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Abstract

One of the main shortcomings of Markov
chain Monte Carlo samplers is their inability
to mix between modes of the target distri-
bution. In this paper we show that advance
knowledge of the location of these modes can
be incorporated into the MCMC sampler by
introducing mode-hopping moves that sat-
isfy detailed balance. The proposed sam-
pling algorithm explores local mode structure
through local MCMC moves (e.g. diffusion
or Hybrid Monte Carlo) but in addition also
represents the relative strengths of the dif-
ferent modes correctly using a set of global
moves. This ‘mode-hopping’” MCMC sampler
can be viewed as a generalization of the dart-
ing method [1]. We illustrate the method on
a ‘real world’ vision application of inferring 3-
D human body pose from single 2-D images.

1 Introduction

It is well known that MCMC samplers have difficulty
in mixing from one mode to the other because it typi-
cally takes many steps of very low probability to make
the trip [2, 3]. Recent improvements designed to com-
bat random walk behavior, like Hybrid Monte Carlo
and over-relaxation [4, 2] do not solve this problem
when modes are separated by high energy barriers. In
this paper we show how to exploit knowledge of the lo-
cation of the modes to design a MCMC sampler that
mixes properly between them.

One can imagine at least two possible scenarios where
this advance knowledge is present. In one scenario we
are given data-cases and aim at learning a model dis-
tribution. In this case, the data itself is representative
of the high probability regions of a well fitted model.
To identify these regions one could first fit a mixture-
of-Gaussians model and use the “one-standard devi-
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ation” ellipsoids of the fitted covariances as jump re-
gions. These regions may overlap, but as we will see
in the following, our algorithm is well suited to deal
with this complication. This idea was explored in the
context of learning Markov random field models us-
ing contrastive divergence learning with an alternative
(we believe less efficient) mode-hopping algorithm [11].
There it was shown that mode-hopping can be of prac-
tical value in learning the correct relative volumes of
the modes in the probability density.

In another scenario we have actively searched for high
probability regions using sophisticated optimization
methods [6, 7]. Given these local maxima, we are
then interested in collecting unbiased samples from the
underlying probability distribution. In this paper we
explore the second scenario in the context of a “real
world” computer vision application — learning human
models and estimating high-dimensional 3D human
body poses from 2D image information.

The main contribution of this paper is the introduc-
tion of a new mode-hopping sampler, the generalized
darter, and its extensions. A proof of detailed balance
is given in the appendix. Further details, including an
auxiliary variable formulation and extensions to dis-
crete state spaces can be found in an accompanying
technical report [12].

2 Markov Chain Monte Carlo

Consider a given probability distribution p(x) with
X € X € R? a vector of continuous random variables.
In the following we will focus on continuous variables,
but the algorithm is easily extended to discrete state
spaces. A very general method to sample from this
distribution is provided by Markov chain Monte Carlo
(MCMC) sampling. The idea is to start with an ini-
tial distribution po(x) and design a set of transition
probabilities that will eventually converge to the tar-
get distribution p(x).



The most commonly known transition scheme is the
one proposed in the Metroplis-Hastings (M-H) algo-
rithm, where a target point is sampled from a pos-
sibly asymmetric conditional distribution Q(x;41|x:),
where x; represents the current sample. To make sure
that detailed balance holds, i.e. p(x:)Q(X¢t1]xt) =
p(Xt+1)Q(X¢|Xt41), which in turn guarantees that the
target distribution remains invariant under @, we
should only accept a certain fraction of the proposed
targets. In the most commonly used M-H algorithm,
the transition distribution @ is symmetric and inde-
pendent of the energy-surface at location x. This sim-
plifies the acceptance equation (the @ factors cancel),
but leads to slow mixing due to random walk behavior.
It is however not hard to incorporate local gradient in-
formation, dlog p(x)/dx to improve mixing. One could
for instance bias the proposal distribution @Q(x¢41|x+)
in the direction of the gradient dlogp(x)/dx. When
the stepsize becomes infinitesimally small this is called
the Langevin method and one can show that the re-
jection rate vanishes in this limit. This strategy im-
proves the acceptance rate, but mixing between differ-
ent modes remains difficult.

3 Mode-Hopping MCMC

We start with reviewing the closely related darting al-
gorithm described in [1]. In darting-MCMC we place
spherical jump regions of equal volume at the location
of the modes of the target distribution. The algorithm
is based on a simple local MCMC sampler which is
interrupted with a certain probability to check if its
current location is inside one of these spheres. If so,
we initiate a jump to the corresponding location in an-
other sphere, chosen uniformly at random, where the
usual Metropolis acceptance rule applies. To main-
tain detailed balance we decide not to move if we are
located outside any of the balls. It is not hard to
check that this algorithm maintains detailed balance
between any two points in sampling space.

In high dimensional spaces this procedure may still
lead to unacceptably high rejection rates because the
modes will likely decay sharply in at least a few di-
rections. Since these ridges of probability are likely to
be uncorrelated across the modes, the proposed target
location of the jump will have very low probability,
resulting in almost certain rejection. In the following
we will propose two important improvements over the
darting method. Firstly, we allow the jump regions to
have arbitrary shapes and volumes and secondly these
regions may overlap. The first extension opens the
possibility to align the jump regions precisely with the
shape of the high probability regions of the target dis-
tribution. The second extension simplifies the design
and placement of the jump regions since we don’t have

to worry about possible overlaps of the chosen regions.

First consider the case when the regions are non-
overlapping but of different volumes. Like in the dart-
ing method we could consider a one-to-one mapping
between points in the different regions, or we could
choose to sample the target point uniformly inside the
new region. Because the latter is somewhat simpler
conceptually, we’ll use uniform sampling in this sec-
tion. The deterministic case will be treated in the next
section. Also, to simplify the discussion we’ll first con-
sider the case where the underlying target distribution
is uniform, i.e. has equal probability everywhere. Due
to the difference in volumes, particles are more likely to
be inside a large region than in small ones. Thus, there
will be a larger flow of particles going from the bigger
regions towards the smaller ones violating detailed bal-
ance. To correct for it we could reject a fraction of the
proposed jumps from larger towards smaller regions.
There is however a smarter solution, that picks the
target region proportional to its volume:
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If we view the jumps between the various regions as
a (separate) Markov chain, this method samples di-
rectly from the equilibrium distribution while a rejec-
tion method would require a certain mixing time to
reach equilibrium. Clearly, if the underlying distribu-
tion is not uniform, we need the Metropolis acceptance
rule between the jump point and its image in the tar-
get region:

H:

(1)

Puccept = min {1, %] (2)

where t is the target point and x is the exit point.

Now, let’s see what happens if two regions happen to
overlap. Again, we first consider sampling the tar-
get point uniformly in the new region, and consider
a target distribution which is uniform. Consider two
regions which partly overlap. Due to the fact that we
use the probability P; (1), each volume element dx in-
side the regions has equal probability of being chosen.
However, points located in the intersection will be a
target twice as often as points outside the intersection.
To compensate, i.e. to maintain detailed balance, we
need to reject half of the proposed jumps into the in-
tersection. In general, we check the number of regions
that contain the exit point, n(x), and similarly for the
target point, n(t). The appropriate fraction of moves
that is to be accepted in order to maintain detailed
balance is min [1, n(x)/n(t)]. Combining this with the
Metropolis acceptance probability 2 we find:
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Generalized Darting MCMC Sampler

Repeat until convergence
1. Draw a sample uj ~ U[0,1].

2. if w3 > Ppeck: perform one step of a
local MCMC sampler.

3. if uy < Popeck

(a) Identify the number of regions
n(x) that contain the current

sample.
() if n(x)=0
do nothing.

(c) if n(x) >0
i. Sample a new region according
to P, (1).
ii. Propose a location inside
the new region (either
deterministically or uniformly
at random) .
iii. Identify the number of regions
n(t) that contain the proposed
sample.
iv. Draw a sample us ~ UJ0,1].
v. 1f u2 > Paceept (3)

reject move.
vi. if ug < Pyccept (3)

accept move

Figure 1: The steps of our generalized darting sampler.

Putting everything together, we define the mode-
hopping MCMC sampler explained in figure 1.

3.1 Elliptical Regions & Deterministic Moves

In the previous section we have uniformly sampled the
proposed new location of the particle inside the tar-
get region. This is a very flexible method for which it
is easy to prove detailed balance. However, a deter-
ministic transformation can be tuned to map between
points of roughly equal probability which is expected
to improve the acceptance rate. Consider for instance
the case that the energy surfaces near the regions is
exactly quadratic and have the same height (i.e. their
centers have equal probability). We can now define
a transformation between ellipses that maps between
points of equal probability resulting in a vanishing re-
jection rate. This is obviously not the case when we
use uniform sampling.

We first consider the case of non-overlapping elliptical

regions. Ellipses seem a natural choice, but the algo-
rithm presented here is by no means restricted to it.
For instance, the method is readily generalized to the
use of rectangles as basic shapes. We'll parameterize
an ellipse by a mean p, a covariance 3 and a scale
«, i.e. the ellipse is defined to be the equiprobability
contour that is « standard deviations away from the
mean. We will also need the eigenvalue decomposition
of the covariance, ¥ = USU', where S is a diagonal
matrix containing the eigenvalues {\;}. A determinis-
tic transformation between two ellipses 1 — 2 is given
by:

xo = pty — Us8y/ 287 20T (1 — ) (4)

We note that this transformation would not leave a
point invariant if we chose the second ellipse to be
equal the first one, but mirrors it in the origin. Even
though the transformation above is one-to-one, it does
change the volume element dx, implying that we need
to take the Jacobian of the transformation into con-
sideration. The intuitive reason for this is the same
as in the previous section: more particles will be lo-
cated in the larger ellipses resulting in more jumps to
smaller ellipses than back, violating detailed balance.
To compensate we sample the target ellipse again pro-
portional to its volume (a? Hle Ai), i.e. using (1).

We will now discuss how this algorithm can be gen-
eralized in case the ellipses overlap. Consider again
two ellipses which partly overlap and a uniform target
density. Consider a point that is located inside both
ellipses, i.e. in the overlap (point 1). To apply the de-
terministic mapping, we first need to choose one of the
two ellipses as a basis for the transformation. Unfor-
tunately, an arbitrary rule such as the ellipse on top
of the stack, or the one with the largest volume will
result in a violation of detailed balance. Thus, we pro-
pose to pick the ellipse at random with equal probabil-
ity. Now consider the image point under the mapping
(point 2), choosing either the same ellipse (resulting
in mirroring the point at the origin) or choosing the
other ellipse. Assume point 2 is not located in the
overlap. The probability of moving from 1 — 2 is %; a
factor % coming from the fact that we first choose with
equal probability which ellipse will be used to define
the transformation, and another factor % because we
sample the target ellipse using (1). However, in the
other direction 2 — 1 the probability is % Note that
unlike the case of uniformly sampling a target point
(see previous section) the probability of going from
2 — 1 is not doubled'. Thus, to rescue detailed bal-

!The reason is that for every target ellipse the image
of the point under the mapping (4) is different. However,
there are circumstances, e.g. when one ellipse is completely
encircled by a larger one, that isolated points have the same
image for two distinct target ellipses, resulting in violation
of detailed balance. Since in the continuous case this set



ance we need to accept only half of the proposed moves
from 2 — 1, or more generally min [1,n(x)/n(t)] with
n(-) the number of ellipses containing a point. Com-
bining this with the usual Metropolis acceptance rule
applicable to general target densities, we arrive pre-
cisely at the rule in (3).

To summarize, the deterministic algorithm has pre-
cisely the same structure as algorithm in fig. 1, where
in the transformation (4) ellipse 1 is chosen uniformly
at random from all ellipses containing point 1 and el-
lipse 2 is chosen using (1) with V; the volume of the
ellipsoid used to approximate the region.

4 Monocular Human Pose Estimation

We explore the potential of the generalized darting
method for monocular 3D human pose estimation.
This problem has applications for human-computer
interaction and for actor reconstruction from movie
footage — in this case only one camera viewpoint, the
one presented in the movie, is usually available.

We run experiments based on correspondences be-
tween the articulated joints of a subject in the image
and the joints of a 3D articulated model (2D-3D cor-
respondences). We also report experiments for learn-
ing the model parameters in a maximum likelihood
framework using a more sophisticated edge-based ob-
servation model. Monocular human pose estimation
is well adapted to illustrate the algorithm because the
resulting 3D pose posterior is both high-dimensional
(=35 human joint angle state variables) and highly
multimodal. In any single monocular image, under
point-wise 3D human joints and their image projec-
tions, each limb of the human is subject to a ‘reflective’
kinematic flip ambiguity. Two 3D human body con-
figurations with symmetrical slant in depth w.r.t. the
camera (see fig.4) produce identical point-wise image
perspective projections. The number of possible solu-
tions multiples over the number of links of the human
body. For example, a 3D human model with 10 links
(torso, head, left/right forearm, upperarm, thigh and
calf) may have 2#"ks ]ocal optima, although this is
usually an overestimate. Some solutions may not be
physically plausible and may violate joint angle limits
or body non-self-intersection constraints. The ques-
tion this work addresses is not how to find the optima
but how to efficiently sample from the 3D human pose
equilibrium distribution once these are known.

4.1 Domain Modeling

This section describes the humanoid visual models
used in our sampling experiments. For details see [8].

has measure zero, we will ignore it.

Representation: A typical human body model is
constructed from a ‘skeleton’ that has 30-35 rota-
tional joints controlled by angular joint state vari-
ables x, which includes a global 6d translation of the
body center. It also has ‘body flesh’ built from three-
dimensional ellipsoids with deformation parameters 6,
here 36 variables for the head, torso, arms and legs.
The surface model improves the image representation
for the 3D human pose estimates based on image fea-
tures like edges. In one of the experiments we not only
estimate the model state, but also learn its parameters
using maximum likelihood.

Joint positions u; in local coordinate systems for each
body limb are transformed into points p;(x,u;) in a
global 3-D coordinate system, then into predicted im-
age points r;(x,u;) using composite nonlinear trans-
formations r;(x,u;) = P(pi(x,u;)) = P(K(x,u;)),
where K represents a chain of rigid transformations
that map different body links through the kinematic
chain to their global 3-D position (see fig.2), and P
represents perspective image projection.

Observation Likelihood: For model state estima-
tion, we compute the negative log likelihood of each
known image joint position, o;, under a Gaussian
centered at its projected (hypothesized) image loca-
tion, r;. The costs are summed over all the human
body joints to produce the state space energy function.
This is a function e(o;|x,0) of the prediction error
Ao;(x) = 0; — r;(x) between the model and the given
image data, e(0;,x,0) = Ao?/20%. The cost gradi-
ent g;(x) and Hessian H;(x) are also computed, being
used for second order continuous optimization and hy-
brid Monte Carlo (HMC) step calculations. For learn-
ing experiments, we use an observation model based on
edge residuals. These are collected at model occluding
contours predicted in the image. At each 3D model
configuration, for each element on an image-predicted
model contour, a line search along the normal direction
is used to locate an image edge that matches it. The
distance between the location of the model contour
and the image edge is used to construct a quadratic
function of the residual, similar to the one based on
skeletal joint residuals. This is summed over all con-
tour predictions and all the human body parts.

Energy Function: The model state estimates are ob-
tained by optimizing a maximum a posteriori criterion,
the total posterior probability according to Bayes rule:

p(x]0,0) o p(Olx,6)p(x) (5)

o exp (—),e(0i,%,0)) p(x)
where e(0;,x) is the cost density associated with ob-
servation ¢, the sum is over all observations O =

{01, ...,0,}, and p(x) is the model state prior. For ex-
periments, we have used the classical Langevin sampler
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Figure 2: A simple model of a kinematic chain consist-
ing of ellipsoidal parts. First, the feature wu;, defined
in its local coordinate frame, is mapped to a 3-D po-
sition, pi(x,u;), in the body model through a chain of
transformations, K;(x; ), between local coordinate systems.
x; are state variables that encode transformations (rota-
tion angles) between these reference frames, collectively
stored in a vector x. The 3-d surface point given by
pi(x,u;) is mapped to the image using perspective pro-
jection: r;(x,u;) = P(pi(x,u;)), where P is the viewing
camera projection matrix (this includes the global orienta-
tion of the camera and its intrinsic parameters, e.g. focal
length, pixel dimensions, etc.).

(see section 2), in combination with long-range jumps
using the spherical darting and the generalized darting
methods.

Prior Distributions: The priors we use are stabiliz-
ers to avoid singular distributions for hard to estimate
state variables (e.g. in the clavicle and shoulder com-
plex), and terms for collision avoidance between body
parts, and joint angle limits.

4.2 Experiments

Sampling Experiments: We have selected 4
local minima corresponding to the left forearm
and left calf in a monocular side view of the
body (see fig.4). The local minima have relative
volumes of (0.16,0.38,0.10,0.36) and energy levels
(4.41,6.31,7.20,8.29).

For local optimization we use a second-order damped
Newton trust region method [10] where gradient and
Hessians of the energy functions are computed analyt-
ically and assembled using the chain rule with back-
propagation on individual kinematic chains. For gen-
eralized darting, we estimate local covariances as in-
verse Hessians at each local minimum. For MCMC
simulations, we enforce joint limit constraints using re-
flective boundary conditions, i.e. by reversing the sign
of the normal momentum when it hits a joint limit.
We found this gave an improved sampling acceptance
rate compared to simply projecting the proposed con-
figuration back on the constraint surface, as the latter
leads to cascades of rejected moves until the momen-
tum direction gradually swings around.
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Figure 3: (a, left) Top 25 eigenvalues of the covariance ma-
trix (corresponding to a 35 state variable model) for a local
minimum shows the typical ill-conditioning of the monocu-
lar human pose estimation. (b, right) The ergodic measure
compared for a classical Langevin gradient-based sampling
scheme and the generalized darting method. The classical
sampler doesn’t mix well — the long-term energy difference
between trajectories reflects the memory of the minima
where they were initiated. The generalized method mixes
much better and explores various minima so the average
state-space difference over long-term trajectories tends to
zero (see text).

We ran the simulation with stepsize A7 = 0.1, us-
ing the Langevin sampler (fig.5), the darting method
with spherical covariances (fig. 6a) and the generalized
darting method with deterministic moves (fig. 6b). In
fig. 6 we show a fragment of a larger simulation that
uses a small jump probability P = 0.03, in order to
diminish the frequency of jumps for illustrative pur-
poses. It is easily noticeable that the classical sampler
is trapped in the starting mode, and wastes all of its
samples exploring it repeatedly. The spherical darting
method explores only 2 minima based on one success-
ful long-range jump during 600 iterations. The darting
method (right) explores more minima by combining
local moves with non-local jumps that are accepted
more frequently. Different minima are visited using 7
jumps. This could be visually observed in fig. 6. Af-
ter each jump, the sampler equilibrates at a different
energy level associated to the new local minimum.

We have also performed a large simulation (10° steps)
with A7 = 0.1 and probability P = 0.25 for the dart-
ing moves. The first 200 samples were discarded in
order to let the chain reach equilibrium. The covari-
ance volume scaling factor o was set to unity for all
regions. For classical darting, we place spheres of unit
radius around each minimum. With these parameters,
the sampler mixes fast within each minimum, but still
has good acceptance rates of 94% for local moves. The
acceptance rate for long-range jumps in the spherical
case is as = 1292/24,863 = 0.052 whereas for the gen-
eralized darting case is a, = 9642/25,850 = 0.388,
which is an important improvement. According to our
tests, the results are stable to changes in the volume
factor a by roughly 10%.

Ergodicity Study: To show the benefit of incorpo-



rating mode-hopping moves into the MCMC sampler
we compared the performance of a generalized darter
and a hybrid MCMC sampler in an experiment based
on 3 runs of 20,000 simulation steps each, following
the same paradigm as in the previous section. We
compute the ergodic measure [1], an indicator for the
rate of self-averaging in equilibrium calculations. Al-
though self-averaging is a necessary but not sufficient
condition for the ergodic hypothesis to be satisfied,
it gives intuition about the rate of state space sam-
pling. We have selected the state-space configuration
as the quantity to average (alternatively an ergodic
measure based on some other property, e.g. the energy
could be used). This measure is an average over pair-
wise differences between average state-space positions,
for trajectories initiated in different minima during a
simulation. More specifically, the average state space
position after S moves from a trajectory initiated at
minimum a, containing configurations {x¢,7 =1..5}
obtained? during sampling run k is given by:

1 S
a(8) = 5 2 Iixt (6)
=1

and the ergodic measure is defined as the average be-
tween two trajectories initiated at different minima a
and b in R runs®:

1 R

e(a7b7 S, R) = EZ[d%(S) _dZ(S)F (7)
k=1

For good mixing over large trajectories we expect the
ergodic measure to converge to 0. In fig. 3, we plot the
ergodic measure corresponding to a classical Langevin
simulation with no jumps against one using the gener-
alized darting scheme for S = 20, 000 over R = 3 runs.
The mixing of the classical hybrid MCMC sampler is
not satisfactory, perhaps reflecting the average state-
space difference between the two local minima where
the sampler is trapped, and which are explored repeat-
edly. In contrast, the long-range state self-averaging
effect is clearly observed for generalized darting.

Learning Experiments: We run a parameter learn-
ing experiment using the same image in fig. 4, the same
state priors but using a more complex image observa-
tion likelihood based on contour / edge measurements
(see §4.1). We estimate some of the model parameters,
here the body proportions (36 parameters represent-
ing the superquadrics of the head, torso, upperarm,

2The trajectory may well include configurations inside
minima basins other than a, but in a slight abuse of no-
tation we will identify both the starting minima and the
trajectory itself with the same letter.

3Note that there are two different simulations for each
run k, one for a and another for b. Also notice that the
subscript does not index the vector x but indicates different
state vectors.

Figure 4: Human pose estimation based on a single image
of a walking person photographed sideways. In any single
monocular image, under point-wise 3D human joints and
their image projections, each limb of the human is subject
to a ‘reflective’ kinematic flip ambiguity. Two 3D human
body configurations with symmetrical slant in depth w.r.t.
the camera produce identical point-wise image perspective
projections. The bottom row shows four copies of the same
image, with the projection of four different poses of the
model superimposed on the image. The four poses are
shown from a different viewpoint in the top row. The dif-
ferent poses correspond to four local minima in the energy
function, defined over 35 state variables (the human joint
angles). Notice how the four human body configurations
indeed align well with the imaged human.

Classical Hybrid MCMC

Energy

. . . . .
100 200 300 400 500 600 700
Iterations

Figure 5: (left) Original image used for human pose in-
ference and learning. (right) Classical hybrid Monte Carlo
gets trapped in the starting minimum.

forearm, thigh and calf, with the symmetrical values
on the left and right side of the body mirrored) and
the variance used for the quadratic edge residual cost.

We learn by maximizing the conditional Maximum
Likelihood using gradient ascent. To obtain estimates
for the gradients we need to compute the gradient of
the log-normalization term associated with p(O|x, 0)
in equation 5. This derivative is intractable but can
be approximated by drawing samples from the model
using the generalized darting MCMC algorithm. This
procedure is supervised, i.e. we need to specify the
3D state ground truth. Since this information was
not available for our real scene, we selected, by visual
inspection, one of the 4 pose configurations, consid-
ered to be the most plausible, as the ground truth
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Figure 6: Spherical darting (a,left) explores the minima
more thoroughly, but only 2 minima are visited during
600 iterations (1 successful jump). Generalized darting
(b,right) explores the different minima by combining local
moves with non-local jumps that are accepted frequently.
8 local minima are visited via 7 jumps (after each jump the
sampler explores its new local minimum for a while before
the next jump).

(the second column in fig.4). The probability of the
4 configurations before and after learning is shown in
fig. 7. Notice how the process substantially improves
the margin between the correct solution and the un-
desirable ones, in particular how the selected ground-
truth emerged as most probable after learning despite
not being the most probable before. 3D pose estimates
based on the learned model identify the correct solu-
tion with significantly higher probability, on the av-
erage. Learning does not make all the incorrect so-
lutions extremely implausible due to several reasons.
First, there is 3D structure sharing between the in-
correct and the ‘ground-truth’ (e.g. solutions 2 and
4 share the upper body sub-component of the state).
Another factor may be the weak evidence provided
by the contour features used for the observation like-
lihood. One can, e.g. use better lighting or surface
reflection models in order to provide additional con-
straints to diminish uncertainty. Finally, since we are
only able to find a local optimum for the parameters,
it is possible that other good ones exist. However, we
haven’t empirically identified better ones, even after
multiple restarts from different initial starting points.

5 Discussion

In this paper we have discussed a new Markov chain
Monte Carlo sampler, that is able to effectively jump
between modes in the target distribution while main-
taining detailed balance. Our method is a generaliza-
tion of ‘darting MCMC’ where the basic jump regions
may have an arbitrary irregular shape and moreover
are allowed to overlap. We demonstrate the algorithms
on model learning and inference for 3D human body
pose estimation from monocular images.

Generalized darting is easily extended to discrete state
spaces. Regions can be defined in any suitable manner,
e.g. by a set of conditions that should hold, as long
as we can count the number of states in each region.
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Figure 7: Learning the body proportions and the variance
of the observation likelihood based on matching contours
improves the relative probability of the correct solution
w.r.t. to undesirable ones. The plots show the probabil-
ity levels of four different local optima (the numbering on
the horizontal axis is irrelevant). The order of the prob-
ability peaks corresponds to the one shown in fig. 4, with
the second configuration visually selected as ground truth.
Learning significantly increases the probability of the de-
sired solution and downgrades competing, incorrect ones.

Overlaps between regions are also allowed. The algo-
rithm proposes to jump into a region with probability
proportional to the number of states in that region,
picking a state uniformly at random, and accepting
this move again according to equation 3.

An alternative view of the proposed generalized dart-
ing sampler is that of a mixture between an indepen-
dence sampler and a Hybrid Monte Carlo sampler. In
this view, we randomly alternate HMC sampling with
proposing samples uniformly from the collection of re-
gions {V;}. The proposal distribution is not condi-
tional on the previous sample, hence the name “in-
dependence sampler”. However, to maintain detailed
balance we can not accept a proposal if the previous
sample was located outside this collection of regions.
Hence, instead of performing this check before propos-
ing a new sample (as in darting MCMC), the check is
implicitly performed after proposing a new sample by
incorporating it in the acceptance rule.

Apart from the darting method, other MCMC schemes
that mix between distant modes can be found in the
literature (e.g. ‘simulated tempering’ [5], normal ker-
nel coupling [14] and a method that incorporates deter-
ministic optimization [13]). The main advantage of the
proposed generalized darting method is that one can
tune the shape of the jump regions to match the shape
of the high probability regions of the target distribu-
tions. This should help to achieve an improved accep-
tance probability of attempted jumps between regions.
Note however that we do not claim that our method is
superior to all earlier schemes under all circumstances.
In fact, we have only compared our method with the
classical darting method and shown improved accep-
tance rates. No doubt, the various methods described
above will have different properties for different target
distributions, or in the presence of different amounts
of prior knowledge about the target distribution.



A Proof of Detailed Balance

The generalized darting Monte Carlo sampler can be
viewed as a Hybrid Monte Carlo sampler that is in-
terrupted with a certain probability to attempt a long
range jump. Since Hybrid Monte Carlo sampling is
ergodic, a “mixture” of Hybrid Monte Carlo and any
other (possibly non-ergodic) sampler is automatically
ergodic as well. To prove detailed balance between
any pair of points in the sample space, we consider
the following three possibilities:

1: Both points are located in one or more of the
regions. We will prove the case of two points in pos-
sibly overlapping regions, where the jump points are
sampled uniformly at random inside a target region.
The prove for the deterministic case goes along similar
lines (see section 3.1). With probability 1 — P.pecr we
follow the local dynamics of the Markov chain which
fulfills detailed balance by assumption. With proba-
bility P.peck We initiate a jump to some other point
in some other region. Define A to be the set of re-
gions that contain point 1 and B the set of regions
that contain point 2. We now have:

p(x1) P(x1 — x2)

P,
= p(Xl) Pcheck Z 7 Paccept:1~>2

wtes) . [17P(X2)n(xl)}

= n(x nlxz) i
= p( 1) Pehneck Zj V] p(xl)’R(XQ)

n(x1)

= p(2) Porcer 5= min {1’ M}

p(x2)n(x1)

P,
= p(XZ) Pcheck ZCZA 7: Paccept:2—>1

= p(x2) P(x2 — x1)

where P; (equation 1) is the probability of jumping to
region i and the factor 1/V; is included because the
target point is sampled uniformly at random inside
this region.

2: One of the two points is located inside one
or more jump-regions. The particle located out-
side any jump-region follows its local dynamics with
probability 1 — P.pecr. The particle inside one or more
regions will also follow its local dynamics with proba-
bility 1 — Pepeck- With probability Pepecr the sampler
decides to perform a check. But in that case the parti-
cle outside any region will stay put while the particle
inside one or more regions will attempt a jump and will
therefore never end up outside the set of all regions.

3: Both points are located outside any of the
jump-regions. In this case, detailed balance follows
because of the Markov chain for the local moves is
assumed to respect detailed balance. With probabil-
ity Peheck this Markov chain is interrupted to check if
the particle is located inside a jump-region. But since
both points under consideration are assumed to be lo-
cated outside any jump-region this interruption will be
symmetric and does not destroy detailed balance.
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