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Abstract

The goal of a dynamic dependency test is to
correctly label the interaction of multiple ob-
served data streams and to describe how this
interaction evolves over time. To this end,
we propose the use of a hidden factorization
Markov model (HFactMM) in which a hid-
den state indexes into a finite set of possible
dependence structures on observations. We
show that a dynamic dependency test using
an HFactMM takes advantage of both struc-
tural and parametric changes associated with
changes in interaction. This is contrasted
both theoretically and empirically with stan-
dard sliding window based dependence anal-
ysis. Using this model we obtain state-of-
the-art performance on an audio-visual as-
sociation task without the benefit of labeled
training data.

1 Introduction

Statistical approaches to modeling dynamics and clus-
tering data are well studied research areas. Two classic
examples are fitting mixture models and training hid-
den Markov models (HMMs) [16] using the expecta-
tion maximization (EM) algorithm [4]. We consider a
complementary problem: given multiple data streams,
we are interested in the nature of their interaction as
it evolves over time. We refer to all methods that
address such problems as dynamic dependency tests.
We propose a model in which the interaction is de-
scribed by graphical models with changing structures,
i.e., the presence or absence of edges, but whose pa-
rameters (or more generally, parameterization) are not
available. In contrast to standard approaches, we ex-
plicitly model varying interactions via a dynamically
switching graphical structure.

We cast a dynamic dependency test as the problem

of inference on a special class of probabilistic models
in which a latent state variable indexes a discrete set
of possible dependency structures on measurements.
We refer to this class of models as dynamic depen-
dence models and introduce a specific implementation
via a hidden factorization Markov model (HFactMM).
Such models can be described in terms of a Contingent
Bayesian Network (CBN) [13] in which the dependency
structure of a set a variables is contingent upon the val-
ues those variables take on. For general CBNs, exact
inference may not be tractable and efficient learning
may not be available. We show, however, when we
restrict ourselves to the class of HFactMMs, standard
methods, specifically EM and Viterbi decoding, can be
used with slight modification for efficient learning and
exact inference.

We utilize an HFactMM in an audio-visual speaker as-
sociation task. Consider a scene in which there are sev-
eral individuals, each of whom may be speaking at any
given moment. Given a single audio recording of the
scene and a separate video stream for each individual
in the scene, we wish to associate the audio data with
the proper video stream at any given time. Association
is defined by the presence or absence of an edge in a
graphical model representing the relationship between
the audio and video streams. In this application, each
possible dependency structure has a simple semantic
interpretation, namely it indicates who is speaking.
The HFactMM allows us to exploit the fact that the
appearance of all individuals may change depending on
which individual is speaking. We learn who, if anyone,
is speaking at each point in time and the dynamics of
the conversation. In contrast to previous approaches,
the method described in this paper does not require
prior scene- or user-specific appearance models, which
are often not available. We demonstrate, both theoret-
ically and empirically, a clear advantage over standard
moving window methods.

The outline of this paper is as follows. An overview
of related work is presented in Section 2. In Sec-



tion 3 we present the HFactMM and its use for dy-
namic dependency tests. We theoretically show how
an HFactMM takes advantage of both structural and
parametric changes associated with changes in inter-
action. This is contrasted with standard sliding win-
dow based dependence analysis. Illustrative examples
are presented in Section 4. Section 5 demonstrates
that the proposed method obtains the best perfor-
mance reported to date on the standard audio-visual
CUAVE database [15] for speaker association. In con-
trast to previous approaches applied to this dataset,
superior performance is achieved without benefit of la-
beled training data, or the use of a specialized silence
detector.

2 Related Work

This work fits into the general category of data clus-
tering and dynamic modeling. Typically, models used
for such tasks assume a fixed dependency structure for
the observed data. The study of models whose graph-
ical structure is contingent upon the values/context of
the nodes in the graph can be traced back to Geiger
and Heckerman’s similarity networks and multinets
[6] . This class of models has been further explored
and formalized by Boutilier, et al.’s Context-Specific
Independence [3] and more recently Milch, et al.’s
CBNs [13]. The HFactMM presented here fits into
this class of models and is closely related to Bilmes’s
Dynamic Bayesian Multinets [2]. The focus of [2] was
to show how learning state-indexed structure using la-
beled training data can yield better models for classi-
fication tasks. In contrast, here the dependency struc-
tures are defined by the problem and no labeled data
is required.

An HFactHMM is also related to switching linear dy-
namic systems (SLDSs) used by the tracking commu-
nity [7]. SLDS models are combinations of discrete
Markov models and linear state-space dynamical sys-
tems. The hidden discrete state chooses between a
predefined number of state-space models to describe
the data at each point in time. SLDS models are pri-
marily used to help improve tracking and track inter-
pretation by allowing changes to the state-space model
parameters. In contrast, an HFactMM explicitly mod-
els varying dependence structure over time with no
linear Gaussian assumptions.

There are many related techniques for estimating the
dependence among a set of random variables. Infor-
mation theoretic approaches have a long history be-
ginning with Kullback [12]. In the domain of audio-
visual association, Hershey and Movellan showed how
measured correlation between audio and pixels can
help in detecting who is speaking. Nock and Iyen-

gar [14] provided an empirical study of this technique
on the CUAVE dataset [15]. Further study of detect-
ing and characterizing the dependency between audio
and video was carried out by Slaney and Covell [19]
and Fisher,et al.[5]. All of these techniques process
data using a sliding window over time and assume a
single audio source within that window. As such, they
do not take advantage of the past or future to learn a
audio-visual appearance model of the potential audio
sources.

3 Hidden Factorization Markov Model

Let Ot = {o1
t ,o

2
t , . . . ,o

N
t } be an observation of N ran-

dom variables at time t with oi
t ∈ Rdi . Let O1:T rep-

resent Ot from time 1 to T . Given O1:T , the goal of a
dynamic dependency test is to label the sequence ac-
cording to the dependency among the N random vari-
ables at each time t. To this end, we propose a hidden
factorization Markov Model (HFactMM) in which we
assume that the observation Ot is independent of all
other observations conditioned on a hidden state St,
and that the states S1:T are first order Markov. Thus,

p(O1:T , S1:T ; Θ) = p(S1:T ; Θ)

TY
t=1

p(Ot|St; Θ), (1)

where Θ are the parameters. We adopt the term
HFactMM to distinguish such models as a special case
of more general HMMs. That is, this model is an HMM
with the special property that the value k ∈ [1...K] of
the hidden state variable St indicates one of K possi-
ble “interactions” between the N random variables at
time t. These “interactions” are defined in terms of a
particular factorization F k and parametrization Θk:

p(Ot|St = k; Θ) = pΘk (F k
t ) =

CkY
i=1

p(F k
i,t; Θ

k) (2)

where F k specifies a partitioning of the full
set of N random variables into Ck sub-
sets such that

⋃Ck

i=1 F k
i = {o1, . . . ,oN} and

F k
i

⋂
F k

j = ∅ ∀i, j ∈ [1...Ck] when i 6= j.

Figure 1(a) shows an HFactMM with two pos-
sible factorizations: F 1 = {{o1,o2}, {o3}} and
F 2 = {{o2,o3}, {o1}}. For this graph, pΘ1(F 1

t ) =
p(Ot|St = 1; Θ) = p(o1

t ,o
2
t ; Θ

1)p(o3
t ; Θ

1) and
pΘ2(F 2

t ) = p(Ot|St = 2;Θ) = p(o2
t ,o

3
t ; Θ

2)p(o1
t ; Θ

2).

Note that the value of the state St determines the
probabilistic structure of the observations at time t.
For the applications considered here each structure has
a simple semantic interpretation. For example, in Fig-
ure 1(a), if o1

t and o3
t are the video observations of two
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Figure 1: Example HFactMM and static factorization

model. This graph notation follows that of CBNs [13] in

which conditionally labeled edges are only present when

the condition is true.

individuals at time t and o2
t is the corresponding audio

observation at time t then when St = 1 (St = 2) we
assume that the individual corresponding to o1 (o3) is
speaking.

We consider situations in which the model parameters
are not known a priori. The Baum-Welch/EM [16, 4]
algorithm can be used with a slight modification for
learning the parameters of an HFactMM. Subsequently
Viterbi decoding can be used for exact inference [16].
We construct and utilize an HFactMM model in the
following way:

1. Define the K possible dependency structures and the
parameterization of the HFactMM (e.g. Gaussian,
discrete/codebook or mixture densities for each fac-
tor) for your task.

2. Learning: Calculate Θ̂ = arg maxΘ p (O1:T ; Θ)

3. Inference: Find ŝ1:T = arg maxs1:T
p

“
s1:T |O1:T ; Θ̂

”
Note that we assume no training data and perform
learning and inference on the data being analyzed. We
make the usual assumption that all K states are visited
at least once (and typically multiple times) during the
observed sequence.

3.1 Learning

Let Θ = {π,A, Θ1, . . . ,ΘK} be the parameter set for
the model where πk = p (S1 = k) are the prior state
probabilities, A is a K × K matrix with transition
probabilities Aij = p (St+1 = i|St = j), and Θk are the
parameters for factorization F k (i.e. parameters for
pΘk(F k) = p (Ot|St = k; Θ)). As with typical HMMs
[16] the EM algorithm, can be applied to models with
this structure in order to find the parameters,Θ̂, that
maximize the likelihood of the given data.

While the E-step is unchanged, the HFactMM requires
a minor change to the M-step of EM. Since the state
conditional model pΘk(F k) breaks up into the Ck fac-
tors of F k, the structure of the M-step updates sim-
plify accordingly. For example, if each pΘk(F k

f,t) is a
simple Gaussian with mean µk,f and covariance Σk,f ,
the M-step at iteration (i) would yield:

µ
(i)
k,f =

PT
t=1

ˆ
F k

f,t

˜
γt(k)PT

t=1 γt(k)
, (3)

Σ
(i)
k,f =

PT
t=1(

ˆ
F k

f,t

˜
− µ

(i)
k,f )(

ˆ
F k

f,t

˜
− µ

(i)
k,f )

T
γt(k)PT

t=1 γt(k)
(4)

where γk(t) = p(St = k|O1:T ; Θ(i−1)) and the nota-
tion

[
F k

f,t

]
is used to denote a stacked vector of the

variables in factor F k
f at time t. Note that, here, a

parenthesized superscript indicates the iteration num-
ber. This structural break-down by factor holds for all
other families of distributions yielding a more struc-
tured learning procedure with savings in storage and
computation.

3.2 Inference

Having learned the parameters Θ̂, the data
sequence is labeled by finding {ŝ1:T } =
arg maxs1:T p(s1:T |O1:T ; Θ̂). This can be done
efficiently with the Viterbi algorithm [16]. Note
that choosing the state sequence with the maximum
posterior probability via Viterbi decoding is implicitly
performing an M-ary hypothesis test over all possible
sequences, where M = KT .

The HFactMM can take advantage of both differences
in structure and parameters as compared to windowed
methods which can be shown to exploit only differ-
ences in structure. We illustrate this by considering a
binary hypothesis test between two of the KT differ-
ent state sequences SH1

1:T and SH2
1:T . Given the learned

parameters Θ̂ a hypothesis test deciding between them
has the following form:

L̂1,2,log

0@p
“
O1:T |SH1

1:T ; Θ̂
”

p
“
O1:T |SH2

1:T ; Θ̂
”

1A H1

R
H2

log

0@p
“
SH2

1:T ; Θ̂
”

p
“
SH1

1:T ; Θ̂
”

1A
(5)

It is easy to show that in expectation, the value of the
log likelihood ratio under H1 can be expressed as:

EH1

h
L̂1,2

i
=

X
∀t s.t.

SH1
t 6=SH2

t

D
“
p
Θ̂SH1

t

“
F SH1

t

”
||p

Θ̂SH1
t

“
F ∅

””

+
X

∀t s.t.
SH1

t 6=SH2
t

D
“
p
Θ̂SH1

t

“
F ∅

”
||p

Θ̂SH2
t

“
F SH2

t

””
(6)



and under H2 can be expressed as:

EH2

h
L̂1,2

i
= −

X
∀t s.t.

SH1
t 6=SH2

t

D
“
p
Θ̂SH2

t

“
F SH2

t

”
||p

Θ̂SH2
t

“
F ∅

””

−
X

∀t s.t.
SH1

t 6=SH2
t

D
“
p
Θ̂SH2

t

“
F ∅

”
||p

Θ̂SH1
t

“
F SH1

t

””
(7)

where D(p||q) is the Kullback-Leibler divergence be-
tween p and q, and F ∅ is the factorization which con-
tains only edges/factors common to all F k (i.e. it
represents the common structure among all factoriza-
tions). Note that the parameter set of pΘk(F ∅) can
be obtained for any Θk by marginalizing over pΘk(F k)
appropriately.

Notice that in both cases the expected log likelihood
ratio decomposes into two terms. The first term con-
cerns purely structural differences. The true struc-
ture is compared with the common structure, under
the true parameters. The second term contains both
structural and parameter differences. The common
structure is compared with the true parameters to the
model for the incorrect hypothesis. It is important
to note that all such tests can be decomposed in this
way. This decomposition quantifies the contributions
of prior (or learned) model differences versus struc-
tural differences to separability between hypothesized
sequences. We will contrast this with standard win-
dowed methods in the next section.

3.3 Comparison with Windowed
Factorization Tests (WFT)

Sliding window methods are an alternative to batch
analysis for a dynamic dependency test. These meth-
ods hypothesize the dependency structure over a win-
dow of time in which the structure is assumed to be
held constant. Such tests are referred to as factoriza-
tion tests in [11]. The model associated with a factor-
ization test is a special case of an HFactMM in which
the state is constant over the window analyzed. Figure
1(b) shows an example static factorization model.

Here we summarize some of the key results provided
in [11] adapted to the notation used in this paper. The
hypothesis test between two factorizations H1 : S =
1 and H2 : S = 2 of a data sequence of length T
with unknown (Θ1,Θ2) takes the form of a generalized
likelihood ratio test (GLRT) in which:

L̂1,2 =
1

T
log

0@p
“
O1:T |S = 1; Θ̂1

”
p

“
O1:T |S = 2; Θ̂2

”
1A (8)

where Θ̂i = arg max
Θi

p(O1:T |S = i; Θi). (9)

In expectation the (normalized) generalized log likeli-
hood ratio becomes:

EH1

h
L̂1,2

i
= D

“
pΘ̂1

`
F 1´

||pΘ̂1

“
F ∅

””
+ D

“
pΘ̂1

“
F ∅

”
||pΘ̂2

`
F 2´”

= D
“
pΘ1

`
F 1´

||pΘ1

“
F ∅

””
+ 0

EH2

h
L̂1,2

i
= −D

“
pΘ̂2

`
F 1´

||pΘ̂2

“
F ∅

””
+ D

“
pΘ̂2

“
F ∅

”
||pΘ̂1

`
F 1´”

= −D
“
pΘ2

`
F 2´

||pΘ2

“
F ∅

””
− 0

(10)

where here F ∅ represents the common structure be-
tween factorizations F 1 and F 2. Note that only the
purely structural term remains. This is because one
is estimating both Θ̂1 and Θ̂2 from the same obser-
vation sequence and thus loses the ability the exploit
parameter differences. That is, when H1 is true, only
the pure structure term remains because the parame-
ter estimates for H2 converge to those consistent with
the marginals of H1 and yield a model which factors
according to the common structure between the two
hypotheses:

Under H1

(
pΘ̂1

`
F 1

´
→ pΘ1

`
F 1

´
pΘ̂2

`
F 2

´
→ pΘ1

“
F ∅

” (11)

and similarly,

Under H2

(
pΘ̂2

`
F 2

´
→ pΘ2

`
F 2

´
pΘ̂1

`
F 1

´
→ pΘ2

“
F ∅

” (12)

In the special case where F 1 = {{o1,o2}} and F 2 =
{{o1}, {o2}}, L̂1,2 converges to mutual information
(MI). All tests that estimate correlation or MI over
a sliding window to check for dependence fall into this
windowed factorization test (WFT) framework (e.g.
[10, 19, 5]). Another issue with windowed factoriza-
tion tests that is common to GLRTs is how to make
a decision when the hypotheses are nested (e.g. F 1 is
a fully joint model, F 2 is a fully factored), since the
more expressive model (F 1) will always have a higher
likelihood. It is common to use permutations to obtain
a p-value that can be used to decide between the two
hypotheses (see [8, 18]).

4 Illustrative Examples

In this section we present a few simple synthetic ex-
amples to illustrate the differences between perform-
ing a dynamic dependency test using an HFactMM
and a windowed factorization test (WFT). The ques-
tions we wish to address are 1) How do changes in
both the structural and parametric differences between
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Figure 2: 2D Gaussian results. a) sample draw. Note that

is not possible to see the temporal dynamics in this figure

b) Average % error over 100 trials for HFactMM, FactMM

and WFT as a function of ρ for various D.

the state conditional models affect the performance of
these methods. 2) When are state dynamics in the
HFactMM important, and 3) What can be done when
the correct parameterization is unknown.

Consider a model with two 1-D variables which switch
between being dependent and independent: F 0 =
{{o1}, {o2}} and F 1 = {{o1,o2}}. When St = 0,
the observations are i.i.d. Gaussian with zero mean
and unit variance. When St = 1 the observations have
a mean of [0 D]T and correlation coefficient ρ. We fix
the dynamics on the state St by setting the parameters
π0 = π1 = .5, A00 = A11 = .95 and A12 = A21 = .05.
This yields a model with a simple state dynamic and
a control on structural and parametric differences via
ρ and D respectively.

We draw 200 samples for each setting of ρ and D.
Figure 2(a) shows one such sampling. Note that these
samples are subject to the process dynamics defined
by A. Three different techniques are compared: dy-
namic dependency test using an HFactMM model, a
factorization mixture model (FactMM) and a WFT.
The FactMM has the same structure as an HFactMM
without a dynamic on St. The WFT reduces to simply
calculating the correlation between the observations in
a sliding window and estimating a p-value via permu-
tations. Window sizes of 5, 10, 20, and 40 samples
are tested. For each trial, we find the threshold on
the p-value that yields the best performance for each
window size and then report the best over all window
sizes. This represents an unrealistic best-case scenario
for the WFT.

Results are shown in Figure 2. Each data point is
the average probability of error over 100 trials. Con-
sistent with previous analysis, Figure 2(b) shows the
performance of the WFT does not change substan-
tially as non-structural parameters, D, vary. In general
all approaches improve in performance with increasing
ρ, with more rapid improvements for the HFactMM
and FactMM for larger D. Dynamics help most when
D is small, i.e. when the state conditional distribu-

tions overlap. More complex probability models can
be used, but as the next example shows, certain ambi-
guities may arise. Such ambiguities can be overcome
when an underlying dynamic is present. Consider the
data shown in Figure 3(a). We again assume a two
state model (independent shown in thin black vs de-
pendent shown in thick red) using the same dynamics
as in the previous example. Note that in this case
each state conditional model is a mixture of Gaussians
(pΘ0(Ot) is a product of two mixtures of two Gaus-
sians and pΘ1(Ot) is a mixture of four).

Figures 3(b) and 3(c) show FactMM and HFactMM
models learned from 200 samples of this mixture model
when they are given the correct parameterization (i.e.
correct number of mixtures) but unknown parameters.
Note that for this particular model there are many
possible combinations of independent and dependent
mixtures. In fact, the FactMM model picked one of
these alternative mixtures in Figure 3(b). This is be-
cause by assuming independent samples and ignoring
the state dynamic all valid combinations of dependent
and independent cluster mixtures are equally likely.
By incorporating dynamics the HFactMM finds the
correct solution.

Note that in Figure 3(b) and 3(c) we used the cor-
rect parameterization. When little is known about the
appropriate parameterization for a particular problem
one can use other more flexible state conditional distri-
butions. A simple approach is to first create separate
codebooks for each observed variable via vector quan-
tization and then use an HFactMM with discrete mod-
els for each state conditional distribution. This can be
done by fitting a Gaussian mixture model (GMM) or
via K-means. Creating an 8 code codebook for each
variable (o1 and o2) using GMMs and then using an
HFactMM with discrete state conditional distributions
we obtain the result shown in Figure 3(d).

Alternatively one can utilize sample kernel density es-
timates. A non-parametric sample based kernel den-
sity estimate (KDE) can be used for the each factor in
the state condition models. Each factor f ’s distribu-
tion is of the form:

pΘi(F
i
f,t) =

1

T

TX
j=1

αi
jK(F i

f,t − F i
f,j ; σ

i) (13)

where K() is a valid kernel function with kernel size
σi and αi

j = p(Sj = i|O1:T ; Θ)/
∑

t p(St = i|O1:T ; Θ).
Figure 3(e) shows the learned HFactMM model using
a KDE with a Gaussian kernel. Leave-one-out likeli-
hood was used to adjust kernel size. It is important to
note that one must be careful when using more pow-
erful state-conditional distributions. If a single state
conditional distribution is flexible enough to describe
all of the data and the state transition probabilities are
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Figure 3: A more complex 2D example. a) True distribution, F 0=thin black, F 1=thick red b) Learned FactMM w/

GMM c) learned HFactMM w/ GMM, d) learned HFactMM with Discrete Code. e) Learned HFactMM w/ KDE. Figures

d and e show p(O|S = 1; Θ̂1) − p(O|S = 0; Θ̂0) Mean accuracy over 50 trials : FactMM w/ GMM=64%, HFactMM w/

GMM=99%, HFactMM w/ Discrete Code=98%, HFactMM w/ KDE=98%

learned, the most likely answer will be that all of the
data came from a single state with a complex distri-
bution. One way to deal with this is to set reasonable
priors on the state transition matrix A or initial dis-
tribution parameters πi = p(St = i).

5 Audio-Visual Experiments

In this section demonstrate state-of-the-art results on
an audio-visual association task using an HFactMM.
Given a single audio stream and separate video
streams for each speaker in a scene, our task is to de-
termine who, if anyone, is speaking at each point in
time. When person i is speaking it is assumed that
the audio stream will be dependent on video stream i,
otherwise the streams are independent.

Two different datasets are used. The first is the
CUAVE corpus [15], a multiple speaker audio-visual
corpus of spoken connected digits. We use the 22 clips
from the groups set in which two speakers take turns
reading digit strings and then proceed to speak simul-
taneously. In order to compare to [14] and [9] we only
consider the section of alternating speech. In each clip
both individuals face the camera at all times. We use
ground truth from [1]. The second dataset is a single
clip recorded in the same style as the CUAVE database
in which two individuals take turns speaking digits.
However, while the speaker looks into the camera the
other subject turns to look at the speaker. This gives
yields a dataset in which there is a strong appearance
change depending on who is speaking, as may be the
case in a meeting where participants look toward the
current speaker. Each dataset contains video sampled
at 29.97 fps. The audio is resampled at 16kHz. For
each of these datasets the video streams are extracted
faces normalized to 100×100 pixels. In the CUAVE
dataset a face detector and correlation tracking of the
nose region is used to get a stabilized face. For the
second dataset a fixed region of the video around each
person’s face is simply extracted. The extracted faces

of both datasets are made publicly available [17].

Simple frame-based features are used as observations.
The audio is broken into segments corresponding to
each video frame. For each stream, at each frame,
both static and dynamic features are calculated. At
each frame t, Mel-frequency cepstral coefficients are
computed from the corresponding audio segment and
used as the static audio features. The static video
features are PCA coefficients (using 40 principle com-
ponents) for the images of the segmented faces. The
dynamic features for all streams at frame t are the dif-
ferences between the static features at t + 1 and t− 1.

For each of these feature streams a 20-symbol
codebook is learned via fitting a 20-component
GMM. All methods use a common set of
observations,oAs

t ,oAd
t ,oV 1s

t ,oV 1d
t ,oV 2s

t ,oV 2d
t , which

are the feature streams encoded with their corre-
sponding codebook for the static and dynamic audio
and both video streams respectively. This results in
a 1D discrete code representation for each static and
dynamic feature stream. Note that the dimensionality
reduction and codebook learning is done separately for
each stream and for each data sequence analyzed (i.e.
there is no user or corpus/dataset specific training).

Three possible states are considered with the fol-
lowing factorizations: F 0 = {{oAd}, {oV 1d},{oV 2d}
,F s}, F 1 = {{oAd , oV 1d}, {oV 2d}, F s}, and
F 2 = {{oAd ,oV 2d},{oV 1d} , F s} where F s =
{{oAs},{oV 1s}, {oV 2s}}. F 0 is fully independent cor-
responding to neither person speaking. F 1 and F 2

correspond to persons 1 and person 2 speaking respec-
tively. Note that the structural differences between
these 3 states are only in the dynamic features. The as-
sumption is that the dependence information is mainly
in the dynamics of the audio-visual speech process and
static features mainly change in their appearance / pa-
rameters not in their dependence structure.

For all 22 sequences in the CUAVE groups set
a dynamic dependency test is performed with an
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Figure 4: Example frames and extracted faces from the audio-visual datasets. (a) and (b) are from CUAVE, (c)
and (d) show the second dataset.

HFactMM, FactMM, and a WFT with window lengths
of 8,15,30,60,90, and 120 frames. For the WFT, at
each frame, the likelihood ratios L̂1,2, L̂1,0 and L̂2,0

(see Equation 8) are calculated using a window of
samples centered around that frame. Additionally p-
values for L̂1,0 and L̂2,0 are calculated via permuta-
tions [8, 18]. If L̂1,2 is positive (negative) then we
eliminate St = 2 (St = 1) as a possible hypothesis
and use the p-value for L̂1,0 ( L̂2,0) to choose between
St = 1 (St = 2) and St = 0. The parameter learn-
ing for the HFactMM and FactMM was set to try 100
different random starting points and run until conver-
gence or a maximum of 80 EM iterations in order to
combat the potential local maxima problems with EM.
In most cases EM converged before 40 iterations.

The first row of Table 1 shows that all techniques yield
around 80% accuracy. The maximum average per-
formance of the WFT was obtained with a window
length of 30 frames. This shows with some training
data to set window length and thresholds the WFT
method would do well with these features. However,
these results are somewhat misleading as we explain.
Figure 5(a) shows the estimated labels for a typical
sequence in the corpus (g09). The top line shows the
ground truth labeling. The next two are the outputs of
the HFactMM and FactMM. Notice that these meth-
ods disagree with the ground truth by consistently
putting non-speaking (fully independent) blocks be-
tween speaker transitions and within speaking blocks.
Examination of these sections in the original video re-
veals that they are actually short periods of silence.
In actuality the HFactMM and FactMM correctly la-
beled these sections. The WFT does not exhibit this
behavior and smooths over the short silence regions.

The disagreement stems from an artifact of the pro-
cedure used to ground-truth the data where periods
of silence that are less than 25 frames within a speech
block are considered to be part of speech [1]. This con-
straint is not part of the HFactMM model and thus it
produced a more accurate and fine scaled labeling of
the periods of “silience” (St = 0). Nevertheless, to be
consistent with the publicly available ground truth we

can easily impose this silence constraint by post pro-
cessing the outputs to remove any periods of labeled
silence (St = 0) less than 25 consecutive frames. The
constrained outputs are shown in the last two lines
of Figure 5(a). With this constraint the HFactMM
and FactMM outperform all other techniques improv-
ing to 88% and 86% respectively as shown in Table
1. Note that applying this constraint to the outputs
of the WFTs does not affect performance. This is be-
cause the WFT smoothes over short silence regions as
an artifact of having a sliding window.

To the best of our knowledge these results are equiv-
alent to or better than all other reported results for
speaker labeling on the CUAVE group set. Nock and
Iyengar [14] obtain 75% accuracy with a windowed
Gaussian MI measure and Gurban and Thiran [9]
get 87.4% with a trained audio-visual speech detec-
tor. However, it is important to note that [9] utilizes a
training corpus while the method described here does
not. Additionally, both methods use a silence/speech
detector and only perform a dependence test when
speech is detected. A dynamic dependency test with
an HFactMM obtains better performance without the
benefit of separate training data or a silence detector.

In the CUAVE database most of the information about
who is speaking comes from the changes in dependency
structure between the audio and the video. (WFT
gives similar performance to the HFactHMM as in the
D=0 case in the synthetic example). In the second
dataset there is a significant appearance change. When
one person is speaking the other subject changes their
gaze. The results for this sequence are shown in Figure
5(b). Both the HFactMM and FactMM greatly outper-
formed the WFT. The poor results of the WFT show
that there is not sufficient dependency information in
the features at all times. However the HFactMM and
FactMM take advantage of the static appearance dif-
ferences (in this case head pose) to help group/cluster
the data and correctly label the video.
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Figure 5: AV Results. White = neither person is speaking, light red = person 1, dark blue = person 2. C=silence

constraint imposed

HFactMM FactMM Best WFT
Mean Accuracy (%) 80.24 78.51 83.86

Mean Accuracy C(%) 88.11 86.38 83.42

Table 1: Results Summary for CUAVE. The Best WFT

accuracy corresponds to the WFT with settings that max-

imized the average performance for the entire dataset. C=

silence constraint imposed. All results are based on the

ground truth provided in [1].

6 Conclusion

In this paper we have introduced the use of an
HFactMM for dynamic dependency tests. We have
shown both theoretically and empirically that an
HFactMM can exploit both structural and parameter
differences to distinguish between hypothesized states
of interaction. This is in contrast to sliding window
methods which can only discriminate based on struc-
tural differences. We have shown state-of-the art per-
formance on a standard dataset for audio-visual asso-
ciation. Significantly this was achieved without benefit
of training data.
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