′

) 
A
C ′

−D
−F ′

 =
(

ΣF 0
0 −ΣG

) (
V ′

u

W ′
u

)

We now work on the T−1 factor in our expression
U2 = tr(WT−1W). Using the Sherman-Morrison-
Woodbury formula 4 , we expand T−1 = (Σ+λRR′)−1

as

T−1 = Σ−1 − λΣ−1R
(
I + λR′Σ−1R

)−1
R′Σ−1

4(A + UU ′)−1 = A−1 −A−1U(I + UT A−1U)−1UT A−1,
provided the inverses exist [7, p. 50].

Since Σ and I + λR′Σ−1R are spd, our inverses ex-
ist and the expansion is justi�ed. Substituting this
expansion into our expression for U2, we get

U2 = tr
(
WΣ−1W ′)− λtr

(
WΣ−1R

×
(
I + λR′Σ−1R

)−1
R′Σ−1W

)
We'll have our �nal form once we can express
WΣ−1W ′, R′Σ−1R, and R′Σ−1W in terms of the orig-
inal kernel matrix blocks. We have

WΣ−1W ′

= (V` W`)
(

ΣF 0
0 ΣG

) (
γ−1
F Σ−1

F 0
0 γ−1

G Σ−1
G

)
×

(
ΣF 0
0 ΣG

) (
V ′

`

W ′
`

)
= (V` W`)

(
γ−1
F ΣF 0

0 γ−1
G ΣG

) (
V ′

`

W ′
`

)
= γ−1

F V`ΣFV ′
` + γ−1

G W`ΣGW ′
`

= γ−1
F B + γ−1

G E

The last equality follows by equating submatrices in
Equations 1 and 2. Using very similar steps, but with
di�erent substitutions read from Equations 1 and 2,
we also get

R′Σ−1R = γ−1
F A + γ−1

G D = M

R′Σ−1W ′ = γ−1
F C − γ−1

G F = J

Putting things together, we get

U2 = tr
(
γ−1
F B + γ−1

G E
)
− λtr

(
J ′ (I + λM)−1

J
)

�

6 Experiments

The objective of our experiments was to investigate
whether the reduction in hypothesis space complexity
due to co-regularization correlates with an improve-
ment in test performance. We closely followed the ex-
perimental setup used in [4] on the UCI repository data
sets [2]. We selected those data sets with continuous
target values, between 5 and 500 examples, and at least
5 features. For each of these 29 data sets, we generated
two views by randomly splitting the features into two
sets of equal size. To get our performance numbers, we
averaged over 10 randomly chosen feature splits. To
evaluate the performance of each split, we performed
10-fold `inverse' cross validation, in which one fold is
used as labeled data, and the other nine folds are used
as unlabeled data.



Figure 1: The percent improvement in RMS error of
the CoRLS (λ = 1/10) algorithm over the 2-view RLS
(λ = 0) algorithm vs. the decrease in Rademacher
complexity.

For each data set, we used the CoRLS algorithm with
loss functional

L̂(f, g) =
1
2`

∑̀
i=1

([
f(xi)− yi

]2 +
[
g(xi)− yi

]2)
,

as in [12, 4]. In [4], CoRLS is compared to RLS. Here,
we compare CoRLS with co-regularization parameter
λ = 1/10 to the performance with λ = 0. In Figure 1,
for each data set we plot the percent improvement in
RMS error when going from λ = 0 to λ = 1/10 against
the size of the decrease in the Rademacher complexity.
The correlation between these two quantities is r =
.67. The error bars extend two standard errors from
the mean.

7 Conclusions

We have given tight bounds for the Rademacher com-
plexity of the co-regularized hypothesis space arising
from two RKHS views, as well as a generalization
bound for the CoRLS algorithm. While our theo-
rems bound the gap between training and test per-
formance, it says nothing about the absolute perfor-
mance: If neither view has good predictors, then we'll
have poor performance, regardless of the generaliza-
tion bound. Nevertheless, experimentally we found
a correlation between improved generalization bounds
and improved test performance. This may suggest that
for typical parameter settings, or at least for those
used in [4], reduction in Rademacher complexity is a
good predictor of improved performance. We leave
this question for further study, as well as the question

of whether our expression for Rademacher complexity
can help guide the choice of views.
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