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Abstract

We describe a new family of non-linear sequence
models that are substantially more powerful than
hidden Markov models or linear dynamical sys-

tems. Our models have simple approximate in-
ference and learning procedures that work well
in practice. Multilevel representations of sequen-
tial data can be learned one hidden layer at a
time, and adding extra hidden layers improves
the resulting generative models. The models
can be trained with very high-dimensional, very

non-linear data such as raw pixel sequences.

Their performance is demonstrated using syn-
thetic video sequences of two balls bouncing in
a box.

I ntroduction

of the sequence, an HMM requires at le28t nodes. In-
ference remains tractable in mixtures of linear dynamical
systems [4], but if we want to switch from one linear dy-
namical system to anothduring a sequence, exact infer-
ence becomes intractable [4]. Inference is also tractable i
products of hidden Markov models [2].

To overcome the limitations of the tractable models, many
different schemes have been proposed for performing ap-
proximate inference [10, 5]. Boyen and Koller [1] inves-
tigated the properties of a class of approximate inference
schemes in which the true posterior density in the latent
space is approximated by a simpler “assumed” density such
as a mixture of a modest number of Gaussians [9]. At each
time step, the model dynamics and/or the likelihood term
coming from the next observation causes the inferred pos-
terior density to become more complicated, but the inferred
posterior is then approximated by a simpler distribution
that lies in the space of assumed distributions. Boyen and
Koller showed that the stochastic dynamics attenuates the
approximation error created by projecting into the assumed

Many different models have been proposed for high-density space and that this attenuation typically prevents
dimensional sequential data such as video sequences or tHee approximation error from diverging.

sequences of coefficient vectors that are used to charact

ize speech. Models that use latent variables to propag

aqﬁthis paper we describe a family of generative models for

Eeequential data that can capture many of the regularities

information through time can be divided into two classes:
tractablemodels for which there is an efficient procedure
for inferring the exact posterior distribution over theclat

that cannot be modeled efficiently by hidden Markov mod-
els or linear dynamical systems. The key idea is to use an

iabl intractabl dels for which there i ¢ undirectedmodel for the interactions between the hidden
variab'es andntractablemodels forwhich INere ISno exact 4 ygipje (.e. observed) variables. This ensures that the

and efficient inference procedure. Tractable models such %ontribution of the likelihood term to the posterior oveeth

linear d_ynamlcal _systems and hldden_Mgrko_v models haV%idden variables is approximately factorial which greatly
beenwidely applied butthey are very limited in the types Offacilitates inference. The model family has some attractiv
structure that they can model. To make inference traaabl%roperti es:

when there is componential hidden state, it is necessary t

use linear models with Gaussian noise so that the posterior

distribution over the latent variables is Gaussian. Hidden ¢ It has componential hidden state which means it has
Markov Models combine non-linearity with tractable in- an exponentially large state space

ference by using a posterior that is a discrete distributio Products of i q cal . i g )
over a fixed number of mutually exclusive alternatives, but_ syrsot ell:ll'::ssagd ms&i& . egnoafr?]'ig?j eﬁyfﬂgmgvaéeo d'QEa; . eyrﬂﬁfjnéh
the mutual exclusion makes them exponentially inefficienty;5rkov models.

at dealing W|th Componential structure: to a”OW the hiytor zThe number of parameters is 0n|y qua_draticl so there are
of a sequence to impogE€ bits of constraint on the future strong limitations on how the exponentially large statecgepzan



whereW are the connection weights of the RBMandb

are the biases for and H, and the variabled/;; and Ny

are the number of dimensions bfandH. V and H are
column vectors antl’ has dimensiond/y, x Ng. We use
the notationV’ for V' transpose, since the standard nota-
tion creates confusion in later sections. We #%&, H) to
mean either a distribution or a single probability, depend-
ing on the context. We use the more cumbersome notation
P(V = v,H = h) to clarify the ambiguous cases. The
joint distribution P(V, H) is from the exponential family
andV H' is its sufficient statistics, subject to the constraint
that(V, H) is a binary vector. The conditional distributions

P(V|H) andP(H|V) are factorial and are given by
e There is a very simple on-line filtering procedure

— — . /
which provides a good approximation to the true con- PH;=1V) = o (bJ + W:JV) 2
ditional distribution over the hidden variables given P(V;=1H) = o(a;+W;.H), 3)
the data observed so far.

Figure 1: A Restricted Boltzmann Machine

e It has non-linear dynamics and it can make multi-
modal predictions.

whereo(z) = (1+exp(—z))~!is the logistic function and
e Even though maximum likelihood learning is in- W:j, Wi, are thejth column and théth row of 1.

tractable, there is a simple and efficient learning al-The derivative of the average log likelihodidwith respect

e There is a simple way to learn multiple layers of hid- AWi; o< (Vi) ppypovy — (ViHi) pvan (8)

den variables and this can greatly improve the overall A ' '
generative model. ai o (Vi)py = (Vi) pevy ®)
Ab; o< (Hj)pipypvy — (Hi) i) (6)

By using approximations for both inference and learning, - - T .
we obtain a family of models that are much more powerfulyvhereP(V) denotes the empirical data distribution which

than those that are normally used for modeling sequentia”S the average of the datapoints in the training set, and

data. The empirical question is whether our approxima—,P(HW)P(V) is the RBM distribution that arises when

tions are good enough to allow us to exploit the power ofiS set b_y the_data distribution. Maximum likelihood e;ti—
this family for modeling real sequences in which each time-Mation is difficult due to the qeeq to compute expectations
frame is high-dimensional and the past has high-bandwidtWIth respect to the model's distributioq) p(y, sr). An ob-

non-linear effects on the future vious way to compute these expectations is to use alternat-

ing Gibbs sampling. Starting from an arbitrary initial dis-
tribution, we alternate between updating all of the hidden

2 The generative model units in parallel using Eq. 2 and updating all of the visi-
_ _ ble units in parallel using Eq. 3. After a sufficient number
21 TheRestricted Boltzmann Machine of iterations, this method gives unbiased samples from the

bedin b iewing th icted Bol hi distribution P(V, H) [12]. It is generally much better than
We begin by reviewing the Restricted Boltzmann Machiney, o torce calculation of the expectation which takes ex-

(RBM) [6, 14]. It has a simple, exact inference procedure, ,antial time in the size of the RBM, but it is still slow in

for the hidden variables and an efficient approximate learn- ractice. since the Markov chain needs to be runefach
ing algorithm for the parameters. These two prOpertieﬁeration’of the learning algorithm.
make the RBM very useful as an observation model for se-
quential data. When an RBM is modified to be conditionedFortunately, there is another parameter estimation method
on previous hidden and/or visible states, we get a temporavhich we call Contrastive Divergence (CD) because it fol-
RBM (TRBM) which can be used to model sequences. lows the approximate gradient of an objective function that

i S Ny is the difference of two Kullback-Liebler divergences [6].
The REM de_ﬂnes a dlstrlbuno_n_ovév, }.U € {0,137 x CD is much more efficient than maximum likelihood learn-
{Q’ 1y, \_N'th belr?gV the V'S!ble variables and/ the ing and it works well in practice — RBM's learned with CD
hidden variables, via the equation produce high-quality generative models [3]. The weight

P(V,H) = exp(V'WH +a'V +b'H) /Z, (1) updates for CD are given by

be used, but for sequences in which there are several indepen AWy <ViHj>P(H\V)I5(V) - <ViHj>P1(V7H) ()
dent things going on at once, it is easy to use different salmfe ) \ AvA

the hidden units to model different components of the seiiplen A x <VZ>P(V) <V1>P1(V) (8)
structure. Ab; o (Hj)poypvypovy — Hj) o, 9)



where a sample from the distributiaf, is obtained by b
running Gibbs sampling for 1 full step, having initialized B, l

(V,H) by P(V)P(H|V). More specifically, we sample
the visiblesV from P(V), the hiddens from P(H|V), H., His H
and then sample the visibles and then the hiddens once i
more to get a sample froff;. For CD to work,V must -
be initialized with (V). C Co

There is a simple intuitive way to understand what CD V.
learning is doing. Instead of sampling from the model's 2
distribution, we allow the model to slightly distort the dat A
distribution towards a distribution that the model prefers \—/Ta
Then we lower the free energy of the data (the free energy A,

of V' is the negative log probability minus the log partition

function which equals te-log _ ,; exp(V'WH + a'V + Figure 2: The TRBM

b’ H)) and raise the free energy of the distorted data to pre-
vent the model distorting the data in that direction in fetur

This can be viewed as a way of making the gradient of theyate filtering is easy (see subsection 2.3); and finally, it is
free energyw. r. t. the distribution be zero at the data gyraightforward to introduce hidden layers to the model, as
distribution. it is for the RBM.

Even though RBM's define a distribution ovgd, 1}V, the TRBM defines a joint distribution ovev;, H,) that is
they can sometimes be used to moftell] valued vari-  onditional on earlier hidden and visible states. The éffec

ables by treating intermediate values as probabilities. Fouf these earlier states is to dynamically adjust the effecti
the MNIST images of handwritten digits, for example, the yi5ses of the visible and hidden units at time

normalized pixel intensities are mostly very close to 0 or 1
and it works well to treat the intermediate values as prob- t—1 prt—1
o . P(\Vi, H |V, H{Z,) =
abilities. Contrastive divergence learning works well whe (Ve Hil Vi Hi)
we update the visible variables in Eq. 3 to have the real
values produced by the logistic without using random samexp(V; Co H;+By (V') ) Vi+ By (V5L HIZL Y HY) ) Z,

pling. In Eq. 2, we still use random sampling to obtain (10)
binary stochastic values fd¥, but on the RHS we simply whereV;, H; denote the state of the variables at titrend
use the real values df which amounts to using a mean the notationV;'",} stands forV;_i,...,V;_,,, and like-
field approximation. In the simple videos described laterwise, H!~} . By (V") and By (V,5), H!Z))) are bias

in the paper, we used the mean-field approximation for théunctions that provide the TRBM with its dynamic biases,
pixels. which are defined by the equations

Treating intermediate values as probabilities and usieg th i1 , ,

mean-field approximation in Eq. 2 does not work well By (Vo) = AWV + o+ AL Viem t+a

for most real-valued images, such as images of faces, beBy (V;'"\,H,~})) = DB{Hi 1+ -+ B, H_, +
cause it cannot assign a sharply peaked probability distri- ClVici+ - +C.Viem+b

bution to an intermediate pixel intensity. For these images
we can replace Bernoulli-distributed binary visible uibys

Heplate ConsequentlyZ depends on the states &f "}, H! ™}
Gaussian-distributed real-valued ones [8].

t—m?
as well as on the weight matric§sA4;}j<m, {Bj}j<m.
{C;};<m and the usual biases b that parameterize the
2.2 TheTemporal Restricted Boltzmann Machine for bias functions. Thus, the TRBM is a standard RBM with
sequence modeling Cy as its weight matrix andy, By as its biases; it is
through the bias functions that the TRBM can model se-
Figure 2.2 shows an RBM that has been augmented bguential structure.

adding directed connections from previous states of th

visible and hidden units. We call this a Temporal Re_Whereq— is less than 1, we use learned “initial” values that

stricted Boltzmann Machine (TRBM). The resulting se- .

. ) .depend orr to replace the product of the output of a unit
guence model is defined as a product of standard RBM $ind the weiaht on the directed connection
conditioned on the previous states of the hidden and the 9 '
visible variables. As a result of this definition, the log We model the probability of a whole sequence using a prod-
probability of a sequence decouples into a sum, where eaalrct of the distributions defined by a separate TRBM for

term is learned separately and efficiently by CD; approxi-each time step, with all of the TRBM’s sharing the same

?Nhenever the TRBM needs to use a valuelpfor H;



parameters: 24 Learning

To allow online learning, we ignore the effect of future data
on the inferred distribution ovet; and use the approxi-
mate filtering distribution as an approximate posteria@r. (

There are three reasons for which we chose the TRBM a¥© do not do smoothing). Once no hidden variables re-
the building block for our sequence model. The first is thatMan: léaming is done by a CD update for each time step
givenV;f and H! ™! the distribution over, is factorial as separately.

long as the future variabldg’ ,, H/, , are unknown. This  Consider the following standard lower bound to the log
helps to ensure that a factorial approximation to the fil@ri  |ikelihood [11]:
distribution (P(H,|V)) is reasonably accurate.

PV HE) =[] P(Ve, LIV HIZY). (A1)
t=1

log P(V{") > (log P (V{", H{)) + H (Papproy ,

The second reason is that parameter estimation for an in- Papprox

dividual TRBM can be done efficiently using CD if we . C (14)
know the previous hidden and visible states, so by usind}‘ihere HT 'ST the entropy O.f a dI-StI‘Ik-JUtIOI’l., _and
the filtering distribution to approximate the posteriortdis approX 1 V1) IS the app_ro_xmatg filtering d|str|bg—
bution over the hidden variables we can reduce the proble on. We would like to maximize this lower bound W't.h
of modeling whole sequences to the problem of modelin espect_ toP and Papprox doing so enabl_es us to qbt_al_n
the distribution of the current time frame of data given the he weight updates necessary for leaming. Maximizing

previous data and the previous hidden states computed IS Iowc_er bound with respect t@ amo_unts preC|ser_
the filtering distribution to learning each TRBM separately using the factorial

hidden distribution provided byPapprox but as a result
The third reason is that the TRBM model can easily be exof this maximization with respect t@®, Papprox changes
tended to include additional hidden layers (see section 43s well, and can possibly reduce the value of the bound.
and by adding more hidden layers we get a better represerrhe fact that the learning works in practice suggests that

tation and a better generative model. this ignored effect is not too serious. Even though the
lower bound is described with respect to one vedtgr,
2.3 ApproximateFiltering we maximize the average of these lower bounds over the

training set, thus maximizing a lower bound to the average
Our model is designed to make it easy to approximate theyg likelihood.

filtering distribution P(H;|V’). Let Papprod Hi; = 1|VY) , , o
be the probability that theé®” hidden unit is on in the Learninga TRBM when the hidden states are known is sim-
factorial approximation to the filtering distribution. For P& Itis justan RBM with dynamic biases which can be
each time we maintain a vectop, € [0, 1]¥# such that learned in the same way as normal biases.

Pt; = Papprod Hy; = 1|VY'). We show how to compute:,  |n the equation below we write the weight update for a
which clearly shows how to immediately obtafpprox single TRBM. In our sequence model there &fesuch

We derive our factorial approximation from the following | RBM's, and the sum of their weight updates constitutes

observation. Suppose thef’ and H!~" are known with the full weight update. To simplify the notation we assume

certainty. In that case, the filtering distribution is tufae-  that there is only one training sequence in which case the
torial and is given by weight update for time stepis

P(Hy; =1V}, H{™ ") =0 ((CoVi)i + Bu (Vi HiZ)),) » A(Cn)ij o< (Vien); (H)j)qn — ((Vien);(Hi)j) gy (15)
(12)  A(B.)ij o< (Hin);(Hi)j)@ — ((Hin);(Hy);)qs(16)

which is simply the sigmoid of all the inputs from the pre- - N N
vious time frames to unif,,. AAn)ij o {(Vien);(Vi)idar = (Vien)i(Vi)i) s, (17)

In the general case, we assume tHiafs given by the data  The distribution@; is the filtering distribution obtained
with certainty butHf*1 is unknown and its uncertainty is given the single training sequené&’, and the distribu-
represented by a factorial distributidfpprox (@ndp). We  tion @ is identical to@; for framesl, ...t — 1, but for
use the mean-field equations [13] to comptéromp ™" timestep it is the TRBM distribution ovetV;, H,) condi-

andVy’. The resulting equation is very similar to equation tijoned on the previous statég ' andV;'~!, namely
12, except that we replace the values of the variables

with their probabilitieg;, thus getting the equation QL (V! HY) = P(Vi, Hy|HIZ ), VEEDQ (Vi HITY)
_ / . t—1 t—1 (18)
pei = 0 (CoVi)i + B (ViZ PiZm),) (13) (the distribution ofQ% over the variablesi/, |, V, is ir-
where we note that the definition of the bias functiBp relevant). Note that even though the valueﬁq)fl are un-
is valid for real-valued arguments. certain and are averaged over, in practice we substitute the



values of each coordinate &f; ' by p,~*, the vector of  suited for hierarchical learning, as we will show in section
probabilities of each coordinate being 1 under the filtering4.2.

L A ;
dlstrlbu_t|(_)nQ1 of Vi'. This mak_es the biases to the TRBM We trained each model using 10,000 training sequences of
deterministic and eases learning. We also cannot evalua :
. . R = 100 frames. The weights were updated at the end
the expectations with respect to the TRBM distribution, so . o .
of each sequence, with an initial learning rateddf0005

P L ’
we use CD by replacings(V;, H¢) by the distribution ob and momentum 00.9. In addition, we double the learn-

tained from running Gibbs sampling in the TRBM at time . I
t for one step starting at, exactly as for an RBM. We as- ing rate at epochs 100, 200, 500 and 1000. This increase

i{'l the speed of learning proved crucial: without it, leatnin

sumed that there was only one datapoint in the training sel : :
) o L akes more than an order of magnitude more time, and even
in the above description, but actually the datapoint is sam:

L . then it results in worse generative models. All four varia-
pled from the training set, so the gradients are averaged bl¥ ) .
. AN ons of the TRBM learned quite good generative models
the empirical data distribution. . L .
that could continue an initial segment of a video (see the
URL for examples of sequences generated by these mod-
3 Experimentswith asinglelayer model els). The models could also be used for online denoising

of sequences by performing approximate filtering and then

To demonstrate that our learning procedure works we useffconstructing the visible state from the approximaterfilte
it to learn synthetic video sequences composeiof 20 ing distribution. Figure 3 shows a typical image sequence
pixel time-frames of two balls bouncing in a box. The first 2nd the same sequence corrupted by noise. The noise is

row in figure 2 shows a sample from the training data. Acorrelated in both time and space which makes denoising
movie can be viewed at much more difficult. All four variations of the TRBM de-

www.cs.utoronto.catilya/aistats2007ilter/index.html noise the sequence quite well. Figure 3 shows the denoised
. _ _ _ sequence produced by the TRBM-VV which must use the
In the pixel space, the dynamics are highly non-linearhidden states to combine information across frames. When
Even if we could extract the pOSItIOI’]S and velocities of thean extra hidden |ayer is added to any of the TRBM’S’ there
centers of both balls, the dynamics would be highly non-s 3 noticeable improvement in the denoising, as well as
linear when the balls bounce off the wallls or off each otherjn the generation. To denoise with two hidden layers we
Also, the underlying coordinates are related to the pixel in first compute the approximate filtering distribution for the

tensities in a very non-linear way. For all these reasonsgecond hidden layer and then reconstruct each frame of the
modeling the raw sequence of pixel intensities is a chalyata from the second hidden layer.

lenging task which is made even more difficult if the model

class cannot handle componential structure efficiently. AfoUr models denoise much better than a simple RBM which
HMM, for example, would need abow6* hidden states to cannot make use of previous frames. They are not as good

distinguishl0 values of the: andy positions and velocities 8S an autoregressive model that has been trained to predict

of one ball. and.0® states for both balls. the clean image from the four previous noisy ones, but our
) o model is not trained with noise so it can denoise without
We used several different TRBM models that Had visi-  requiring training data that contains both the noisy and the

ble ur_1it_s,200 hidden units, apd direct access to the hiddemoisy-free sequence.
and visible states of theprevious time steps.(e. m = 4). ) ) ]
The full TRBM has 3 kinds of connections: connections 1" biggest disadvantage of our models is that they cur-
between the hidden variables (HH), connections betweefntly take 20 hours to train and even then the training is
the visible variables (VV) and connections between the visNOt complete. We also tried training a full TRBM wild0
ible and hidden variables (VH) In addition to trying the hidden units for two weeks after which it had a model that
full TRBM we also tried leaving out each set of connectionsgenerated extremely well (see the URL).
in turn. We call these special cases TRBM-VV, TRBM-
HH, and TRBM-VH where the last part of the name indi- 4 Multi
. . ) il M
cates which connections are omitted. TRBM-VV, for ex- ultilayer Models
ample, has no visible-to-visible connections. Despite its ) ,
name, TRBM-VH retains the undirected connections be#1 Adding more hidden layersto an RBM

tween the current instantiations of V and H. _ . . . .
In this section we describe how to improve an ordinary

The TRBM-HH model is an interesting special case be-RBM by introducing additional hidden layers, and creat-
cause the lack of hidden-to-hidden connections makes e3ng a hierarchical representation of the data, as described
act inference possible. This model is particularly wellin [7]. This is useful for making the model more flexible

- and for allowing features of features.
3|t would also be possible to have connections from previous - S

hidden states to the current visible units, but the modedisti- ~ Let (V) denote the data distribution aft(V, /) denote

cated enough already. the joint distribution defined by the RBM. The idea is to



Figure 3: Top row: An image sequence. Second row: The sameseq corrupted by noise that is highly correlated
in space and time. Third row: Denoising by a TRBM-VV using agé hidden layer. Bottom row: Denoising by a
TRBM-VV with two hidden layers.

get another RBMQ)(H, U), which hasH as its visible and imate the posterior distributio”d p (H|V) by P(H|V).
U as its hidden variables, to learn to model the aggregate8pplying the standard variational bound, we get

posterior distributionQ (H ), of the first RBM
Lz (og Q(H)P(V|H))pvy + H(P(H|V)). (20)

QUH) = P(H|V)P(V). (19)  whereH(P(H|V)) is the entropy ofP(H|V). Maximiz-
v ing this lower bound with respect to the parameterg)of

. .~ : . . whilst holding the parameters éf and the approximating
This aggregated posterid@p(H ) is typically highly non- : X . . . _
factoriglgby?jefinitirz)n of tg(RB)M (b)e/f:ausg Wrgenythe RBM posteriorP(H|V) fixed is prec_lsely equwalgnt to fitting
is fitted to the data@Q(H) ~ P(H)), so using another 0 Q(H). Note_ that the details op) are gnlmportantQ
RBM O(H.U) to | SO i ivle. b th could be any kind of a model, and not just an RBM. The
QUL U) IO _;aarr:ﬁ)(t ) |sbsenS|de|,| qpausel €€ main advantage of using another RBM is that it is possi-
are many regurarties that can be mode ed (). In- _ble to initialize Q(H) to be equal taP(H), so the varia-
troducing an additional hidden layer is much less useful if. : : .
we use a model with a factorial prior ovBY H), since for tional bound starts as an equality and any improvement in

such a model the aggregated poste@i¢#l) is much more the bound guarantees theftp (V') is a better model of the

. ; . data thanP (V).
factorial after learning, so less structure remains to bé-mo
eled by the next hidden layer. This procedure can be repeated recursively as many times
. . ~ as desired, creating very deep hierarchical represengatio
Provided Q(H) approximates(H) better thanP(H) For example, a third RBMR(U, X') can be used to model

does, it can be shown that the augmented mOdetlhe aggregated approximate posterior dvesbtained by
Mpq(V,H,U) = P(VIH)Q(H,U) is a better model

of the original data than the?(V, H) defined by the » _ 5

first RBM alone [7]. It follows from the definition that RU) XV:XH:Q(UW)P(H'V)P(V)' @D
Mpq(V, H,U) uses the undirected connections learned by o

Q betweenH andU, but it usedirectedconnections from Provided R(U) is initialized to be the same aQ(U),
H to V. It thus inheritsP(V|H) from the first RBM  Mqr(H) will be a better model of)(H) thanQ(H), but
but discards?(H|V') and henceP(H) from its generative  this does not mean that/pqr(V) is necessarily a better
model. Data can be generated from the augmented modgtodel of (V') thanMpq (V). It does mean, however, that
by sampling fromQ(H, U) (by running a Markov chain), learning R will improve the variational bound obtained by
discarding the value df, and then sampling from?(V|H)  using P(H|V) andQ(U|H) to approximate the posterior
(in a single step) to obtaili. ProvidedNy > Ny, Q can  distributionMpqr(U[V).

be initialized by using the parameters frdfto ensure that
the two RBM'’s define the same distribution ovér Start-
ing from this initialization, optimization then ensuresth
Q(H) modelsQ(H) better thanP(H) does.

The second RBMQ(H,U), learns by fitting the dis-
tribution Q(H), which is not equivalent to maximizing
log Mpo(V). Nevertheless, it can be proved [7] that this
learning procedure maximizes a variational lower bound orwhere P(H) is a factorial prior ovefd that is defined by a

log Mpg(V). Even thoughVlpg(V, H,U) has discarded separate set of parameters. The use of a factorial prior en-
P(H|V) from its generative model, we can still approx- courages the learning to make the aggregated posterior over

There have been many previous attempts to train multilayer
models in a greedy, layer-by-layer way. These attempts
have not met with much success because they generally use
a directed model of the form

P(V)=>_ P(V|H)P(H). (22)
H



H as factorial as possible and this leaves little structure tomization of a lower bound oitbg P(V;'') as well (this is

be modeled by the next hidden layer. In an RBM, the posalso equation 14; see subsection 2.4):

terior overH is factorial for each possible value of, but

both the implicitly defined prior oveH and the aggregated log P(V,") > (log P (H{') P (V1T|Hf)>Pappmx+]HI (Papprox) »

posterior overH are typically very far from factorial, thus (24)

leaving plenty of structure for the next layer to model.  (the maximization is approximate in that we ignore the
effect that changing the approximate posterior has on the

4.2 Multilayer TRBM's bound), so by introducing@ the new lower bound of equa-
tion 23 will be equal to the bound in equation 24¢jfis

We straightforwardly generalize the idea to our sequencegroperly initialized. Therefore, the lower bound in Eq. 23

model. First we learn a TRBM, and then learn anotherwill be greater than the lower bound in Eq. 24.

TRBM that learns to model the hidden states of the first

s ™ TN e
TRBM, which is precisely analogous to the way the RBM In order to ;mt'al'ziQ sug_h tha?(Hl ) —.P(Hé ), itis ,
was augmented. necessary fof) to have directed connections between its

visible variables (the variablg$!’) so thatQ(H{') can rep-
Recall that we denote blj" the set of all the visible time  resent every distributio®(H7) can. For RBM's, learning
frames and by{ the set of all the hidden time frames. one hidden layer at a time works well ever(J{ #) is not
Denote byP(V;", H{ ) the distribution defined by the first initialized to be equal ta®(H) [7], so in our experiments
TRBM. (see section 4.3), we did not initializg( H{ ) = P(H{T).

P(H{'|V{") is not factorial, so we approximate it by the We can also add further hidden layers in the same way as

filtering distribution, Pappro H{ |V"). Let Q(H{,U[)  is done for RBM's and each time another layer is added we
be a TRBM that we use to learn the aggregated approxshould get a better generative model.

i § i ictri i T\, T T

m;]ate flltgn_ng iIStrlbutlonZVIT :Da;;:)rox(hild|vl )P(_VLI)’ fNotice that for the model TRBM-HH, for which
V;'] er_?é]éM'S the 1s_er.\]quence of the i en.vanaU:?s O'p(HT |V is exactly factorial, the situation is signifi-
the T QT © quprgxmate pogtenor OU1:  cantly better. Not only does it have an exact learning proce-
Q_app“”(Ul | H1) Papprod Hy |V1') allows Uy 10 represent  qyre (if we ignore the approximations introduced by con-
higher-level features that can be computed on-line, SINCE 2 stive divergence), but its augmented moalelayshas

_?re]';h?eriéif{’:’r:‘g gﬁgn?gir)wptrg((j rggEZr;t?\?e Or;;gztﬁl;re (f‘ran;es' a greater Iikeliho_od.since.the Igwer boun:(FJI (Eq. 24) is
is one where we first sample fro@(HT) trlljgn from  Ggualto tThe I;)g I|kel|ho:ﬁ>d I:?(Hl ) = P(HY), because

. 1/ P, H{|\V{")=P(H{ |V{").
P(VT|HT), so, as with the RBM's, Mpq (V") approl HY [V17) = P(HY V) _
S e P(VTIHT)Q(HT). If we can initializeQ so that A drawback of all of our TRBM models is tha(V," | H')
Q(ﬁlT) = P(HT), then the augmented model is iden- is not factorial because of the directed connections into

tical to P and has the same likelihood. By makiiiy V. This makes it intractable to generate unbiasgd sam-
learn the distribution of the hidden states Bf which ples from the augmented models, so further approximations
is " Papprod HT[VT)P(VT), we maximize the lower Mustbe used.
bound

4.3 Resultsfor multilevel models

£>(logQ (HY) P (VI'|HT)), +H (Papprox) ; (23)

Faomes We conducted experiments to determine whether adding an
with respecttd. This is very similar to the bound in equa- extra hidden layer improves the quality of generative mod-
tion 20, except for the use of the approximate posterior. Aels. For each of TRBM, TRBM-VV, TRBM-VH, TRBM-

the beginning of the optimization this bound is striddgs  HH, we used the same type of TRBM with 400 hidden units
thanlog P(V;'') even wherQ(H{) = P(HT), because an (and 200 visibles) to learn the aggregated posterior Histri
approximate posterior is used. It could, therefore, remairion of the hidden units in the first-level model. The learn-
less tharlog P(V;'). This is not the case for RBM’s, since ing parameters of all these models were the same as those
the exact posterioP(H|V) is easily computable, so the for the original TRBM’s and training lasted for 10,000 up-
lower bound is equal tbog P(V') at the beginning of the dates. All of the generative models improved and they all
optimization. became better at denoising (see figure 3 for a typical de-
OPoising example, or the URL for many movies of denoising

Although our learning procedure maximizes a lower boun .
and generation).

that s initially smaller thatog P(V;'), itis very likely that
by the end of learning the bound will exceled P(V1). In Despite the improved performance, we cannot generate ex-
addition, since we use an approximate posterior during thactly from the improved multilevel models. Recall that
learning of P(V;) (recall that inference is intractable in to generate, we first need to u¢§ H{,U{') to sample

our TRBM model), we are performing approximate max-the activities of H{ and then we need to sample from



P(V{I|HT), which is the distribution ovesequencesf
visible frames given a sequence of hidden frames. This
distribution is intractable for the same reasons inferésce
intractable in our models, and we approximate it in a simi-
lar spirit.

The conditional distribution?(V;'|H{') is intractable to
sample from, but if7} andV; ! are known and the rest of

the variablesHtT+1 are not given, then generatifgis easy.

Indeed, all the explaining away effects disappear and the
distribution overV; is factorial. We therefore use an “on-

line” approximation toP(V,'|H{'), one where we go over
t from 1 to 7', samplingV; given H? and Vf‘l ignoring

HT

t+1-

5 Conclusions and discussion

In this paper we introduced a family of sequence models

that can learn good generative models in an online fashion.[7]

We demonstrated that the learning works despite relying on
several approximations:

e The filtering distribution is approximate because it [&]

We believe that there are two main reasons why the fam

uses a mean-field approximation to model the effects
of the previous filtering distribution on the current
one.

There is no smoothing so the learning is using the fil-
tering distribution to approximate the posterior. This
means that it is ignoring the effect of changing param-
eters on the likelihood of the future observations.

Even if the posterior was correct, the learning would 1

be following the approximate gradient of the con-
trastive divergence instead of the exact gradient of the
log likelihood.

ily of models that we have described will work much bet-
ter than the more familiar family of directed modeis €.

dynamic Bayes nets) for modeling video sequences at thﬁZ]

pixel level. The first is that our observation model leads
to a factorial posterior over the hidden variables at a sin-
gle timestep when all the past hidden variables are given.
The second is that we have an effective way to decompose

the task of learning a model with many hidden layers into[13]

a series of one hidden layer tasks.
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