
Memory-Efficient Orthogonal Least Squares Kernel Density
Estimation using Enhanced Empirical Cumulative Distribution

Functions

Martin Schafföner, Edin Andelic, Marcel Katz, Sven E. Krüger, Andreas Wendemuth

Dept. of Electrical Engineering and Information Technology
Otto-von-Guericke-University

P. O. Box 4120, 39016 Magdeburg, Germany
martin.schaffoener@e-technik.uni-magdeburg.de

Abstract

A novel training algorithm for sparse kernel
density estimates by regression of the em-
pirical cumulative density function (ECDF)
is presented. It is shown how an overdeter-
mined linear least-squares problem may be
solved by a greedy forward selection proce-
dure using updates of the orthogonal decom-
position in an order-recursive manner. We
also present a method for improving the ac-
curacy of the estimated models which uses
output-sensitive computation of the ECDF.
Experiments show the superior performance
of our proposed method compared to state-
of-the-art density estimation methods such as
Parzen windows, Gaussian Mixture Models,
and ǫ-Support Vector Density models [1].

1 Introduction

Estimation of probability density functions from data
samples is a common problem in engineering and
machine learning. Well known methods include
(semi-)parametric models such as Gaussian mixture
models (GMMs) estimated using the Expectation-
Maximization (EM) procedure [5] and non-parametric
models such as the Parzen windows method [6]. Semi-
parametric models are relatively simple and computa-
tionally efficient but they require a number of param-
eters to be specified by the user, e. g. the number of
mixture components and lower bounds on the individ-
ual Gaussians’ covariances, which may be hard to ob-
tain if no prior knowledge of the problem is available.
Parzen windows do not suffer from these constraints,
however, all the training samples are needed to define
the density estimate.

Several approaches to estimate non-parametric sparse
kernel density models employing regression on the dis-
tribution function have been suggested, including a

support vector density (ǫ-SVD) algorithm [1] using an
epsilon-loss function, and a similar orthogonal least
squares (OLS) algorithm with local regularization [4]
employing Gram-Schmidt-orthogonalization and spar-
sification through forward regression. However, both
of these methods are very memory-consuming during
training time because they require the complete Gram
matrix. To overcome this problem, we present an algo-
rithm which constructs a sparse OLS density estimate
using an order-recursive update of the orthogonal de-
composition matrices by means of thin updates of the
Gram matrix’ pseudo-inverse which substantially re-
duces memory requirements.

The paper is organized as follows: In section 2, we re-
vise the idea of density estimation as regression of the
distribution function. Next, in section 3, we introduce
some properties and problems of the empirical cumu-
lative distribution function and possible solutions of
these problems. In section 4, we lay out our algorithm
in detail and compare them with other algorithms on
a theoretic level, while section 5 gives experimental
results and comparisons. The paper is concluded in
section 6.

2 Kernel Density Estimation by

Regression

A probability density p(x) is defined as the solution of
∫

x

−∞

p(t)dt = F (x) (1)

subject to the constraints
∫ ∞

−∞

p(u)du = 1 (2)

p(x) ≥ 0 (3)

where F (x) is the probability distribution function.
Since F (x) is unknown, (1) must be solved using an
approximation Fe(x), the empirical cumulative distri-
bution function (cf. section 3).

Given an independent and identically distributed sam-
ple data set X = x1, . . . , xN with x ∈ R

D drawn from
the unknown distribution F (x), we wish to estimate
the unknown density p(x) such that

p(x) =

N
∑

k=1

αkK(x, xk) (4)

subject to the constraints

αk ≥ 0 ∀k (5)
N

∑

k=1

αk = 1 (6)

using a kernel K(x, y) with the properties

K(x, y) ≥ 0 (7)
∫ x

−∞

K(t, y)dt ≥ 0 (8)

∫ ∞

−∞

K(t, y)dt = 1 (9)

to satisfy the constraints from (2) and (3). Examples
of kernels satisfying these constraints are

• the Gaussian kernel

Kgauss(x, y) =
1

(2πσ2)D/2
exp

(

−||x − y||2
2σ2

)

(10)

• the Epanechnikov kernel

Kepa(x, y) =
3

4
(1 − ||x − y||2/σ2)+ (11)

• the triangle kernel

Ktri(x, y) = (1 − ||x − y||/σ)+ (12)

with σ > 0.

A possible solution of (4) is provided by the well known
method of Parzen windows [6] with αk = 1/N, k =
1 . . .N and any kernel (window function) satisfying
constraints (7)–(9). This method is known to perform
very well, however, it relies on all the problem’s sam-
ples to characterize the solution. Therefore, we strive
to obtain a solution with some or most αk = 0, i. e., a
sparse approximation of the problem.

If the parameters of the kernel K are considered fixed,
the density model is completely characterized by the
weight vector α. With (1), kernel density estimation
can then be posed as the regression modeling problem

Fe(x) =
N

∑

k=1

αkq(x, xk) + ǫ(x) (13)

Figure 1: Construction of a two-dimensional example
ECDF. Circles denote original problem samples, dia-
monds denote additional ECDF jumps, colored areas
denote value of the ECDF.

subject to constraints (5) and (6) with

q(x, xk) =

∫

x

−∞

K(t, xk)dt (14)

and ǫ(x) the modeling error at x.

3 The Empirical Cumulative

Distribution Function

The empirical cumulative distribution function is de-
termined solely by the samples xk, k = 1 . . .N such
that

Fe(x) =

∑N
k=1 Θ(x, xk)

N
(15)

where Θ(x, y) denotes point dominance

Θ(x, y) = {x � y} =

{

1, if x(i) ≥ y(i)∀i = 1 . . .D

0, else

(16)
This means that Fe(x) is a function which is given non-
parametrically [5]. The ECDF has a staircase shape
with N jumps in the one-dimensional case. In figure
1 an admittedly degenerate two-dimensional problem
with N = 3 problem sample points is shown where the
corresponding ECDF has a much more complex shape
with 6 > (N = 3) jumps.

From (15) it is not clear at which points the regression
fit in (13) is to be evaluated. In the one-dimensional
case, one usually samples Fe at the problem’s sample
points xk for convenience, since that’s where the jumps
of the function are located. In the multi-dimensional
case, sampling Fe at the problem’s sample points does
not capture the complexity of the ECDF. Even worse,
in high dimensions a situation can occur where none

of the samples dominates any other sample (as in fig-
ure 1), i. e., sampling Fe at the problem sample points
yields only the one function value 1/N instead of the
entire range [0, 1]. Therefore, the ECDF has to be
sampled at additional locations.

One possibility is to explicitly compute all the points
at which jumps in the ECDF occur. This can be
quite involving, but in [7] an algorithm is proposed
which solves the problem in O(Dk) time where k is
the sample-dependent number of jumps of the ECDF.
Since in high dimensions the number k of output points
may also be very large, one may resort to only using
a feasible number of randomly picked points from this
algorithm. This approach then will not capture the
full complexity of the ECDF but at least use meaning-
ful points which generate the entire range [0, 1] of the
ECDF.

4 Memory-Efficient Orthogonal

Forward Regression

Consider that suitable locations cs, s = 1 . . . S for
checking the regression model (13) have been identified
as in section 3, we rewrite (13) in a more convenient
fashion:

Fe = Qα + ǫ (17)

with Fe(s) = Fe(cs), α(k) = αk, Q(s,k) = q(cs, xk),
ǫ(s) = ǫ(cs). If an orthogonal decomposition of Q =

WA with w⊤
i wj = 0, i 6= j, is assumed, (17) can be

written as
Fe = Wg + ǫ (18)

with
g = Aα (19)

the weights in the orthogonal space W . The optimal
weight vector ĝ can be obtained as the solution of the
least squares problem with local regularization

ĝ = argmin
g
ǫ⊤ǫ +

N
∑

k=1

λ(k)g
2
(k) (20)

where λ is the regularization parameter vector. This
vector is optimized based on the Bayesian evidence
procedure [8]. Briefly, the update of the regularization
parameter λm works as follows:

λnew
(m) =

γ(m)ǫ
⊤ǫ

(N − 1⊤γ)g2
(m)

(21)

where

γ(m) =
w⊤

mwm

λold
(m) + w⊤

mwm
(22)

Details of the derivation of the formulas can be found
in [4].

Inserting (18) into (20) yields

ĝ = argmin
g

g⊤W⊤Wg +

N
∑

k=1

λ(k)g
2
(k) − 2F⊤

e Wg

(23)
which reveals the merit of the orthogonal decomposi-
tion that the components of g can be optimized inde-
pendently of each other which lends itself to forward
selection if a sparse approximation of (23) is intended.

In [4] the modified Gram-Schmidt (MGS) procedure
is proposed for the orthogonalization of Q. However,
since we are interested in a sparse approximation of
(23) via forward selection, in the mth selection iter-
ation we need to orthogonalize N − m columns of Q

onto the previously selected m columns in W . This
implies that the complete matrix Q must be known
and kept in memory. The memory complexity of the
MGS algorithm is thus roughly O(SN + mN) for the
complete Q matrix (including the orthogonalized parts
here referred to as W) and the m complete rows of A.

Therefore, we propose a more efficient algorithm which
computes both W and A column-by-column without
the need to keep unused columns of these matrices
in memory [3]. In the mth forward selection step we
consider the following partitioning of the reduced Q

matrix and corresponding α

Qm = [Qm−1qm] (24)

αm = [αm−1αm]⊤ (25)

such that the square loss from (20) becomes

L(αm−1, αm) = ||Qm−1αm−1 − (Fe −qmαm)||2 (26)

The minimum of (26) is given by

α̂m−1 = Q
†
m−1(Fe − qmαm) (27)

with Q
†
m−1 the pseudo-inverse of Q. This yields after

insertion into (26)

L(αm) = ||(I − Qm−1Q
†
m−1)qmαm

− (I − Qm−1Q
†
m−1)Fe||2

(28)

with I the identity matrix of appropriate size.

The minimum of (28) is reached at

αm = w†
m(I − Qm−1Q

†
m−1)Fe (29)

Considering that the pseudo-inverse of w is given by

w†
m =

w⊤
m

||wm||2 (30)

(29) may be written as

αm =
w⊤

m(I − Qm−1Q
†
m−1)Fe

||wm||2

=
q⊤

m(I − Qm−1Q
†
m−1)

⊤(I − Qm−1Q
†
m−1)Fe

||wm||2
(31)

The matrix

Pm = I − Qm−1Q
†
m−1 (32)

is an orthogonal projection matrix which implies it
being symmetric and idempotent. Thus, (31) can be
simplified as

αm = w†
mFe (33)

Combining (33) with (27), the weight vector α̂m may
be updated as

α̂m =

[

α̂m−1

α̂m

]

=

[

Q
†
m−1 − Q

†
m−1qmw†

m

w†
m

]

Fe (34)

yielding the update

Q†
m =

[

Q
†
m−1 − Q

†
m−1qmw†

m

w†
m

]

(35)

of the current pseudo-inverse.

Because every projection wm = Pmqm lies in a sub-
space orthogonal to Qm−1, it follows directly that
w⊤

i wj = 0, i 6= j. Therefore, the orthogonal decom-
position of Qm can be updated as

Wm = [Wm−1wm] (36)

Am =

[

Am−1

0⊤
m−1

(W⊤
mWm)−1W⊤

mqm

]

(37)

for which we call our algorithm order-recursive or-
thogonal least squares (OROLS). The inversion of
(W⊤

mWm) is trivial since it is diagonal. It is important
to monitor the condition number of Wm as it increases
as the number m of admitted columns grows, so to en-
sure numerical stability a termination threshold on the
condition number must be defined.

So the complete algorithm is as follows:

1. Define the set of M = {1, . . . , N} of all possible
sample indices, the set S = ∅ of already admitted
sample indices, the current solution index m = 1

2. For each n ∈ M\S, do the following

(a) Compute the corresponding updates of Wm

and Am via (36) and (37)

(b) If the condition number w⊤
mwm violates a

threshold, continue with the next n

(c) Solve the LS-problem from (23) while opti-
mizing the regularization parameter λ(m)

(d) Reconstruct the original weights αm =
A−1

m gm. If they contain any negative ele-
ments (which would violate the constraint
from (5)), continue with the next n

(e) Determine the fitness ln of the current sample
by computing its leave-one-out (LOO) test
error [4]

3. Admit the optimal sample n̂ = argminnln into S,
re-compute the corresponding updates of Wm and
Am and continue with the next m if ln̂ decreases
the previous m-iteration’s LOO-score, otherwise
terminate

4. Normalize the original weights to meet (6)

The memory requirement for this algorithm is
O(3Sm + m2/2) for the candidate Wm, Am and

Q†
mmatrices needed in step 2 and the old Q

†
m−1 matrix

which needs to be saved until the optimal candidate
has been chosen in step 3. If m < N/3 (which we
usually strive for), this compares quite favorable with
the MGS-algorithm introduced in [4] whose memory
requirements are O(SN +mN) and with the support-
vector method presented in [1] whose memory require-
ments are O(SN + N2).

5 Experiments

To assess the performance of our proposed algorithm,
experiments on three problems were performed. We
compared the proposed method with classical density
estimation procedures, i. e., Gaussian Mixture Mod-
els and Parzen windows, and the ǫ-SVD method.
Throughout all experiments, the Gaussian kernel (10)
with integral

q(x, y) =

∫

x

−∞

Kgauss(t, y)dt

=

D
∏

d=1

(

1 + erf

(||x(d) − y(d)||√
2σ

)) (38)

was used. This kernel was chosen because it addi-
tionally satisfies Mercer’s conditions [9] which enables
comparison of our method with the ǫ-SVD procedure.
It was assumed that all kernels in a model share the
same covariance σ2.

GMMs with diagonal covariance matrices were trained
using the EM-algorithm. Initialization of the EM-
algorithm was performed using k-means clustering,

which in turn had been randomly seeded. ǫ-SVD
models and the proposed OROLS density models were
trained using naive ECDF sampling (ECDF only sam-
pled at the problem’s sample points) and enhanced
ECDF sampling (ECDF sampled at additional jump
points, cf. section 3) schemes. For the ǫ-SVD method
no model selection was required as all the parame-
ters including the kernel width are set automatically.
Model selection procedures for the other methods are
discussed individually for each data set.

Artificial 2D-Problem

The first one is an artificial problem already considered
in [1] were 100 training sets of 60 samples each and
a test set of 10000 samples are generated from the
following density

p(x, y) =
1

4π
exp

(

− (x − 2)2 + (y − 2)2

2

)

+
0.35

8
exp(−0.7|x + 2| − 0.5|y + 2|)

(39)

As a baseline, GMMs with 2 and 4 centers were
trained as described above. Parzen windows setup was
straightforward. Next, ǫ-SVD models were trained us-
ing both naive ECDF sampling and enhanced ECDF
sampling. Finally, the proposed algorithm was used
to estimate another set of density models, again using
both incarnations of ECDF sampling. For all the 7 sets
of 100 density models the L1-norm of the test errors
e were computed on the 10000 sample test set. Selec-
tion of the suitable kernel width for Parzen windows
and the OROLS models was performed by selecting
the kernel width which produces the lowest average
L1(e) over all 100 training sets.

Figure 2 compares the achievements of the different al-
gorithms showing clearly that the proposed algorithm
performs superior to all other algorithms if used with
enhanced ECDF sampling and at least comparable
with the GMMs if used with naive ECDF sampling.
It can also be seen clearly that the proposed algo-
rithm provides better results than the ǫ-SVD method,
regardless of the ECDF sampling used. Table 1 sum-
marizes some details of the trained models. It also
supports the superiority of our proposed algorithm:
While it can be observed that, in general, using en-
hanced ECDF sampling results in a larger number m
of samples in the solution, this number does not in-
crease as much for the OROLS algorithm as for the
ǫ-SVD algorithm, yet much more accurate models are
achieved using the OROLS algorithm. Furthermore,
it can be seen that as, on average, the OROLS algo-
rithm selects about 22% of the problem samples using
the naive ECDF, and about 29% of the problem sam-
ples using the enhanced ECDF, the computation of

GMM2 GMM4 Parzen SVD OROLS SVD OROLS

0.005

0.01

0.015

0.02

L1
−

er
ro

r

Naive
ECDF Enh. ECDF

Figure 2: Comparison of the L1-norm of the errors
committed by different density estimation algorithms
on the artificial 2D-problem

Model ECDF Kernel Width # centers
Parzen — 0.6 100
ǫ-SVD Naive 1.34(±0.27) 13.1(±3.7)
ǫ-SVD Enhanced 0.82(±0.26) 26.1(±9.1)
OROLS Naive 1.0 13.4(±2.3)
OROLS Enhanced 1.0 17.6(±3.3)

Table 1: Details of the models for the artificial 2D-
problem.

the solution using OROLS is less memory-consuming
than ǫ-SVD and MGS-OLS based density estimation
procedures, cf. section 4.

Ripley data set

This second experiment is based on a data set con-
sidered in [10]. It consists of two classes in two di-
mensions with 125 training samples and 500 testing
samples each. We trained GMMs with 2 and 4 compo-
nents, Parzen windows, and ǫ-SVD and OROLS mod-
els, each of the latter two with naive and enhanced
ECDF sampling. We then assessed the classification
error on the test set. As in the previous experiment, no
parameter needed to be manually tuned for the ǫ-SVD
algorithm, while the kernel width for Parzen windows
and OROLS models were set according to test error.
Assignment of a test sample x to a class C ∈ {−1, +1}
was performed using maximum a-posteriori and Bayes’
rule:

Ĉ = argmax
C

P (C|x) = argmax
C

p(x|C)P (C)

p(x)

= argmax
C

p(x|C)P (C)
(40)

where, in this case, P (C = +1) = P (C = −1) = 0.5.

The results of the experiment can be seen in ta-

Model ECDF σ # centers err.
GMM2 — — 2 / 2 9.1%
GMM4 — — 4 / 4 9.2%
Parzen — 0.28 125 / 125 8.1%
ǫ-SVD Naive 0.157 17 / 12 10.0%
ǫ-SVD Enhanced 0.075 77 / 51 9.8%
OROLS Naive 0.17 13 / 6 8.9%
OROLS Enhanced 0.25 7 / 7 8.5%

Table 2: Details and classification error rates of the
density models on the Ripley data set. The number of
solution centers is reported individually for each class.

ble 2. It can easily be seen that our proposed OROLS-
algorithm has a lower test error than the ǫ-SVD-
algorithm while needing considerably fewer samples in
the solution. On the other hand, it can be observed
that using enhanced ECDF sampling for the training
of the models improves the test error regardless of the
training algorithm. In [11] it is reported that the the-
oretical Bayes error rate of this problem is about 8%,
while the paper reports error rates of 10.6% for stan-
dard discriminatory SVM with Gaussian kernel and 38
solution vectors, and an error rate of 9.3% for the rel-
evance vector machine with Gaussian kernel and four
solution vectors. Compared to the previous artificial
2D-problem, the advantage of the OROLS-algorithm
with respect to memory requirements is even more
striking: In the worst case, 13 samples are selected,
which is about 1/10 of the samples — much less than
the rough 1/3 of the samples which would make com-
peting ǫ-SVD and MGS-OLS algorithms break even
with the OROLS algorithm.

Thyroid data set

The thyroid disease data set is part of the UCI repos-
itory of machine learning problems [12]. It was thor-
oughly studied, e. g., in [13]. It is a two-class problem
with 5-dimensional feature vectors. For our experi-
ments, the problem setting from [13] was used, where
100 realizations of training sets with 140 samples each
and test sets of 75 samples each had been generated.
The 140 training samples of each training set consisted
of roughly 40 positively labeled and 100 negatively la-
beled samples.

In contrast to the previous experiments, model selec-
tion, i. e., selection of the number of components of
the GMMs and the kernel width for Parzen windows
and OROLS models, was performed using thourough
cross-validation similar to the procedure described in
[13]. Models with varying parameters were trained on
each of the first 5 training sets. The models’ perfor-
mance was assessed on the 5 cross-validation test sets
which were concatenations of the 4 respective unused

Figure 3: Classification errors on the Thyroid data
set performed by different probability density models
using different samplings from the ECDF for training.

training sets. The parameters for the complete evalu-
ation of the 100 realizations were then determined by
averaging the parameters leading to the best results
on the cross-validation sets.

The use of the enhanced ECDF sampling scheme was
modified for this experiment. As stated in section
3, the number of jumps of the ECDF is problem-
dependent, but usually much larger than the number
of problem samples. For the problem at hand, the
about 100 negatively labeled training samples would
have generated an ECDF with roughly 1.5 million
jumps. Instead of using all of these points, we con-
ducted experiments where a maximum of 5, 50, and
500 random points was chosen from each level of the
ECDF; we denote these experiments with Enh-5, Enh-
50, and Enh-500, respectively.

Classification of the test samples was also performed
using (40) with the class’ priors estimated from the
relative frequency of the labels in the training set. Fig-
ure 3 compares GMMs with 4 components and Parzen
windows with ǫ-SVD and OROLS models trained us-
ing different ECDF sampling schemes, as described
above. It can be seen that the accuracy of the OROLS
models improves as the number of ECDF samples in-
creases, which supports the idea that naive sampling
as well as under-sampling the enhanced ECDF signif-
icantly degrades the performance of the so-estimated
density models. If we consider a maximum of 500 sam-
ples per ECDF level sufficient then it shows that the
sparse OROLS kernel density models greatly outper-
form the best GMM models; however, the accuracy of
the Parzen windows model is not met. Furthermore,
OROLS models again outperform ǫ-SVD models in all
cases while producing sparser models. Through the
obtained sparsity the OROLS algorithm takes advan-
tage of its lower memory requirements compared to
ǫ-SVD as less than one third of the samples is used for
the solutions.

Model ECDF Kernel Width # centers
GMM4 — — 4 / 4
Parzen — 0.27 ≈ 100 / ≈ 40
ǫ-SVD Naive 2.85 ± 1.51 43.5 / 9.2
ǫ-SVD Enh-5 0.067 ± 0.015 35.2 / 34.6
ǫ-SVD Enh-50 0.052 ± 0.014 52.3 / 38.0
ǫ-SVD Enh-500 0.031 ± 0.01 81.6 / 40.0
OROLS Naive 0.17 12.9 / 10.6
OROLS Enh-5 0.07 16.1 / 12.9
OROLS Enh-50 0.07 17.7 / 13.4
OROLS Enh-500 0.07 18.1 / 14.6

Table 3: Details of the kernel density models on the
Thyroid data set. The number of centers is reported
individually for each class.

It might be surprising at first to see the performance
of the ǫ-SVD decrease (after an initial improvement
over naive ECDF sampling) with increasing number
of ECDF samples, especially in the Enh-500 setting.
This can be attributed to the automatic tuning of the
kernel width. The kernel width selected is the largest
feasible, however, it still results in overfitted ǫ-SVD
models.

Our algorithm also compares favorable to other meth-
ods, even if performance is not en par with dis-
criminative models such as SVM (classification error
4.8 ± 2.2%) or kernel fisher discriminant (classifica-
tion error 4.2 ± 2.1%) [13]. On the other hand, the
well-known C4.5 algorithm performs much worse for
classification with an error of about 10.2% [14].

6 Conclusion

We have presented an algorithm which constructs
sparse probability density models from training sam-
ple in a memory-efficient and accurate way. It outper-
forms standard, conventional models like EM-trained
Gaussian mixture models while still producing sparse
models. We have also shown the importance of sen-
sible application of the ECDF in the training process
in that a sampling at points additional to the original
problem samples impressively improves the accuracy
of the so-trained models.

In the future we will focus on extending the application
of this algorithm to larger dimensions and to larger
data sets in general, e. g. speech data.

Acknowledgments

Martin Schafföner’s work was partially funded by a
grant from the Friedrich-Naumann-Foundation.

References

[1] V. N. Vapnik and S. Mukherjee, “Support vector
method for multivariate density estimation,” in
Advances in Neural Information Processing Sys-
tems 12, S. A. Solla, T. K. Leen, and K.-R.
Müller, Eds., pp. 659–665. MIT Press, 2000.

[2] E. Andelic, M. Schafföner, M. Katz, S. E. Krüger,
and A. Wendemuth, “Kernel least squares mod-
els using updates of the pseudoinverse,” Neural
Computation, vol. 18, no. 12, dec 2006, to appear.

[3] E. Andelic, M. Schafföner, M. Katz, S. E. Krüger,
and A. Wendemuth, “Updates for nonlinear dis-
criminants,” in Proc. Twentieth International
Joint Conference on Artificial Intelligence (IJCAI
2007), 2007.

[4] S. Chen, X. Hong, and C. J. Harris, “Sparse ker-
nel density construction using orthogonal forward
regression with leave-one-out test score and local
regularization,” IEEE Transactions on Systems,
Man, and Cybernetics—Part B: Cybernetics, vol.
34, no. 4, pp. 1708–1717, aug 2004.

[5] D. W. Scott, Multivariate density estimation:
theory, practice, and visualization, Wiley series
in probability and mathematical statistics. John
Wiley & Sons, Inc., 1992.

[6] E. Parzen, “On estimation of a probability den-
sity function and mode,” Annals of Mathematical
Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[7] C. M. Fonseca, “Output-sensitive computation
of the multivariate ecdf and related problems,”
in COMPSTAT 2002 - Proceedings in Computa-
tional Statistics, W. Härdle and B. Rönz, Eds.
2002, Springer.

[8] D. J. C. MacKay, “Bayesian interpolation,” Neu-
ral Computation, vol. 4, no. 3, pp. 415–447, 1992.

[9] J. Mercer, “Functions of positive and negative
type and their connection with the theory of in-
tegral equations,” Philosophical Transactions of
the Royal Society of London. Series A, Contain-
ing Papers of a Mathematical or Physical Char-
acter, vol. 209, pp. 415–446, 1909.

[10] B. D. Ripley, Pattern Recognition and Neural
Networks, Cambridge University Press, Cam-
bridge, UK, 1996.

[11] M. E. Tipping, “Sparse bayesian learning and the
relevance vector machine,” Journal of Machine
Learning Research, vol. 1, pp. 211–244, jun 2001.

[12] “UCI ML repository content summary,” URL:
http://www.ics.uci.edu/ mlearn/MLSummary.html.

[13] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and
K.-R. Müller, “Fisher discriminant analysis with
kernels,” Neural Networks for Signal Processing,
vol. 9, pp. 41–48, 1999.

[14] G. I. Webb, “Further experimental evidence
against the utility of occam’s razor,” Journal of
Artificial Intelligence research, vol. 4, pp. 397–
417, 1996.

