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Abstract

We describe a new family of non-linear sequence
models that are substantially more powerful than
hidden Markov models or linear dynamical sys-
tems. Our models have simple approximate in-
ference and learning procedures that work well
in practice. Multilevel representations of sequen-
tial data can be learned one hidden layer at a
time, and adding extra hidden layers improves
the resulting generative models. The models
can be trained with very high-dimensional, very
non-linear data such as raw pixel sequences.
Their performance is demonstrated using syn-
thetic video sequences of two balls bouncing in
a box.

1 Introduction

Many different models have been proposed for high-
dimensional sequential data such as video sequences or the
sequences of coefficient vectors that are used to character-
ize speech. Models that use latent variables to propagate
information through time can be divided into two classes:
tractablemodels for which there is an efficient procedure
for inferring the exact posterior distribution over the latent
variables andintractablemodels for which there is no exact
and efficient inference procedure. Tractable models such as
linear dynamical systems and hidden Markov models have
been widely applied but they are very limited in the types of
structure that they can model. To make inference tractable
when there is componential hidden state, it is necessary to
use linear models with Gaussian noise so that the posterior
distribution over the latent variables is Gaussian. Hidden
Markov Models combine non-linearity with tractable in-
ference by using a posterior that is a discrete distribution
over a fixed number of mutually exclusive alternatives, but
the mutual exclusion makes them exponentially inefficient
at dealing with componential structure: to allow the history
of a sequence to imposeN bits of constraint on the future

of the sequence, an HMM requires at least2N nodes. In-
ference remains tractable in mixtures of linear dynamical
systems [4], but if we want to switch from one linear dy-
namical system to anotherduring a sequence, exact infer-
ence becomes intractable [4]. Inference is also tractable in
products of hidden Markov models [2].1

To overcome the limitations of the tractable models, many
different schemes have been proposed for performing ap-
proximate inference [10, 5]. Boyen and Koller [1] inves-
tigated the properties of a class of approximate inference
schemes in which the true posterior density in the latent
space is approximated by a simpler “assumed” density such
as a mixture of a modest number of Gaussians [9]. At each
time step, the model dynamics and/or the likelihood term
coming from the next observation causes the inferred pos-
terior density to become more complicated, but the inferred
posterior is then approximated by a simpler distribution
that lies in the space of assumed distributions. Boyen and
Koller showed that the stochastic dynamics attenuates the
approximation error created by projecting into the assumed
density space and that this attenuation typically prevents
the approximation error from diverging.

In this paper we describe a family of generative models for
sequential data that can capture many of the regularities
that cannot be modeled efficiently by hidden Markov mod-
els or linear dynamical systems. The key idea is to use an
undirectedmodel for the interactions between the hidden
and visible (i.e. observed) variables. This ensures that the
contribution of the likelihood term to the posterior over the
hidden variables is approximately factorial which greatly
facilitates inference. The model family has some attractive
properties:

• It has componential hidden state which means it has
an exponentially large state space2.

1Products of linear dynamical systems are linear dynami-
cal systems and mixtures of hidden Markov models are hidden
Markov models.

2The number of parameters is only quadratic, so there are
strong limitations on how the exponentially large state space can



Figure 1: A Restricted Boltzmann Machine

• It has non-linear dynamics and it can make multi-
modal predictions.

• There is a very simple on-line filtering procedure
which provides a good approximation to the true con-
ditional distribution over the hidden variables given
the data observed so far.

• Even though maximum likelihood learning is in-
tractable, there is a simple and efficient learning al-
gorithm that finds good values for the parameters.

• There is a simple way to learn multiple layers of hid-
den variables and this can greatly improve the overall
generative model.

By using approximations for both inference and learning,
we obtain a family of models that are much more powerful
than those that are normally used for modeling sequential
data. The empirical question is whether our approxima-
tions are good enough to allow us to exploit the power of
this family for modeling real sequences in which each time-
frame is high-dimensional and the past has high-bandwidth
non-linear effects on the future.

2 The generative model

2.1 The Restricted Boltzmann Machine

We begin by reviewing the Restricted Boltzmann Machine
(RBM) [6, 14]. It has a simple, exact inference procedure
for the hidden variables and an efficient approximate learn-
ing algorithm for the parameters. These two properties
make the RBM very useful as an observation model for se-
quential data. When an RBM is modified to be conditioned
on previous hidden and/or visible states, we get a temporal
RBM (TRBM) which can be used to model sequences.

The RBM defines a distribution over(V, H) ∈ {0, 1}NV ×
{0, 1}NH , with beingV the visible variables andH the
hidden variables, via the equation

P (V, H) = exp (V ′WH + a′V + b′H) /Z, (1)

be used, but for sequences in which there are several indepen-
dent things going on at once, it is easy to use different subsets of
the hidden units to model different components of the sequential
structure.

whereW are the connection weights of the RBM,a andb

are the biases forV andH , and the variablesNV andNH

are the number of dimensions ofV andH . V andH are
column vectors andW has dimensionsNV × NH . We use
the notationV ′ for V transpose, since the standard nota-
tion creates confusion in later sections. We useP (V, H) to
mean either a distribution or a single probability, depend-
ing on the context. We use the more cumbersome notation
P (V = v, H = h) to clarify the ambiguous cases. The
joint distributionP (V, H) is from the exponential family
andV H ′ is its sufficient statistics, subject to the constraint
that(V, H) is a binary vector. The conditional distributions
P (V |H) andP (H |V ) are factorial and are given by

P (Hj = 1|V ) = σ
(

bj + W ′
:,jV

)

(2)

P (Vi = 1|H) = σ (ai + Wi,:H) , (3)

whereσ(z) = (1+exp(−z))−1 is the logistic function and
W:,j , Wi,: are thejth column and theith row ofW .

The derivative of the average log likelihoodL with respect
to the parameters is given by the very simple equations

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P (V,H) (4)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P (V ) (5)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P (H), (6)

whereP̃ (V ) denotes the empirical data distribution which
is the average of the datapoints in the training set, and
P (H |V )P̃ (V ) is the RBM distribution that arises whenV
is set by the data distribution. Maximum likelihood esti-
mation is difficult due to the need to compute expectations
with respect to the model’s distribution,〈·〉P (V,H). An ob-
vious way to compute these expectations is to use alternat-
ing Gibbs sampling. Starting from an arbitrary initial dis-
tribution, we alternate between updating all of the hidden
units in parallel using Eq. 2 and updating all of the visi-
ble units in parallel using Eq. 3. After a sufficient number
of iterations, this method gives unbiased samples from the
distributionP (V, H) [12]. It is generally much better than
brute-force calculation of the expectation which takes ex-
ponential time in the size of the RBM, but it is still slow in
practice, since the Markov chain needs to be run foreach
iteration of the learning algorithm.

Fortunately, there is another parameter estimation method
which we call Contrastive Divergence (CD) because it fol-
lows the approximate gradient of an objective function that
is the difference of two Kullback-Liebler divergences [6].
CD is much more efficient than maximum likelihood learn-
ing and it works well in practice – RBM’s learned with CD
produce high-quality generative models [3]. The weight
updates for CD are given by

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P1(V,H) (7)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P1(V ) (8)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P1(H), (9)



where a sample from the distributionP1 is obtained by
running Gibbs sampling for 1 full step, having initialized
(V, H) by P̃ (V )P (H |V ). More specifically, we sample
the visiblesV from P̃ (V ), the hiddensH from P (H |V ),
and then sample the visibles and then the hiddens once
more to get a sample fromP1. For CD to work,V must
be initialized withP̃ (V ).

There is a simple intuitive way to understand what CD
learning is doing. Instead of sampling from the model’s
distribution, we allow the model to slightly distort the data
distribution towards a distribution that the model prefers.
Then we lower the free energy of the data (the free energy
of V is the negative log probability minus the log partition
function which equals to− log

∑

H exp(V ′WH + a′V +
b′H)) and raise the free energy of the distorted data to pre-
vent the model distorting the data in that direction in future.
This can be viewed as a way of making the gradient of the
free energyw. r. t. the distribution be zero at the data
distribution.

Even though RBM’s define a distribution over{0, 1}NV ,
they can sometimes be used to model[0, 1] valued vari-
ables by treating intermediate values as probabilities. For
the MNIST images of handwritten digits, for example, the
normalized pixel intensities are mostly very close to 0 or 1
and it works well to treat the intermediate values as prob-
abilities. Contrastive divergence learning works well when
we update the visible variables in Eq. 3 to have the real
values produced by the logistic without using random sam-
pling. In Eq. 2, we still use random sampling to obtain
binary stochastic values forH , but on the RHS we simply
use the real values ofV which amounts to using a mean
field approximation. In the simple videos described later
in the paper, we used the mean-field approximation for the
pixels.

Treating intermediate values as probabilities and using the
mean-field approximation in Eq. 2 does not work well
for most real-valued images, such as images of faces, be-
cause it cannot assign a sharply peaked probability distri-
bution to an intermediate pixel intensity. For these images
we can replace Bernoulli-distributed binary visible unitsby
Gaussian-distributed real-valued ones [8].

2.2 The Temporal Restricted Boltzmann Machine for
sequence modeling

Figure 2.2 shows an RBM that has been augmented by
adding directed connections from previous states of the
visible and hidden units. We call this a Temporal Re-
stricted Boltzmann Machine (TRBM). The resulting se-
quence model is defined as a product of standard RBM’s
conditioned on the previous states of the hidden and the
visible variables. As a result of this definition, the log
probability of a sequence decouples into a sum, where each
term is learned separately and efficiently by CD; approxi-
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Figure 2: The TRBM

mate filtering is easy (see subsection 2.3); and finally, it is
straightforward to introduce hidden layers to the model, as
it is for the RBM.

The TRBM defines a joint distribution over(Vt, Ht) that is
conditional on earlier hidden and visible states. The effect
of these earlier states is to dynamically adjust the effective
biases of the visible and hidden units at timet:

P (Vt, Ht|V
t−1
t−m, Ht−1

t−m) =

exp(V ′
t C0Ht+BV (V t−1

t−m)′Vt+BH(V t−1
t−m, Ht−1

t−m)′Ht)/Z,
(10)

whereVt, Ht denote the state of the variables at timet and
the notationV t−1

t−m stands forVt−1, . . . , Vt−m, and like-
wise, Ht−1

t−m. BV (V t−1
t−m) andBH(V t−1

t−m, Ht−1
t−m) are bias

functions that provide the TRBM with its dynamic biases,
which are defined by the equations

BV

(

V t−1
t−m

)

= A′
1Vt−1 + · · · + A′

mVt−m + a

BH

(

V t−1
t−m, Ht−1

t−m

)

= B′
1Ht−1 + · · · + B′

mHt−m +

C′
1Vt−1 + · · · + C′

mVt−m + b

Consequently,Z depends on the states ofV t−1
t−m, Ht−1

t−m,
as well as on the weight matrices{Aj}j≤m, {Bj}j≤m,
{Cj}j≤m and the usual biasesa,b that parameterize the
bias functions. Thus, the TRBM is a standard RBM with
C0 as its weight matrix andBH , BV as its biases; it is
through the bias functions that the TRBM can model se-
quential structure.

Whenever the TRBM needs to use a value ofVτ or Hτ

whereτ is less than 1, we use learned “initial” values that
depend onτ to replace the product of the output of a unit
and the weight on the directed connection.

We model the probability of a whole sequence using a prod-
uct of the distributions defined by a separate TRBM for
each time step, with all of the TRBM’s sharing the same



parameters:

P (V T
1 , HT

1 ) =

T
∏

t=1

P (Vt, Ht|V
t−1
t−m, Ht−1

t−m). (11)

There are three reasons for which we chose the TRBM as
the building block for our sequence model. The first is that
givenV t

1 andHt−1
1 the distribution overHt is factorial as

long as the future variablesV T
t+1, H

T
t+1 are unknown. This

helps to ensure that a factorial approximation to the filtering
distribution (P (Ht|V

t
1 )) is reasonably accurate.

The second reason is that parameter estimation for an in-
dividual TRBM can be done efficiently using CD if we
know the previous hidden and visible states, so by using
the filtering distribution to approximate the posterior distri-
bution over the hidden variables we can reduce the problem
of modeling whole sequences to the problem of modeling
the distribution of the current time frame of data given the
previous data and the previous hidden states computed by
the filtering distribution.

The third reason is that the TRBM model can easily be ex-
tended to include additional hidden layers (see section 4)
and by adding more hidden layers we get a better represen-
tation and a better generative model.

2.3 Approximate Filtering

Our model is designed to make it easy to approximate the
filtering distributionP (Ht|V

t
1 ). Let Papprox(Hti = 1|V t

1 )
be the probability that theith hidden unit is on in the
factorial approximation to the filtering distribution. For
each timet we maintain a vectorpt ∈ [0, 1]NH such that
pti = Papprox(Hti = 1|V t

1 ). We show how to computept,
which clearly shows how to immediately obtainPapprox.

We derive our factorial approximation from the following
observation. Suppose thatV t

1 andHt−1
1 are known with

certainty. In that case, the filtering distribution is turlyfac-
torial and is given by

P (Hti = 1|V t
1 , Ht−1

1 ) = σ
(

(C′
0Vt)i + BH

(

V t−1
t−m, Ht−1

t−m

)

i

)

,
(12)

which is simply the sigmoid of all the inputs from the pre-
vious time frames to unitHti.

In the general case, we assume thatV t
1 is given by the data

with certainty butHt−1
1 is unknown and its uncertainty is

represented by a factorial distributionPapprox (andp). We
use the mean-field equations [13] to computept frompt−1

1

andV t
1 . The resulting equation is very similar to equation

12, except that we replace the values of the variablesHt

with their probabilitiespt, thus getting the equation

pti = σ
(

(C′
0Vt)i + BH

(

V t−1
t−m,pt−1

t−m

)

i

)

, (13)

where we note that the definition of the bias functionBH

is valid for real-valued arguments.

2.4 Learning

To allow online learning, we ignore the effect of future data
on the inferred distribution overHt and use the approxi-
mate filtering distribution as an approximate posterior (i.e.
we do not do smoothing). Once no hidden variables re-
main, learning is done by a CD update for each time step
separately.

Consider the following standard lower bound to the log
likelihood [11]:

log P (V T
1 ) ≥

〈

log P
(

V T
1 , HT

1

)〉

Papprox
+ H (Papprox) ,

(14)
where H is the entropy of a distribution, and
Papprox(H

T
1 |V T

1 ) is the approximate filtering distribu-
tion. We would like to maximize this lower bound with
respect toP and Papprox; doing so enables us to obtain
the weight updates necessary for learning. Maximizing
this lower bound with respect toP amounts precisely
to learning each TRBM separately using the factorial
hidden distribution provided byPapprox, but as a result
of this maximization with respect toP , Papprox changes
as well, and can possibly reduce the value of the bound.
The fact that the learning works in practice suggests that
this ignored effect is not too serious. Even though the
lower bound is described with respect to one vectorV T

1 ,
we maximize the average of these lower bounds over the
training set, thus maximizing a lower bound to the average
log likelihood.

Learning a TRBM when the hidden states are known is sim-
ple. It is just an RBM with dynamic biases which can be
learned in the same way as normal biases.

In the equation below we write the weight update for a
single TRBM. In our sequence model there areT such
TRBM’s, and the sum of their weight updates constitutes
the full weight update. To simplify the notation we assume
that there is only one training sequence in which case the
weight update for time stept is

∆(Cn)ij ∝ 〈(Vt−n)i(Ht)j〉Q1
− 〈(Vt−n)i(Ht)j〉Qt

2

(15)

∆(Bn)ij ∝ 〈(Ht−n)i(Ht)j〉Q1
− 〈(Ht−n)i(Ht)j〉Qt

2

(16)

∆(An)ij ∝ 〈(Vt−n)i(Vt)j〉Q1
− 〈(Vt−n)i(Vt)j〉Qt

2

, (17)

The distributionQ1 is the filtering distribution obtained
given the single training sequenceV T

1 , and the distribu-
tion Qt

2 is identical toQ1 for frames1, . . . , t − 1, but for
timestept it is the TRBM distribution over(Vt, Ht) condi-
tioned on the previous statesHt−1

1 andV t−1
1 , namely

Qt
2(V

t
1 , Ht

1) = P (Vt, Ht|H
t−1
t−m, V t−1

t−m)Q1(V
t−1
1 , Ht−1

1 )
(18)

(the distribution ofQt
2 over the variablesHT

t+1, V
T
t+1 is ir-

relevant). Note that even though the values ofHt−1
1 are un-

certain and are averaged over, in practice we substitute the



values of each coordinate ofHt−1
1 by pt−1

1 , the vector of
probabilities of each coordinate being 1 under the filtering
distributionQ1 of V T

1 . This makes the biases to the TRBM
deterministic and eases learning. We also cannot evaluate
the expectations with respect to the TRBM distribution, so
we use CD by replacingQt

2(Vt, Ht) by the distribution ob-
tained from running Gibbs sampling in the TRBM at time
t for one step starting atVt, exactly as for an RBM. We as-
sumed that there was only one datapoint in the training set
in the above description, but actually the datapoint is sam-
pled from the training set, so the gradients are averaged by
the empirical data distribution.

3 Experiments with a single layer model

To demonstrate that our learning procedure works we used
it to learn synthetic video sequences composed of20 × 20
pixel time-frames of two balls bouncing in a box. The first
row in figure 2 shows a sample from the training data. A
movie can be viewed at
www.cs.utoronto.ca/∼ilya/aistats2007filter/index.html

In the pixel space, the dynamics are highly non-linear.
Even if we could extract the positions and velocities of the
centers of both balls, the dynamics would be highly non-
linear when the balls bounce off the walls or off each other.
Also, the underlying coordinates are related to the pixel in-
tensities in a very non-linear way. For all these reasons,
modeling the raw sequence of pixel intensities is a chal-
lenging task which is made even more difficult if the model
class cannot handle componential structure efficiently. An
HMM, for example, would need about104 hidden states to
distinguish10 values of thex andy positions and velocities
of one ball, and108 states for both balls.

We used several different TRBM models that had400 visi-
ble units,200 hidden units, and direct access to the hidden
and visible states of the4 previous time steps (i. e. m = 4).
The full TRBM has 3 kinds of connections: connections
between the hidden variables (HH), connections between
the visible variables (VV) and connections between the vis-
ible and hidden variables (VH)3. In addition to trying the
full TRBM we also tried leaving out each set of connections
in turn. We call these special cases TRBM-VV, TRBM-
HH, and TRBM-VH where the last part of the name indi-
cates which connections are omitted. TRBM-VV, for ex-
ample, has no visible-to-visible connections. Despite its
name, TRBM-VH retains the undirected connections be-
tween the current instantiations of V and H.

The TRBM-HH model is an interesting special case be-
cause the lack of hidden-to-hidden connections makes ex-
act inference possible. This model is particularly well

3It would also be possible to have connections from previous
hidden states to the current visible units, but the model is compli-
cated enough already.

suited for hierarchical learning, as we will show in section
4.2.

We trained each model using 10,000 training sequences of
T = 100 frames. The weights were updated at the end
of each sequence, with an initial learning rate of0.00005
and momentum of0.9. In addition, we double the learn-
ing rate at epochs 100, 200, 500 and 1000. This increase
in the speed of learning proved crucial: without it, learning
takes more than an order of magnitude more time, and even
then it results in worse generative models. All four varia-
tions of the TRBM learned quite good generative models
that could continue an initial segment of a video (see the
URL for examples of sequences generated by these mod-
els). The models could also be used for online denoising
of sequences by performing approximate filtering and then
reconstructing the visible state from the approximate filter-
ing distribution. Figure 3 shows a typical image sequence
and the same sequence corrupted by noise. The noise is
correlated in both time and space which makes denoising
much more difficult. All four variations of the TRBM de-
noise the sequence quite well. Figure 3 shows the denoised
sequence produced by the TRBM-VV which must use the
hidden states to combine information across frames. When
an extra hidden layer is added to any of the TRBM’s, there
is a noticeable improvement in the denoising, as well as
in the generation. To denoise with two hidden layers we
first compute the approximate filtering distribution for the
second hidden layer and then reconstruct each frame of the
data from the second hidden layer.

Our models denoise much better than a simple RBM which
cannot make use of previous frames. They are not as good
as an autoregressive model that has been trained to predict
the clean image from the four previous noisy ones, but our
model is not trained with noise so it can denoise without
requiring training data that contains both the noisy and the
noisy-free sequence.

The biggest disadvantage of our models is that they cur-
rently take 20 hours to train and even then the training is
not complete. We also tried training a full TRBM with400
hidden units for two weeks after which it had a model that
generated extremely well (see the URL).

4 Multilayer Models

4.1 Adding more hidden layers to an RBM

In this section we describe how to improve an ordinary
RBM by introducing additional hidden layers, and creat-
ing a hierarchical representation of the data, as described
in [7]. This is useful for making the model more flexible
and for allowing features of features.

Let P̃ (V ) denote the data distribution andP (V, H) denote
the joint distribution defined by the RBM. The idea is to



Figure 3: Top row: An image sequence. Second row: The same sequence corrupted by noise that is highly correlated
in space and time. Third row: Denoising by a TRBM-VV using a single hidden layer. Bottom row: Denoising by a
TRBM-VV with two hidden layers.

get another RBM,Q(H, U), which hasH as its visible and
U as its hidden variables, to learn to model the aggregated
posterior distribution,̃Q(H), of the first RBM

Q̃(H) =
∑

V

P (H |V )P̃ (V ). (19)

This aggregated posterior̃Q(H) is typically highly non-
factorial by definition of the RBM (because when the RBM
is fitted to the data,Q̃(H) ≈ P (H)), so using another
RBM Q(H, U) to learnQ̃(H) is sensible, because there
are many regularities that can be modelled inQ̃(H). In-
troducing an additional hidden layer is much less useful if
we use a model with a factorial prior overP (H), since for
such a model the aggregated posteriorQ̃(H) is much more
factorial after learning, so less structure remains to be mod-
eled by the next hidden layer.

ProvidedQ(H) approximatesQ̃(H) better thanP (H)
does, it can be shown that the augmented model
MPQ(V, H, U) = P (V |H)Q(H, U) is a better model
of the original data than theP (V, H) defined by the
first RBM alone [7]. It follows from the definition that
MPQ(V, H, U) uses the undirected connections learned by
Q betweenH andU , but it usesdirectedconnections from
H to V . It thus inheritsP (V |H) from the first RBM
but discardsP (H |V ) and henceP (H) from its generative
model. Data can be generated from the augmented model
by sampling fromQ(H, U) (by running a Markov chain),
discarding the value ofU , and then sampling fromP (V |H)
(in a single step) to obtainV . ProvidedNU ≥ NV , Q can
be initialized by using the parameters fromP to ensure that
the two RBM’s define the same distribution overH . Start-
ing from this initialization, optimization then ensures that
Q(H) modelsQ̃(H) better thanP (H) does.

The second RBM,Q(H, U), learns by fitting the dis-
tribution Q̃(H), which is not equivalent to maximizing
log MPQ(V ). Nevertheless, it can be proved [7] that this
learning procedure maximizes a variational lower bound on
log MPQ(V ). Even thoughMPQ(V, H, U) has discarded
P (H |V ) from its generative model, we can still approx-

imate the posterior distributionMPQ(H |V ) by P (H |V ).
Applying the standard variational bound, we get

L ≥ 〈log Q(H)P (V |H)〉P (H|V ) + H(P (H |V )). (20)

whereH(P (H |V )) is the entropy ofP (H |V ). Maximiz-
ing this lower bound with respect to the parameters ofQ
whilst holding the parameters ofP and the approximating
posteriorP (H |V ) fixed is precisely equivalent to fittingQ
to Q̃(H). Note that the details ofQ are unimportant;Q
could be any kind of a model, and not just an RBM. The
main advantage of using another RBM is that it is possi-
ble to initializeQ(H) to be equal toP (H), so the varia-
tional bound starts as an equality and any improvement in
the bound guarantees thatMPQ(V ) is a better model of the
data thanP (V ).

This procedure can be repeated recursively as many times
as desired, creating very deep hierarchical representations.
For example, a third RBM,R(U, X) can be used to model
the aggregated approximate posterior overU obtained by

R̃(U) =
∑

V

∑

H

Q(U |H)P (H |V )P̃ (V ). (21)

ProvidedR(U) is initialized to be the same asQ(U),
MQR(H) will be a better model of̃Q(H) thanQ(H), but
this does not mean thatMPQR(V ) is necessarily a better
model ofP̃ (V ) thanMPQ(V ). It does mean, however, that
learningR will improve the variational bound obtained by
usingP (H |V ) andQ(U |H) to approximate the posterior
distributionMPQR(U |V ).

There have been many previous attempts to train multilayer
models in a greedy, layer-by-layer way. These attempts
have not met with much success because they generally use
a directed model of the form

P (V ) =
∑

H

P (V |H)P (H). (22)

whereP (H) is a factorial prior overH that is defined by a
separate set of parameters. The use of a factorial prior en-
courages the learning to make the aggregated posterior over



H as factorial as possible and this leaves little structure to
be modeled by the next hidden layer. In an RBM, the pos-
terior overH is factorial for each possible value ofV , but
both the implicitly defined prior overH and the aggregated
posterior overH are typically very far from factorial, thus
leaving plenty of structure for the next layer to model.

4.2 Multilayer TRBM’s

We straightforwardly generalize the idea to our sequence
model. First we learn a TRBM, and then learn another
TRBM that learns to model the hidden states of the first
TRBM, which is precisely analogous to the way the RBM
was augmented.

Recall that we denote byV T
1 the set of all the visible time

frames and byHT
1 the set of all the hidden time frames.

Denote byP (V T
1 , HT

1 ) the distribution defined by the first
TRBM.

P (HT
1 |V T

1 ) is not factorial, so we approximate it by the
filtering distribution, Papprox(H

T
1 |V T

1 ). Let Q(HT
1 , UT

1 )
be a TRBM that we use to learn the aggregated approx-
imate filtering distribution

∑

V T

1

Papprox(H
T
1 |V T

1 )P̃ (V T
1 ),

where UT
1 is the sequence of the hidden variables of

the TRBM Q. The approximate posterior ofUT
1 ,

Qapprox(U
T
1 |HT

1 )Papprox(H
T
1 |V T

1 ) allows UT
1 to represent

higher-level features that can be computed on-line, since
neither Papprox nor Qapprox make use of future frames.
The resulting augmented generative model,MPQ(V T

1 ),
is one where we first sample fromQ(HT

1 ), then from
P (V T

1 |HT
1 ), so, as with the RBM’s,MPQ(V T

1 ) =
∑

HT

1

P (V T
1 |HT

1 )Q(HT
1 ). If we can initializeQ so that

Q(HT
1 ) = P (HT

1 ), then the augmented model is iden-
tical to P and has the same likelihood. By makingQ
learn the distribution of the hidden states ofP , which
is

∑

V Papprox(H
T
1 |V T

1 )P̃ (V T
1 ), we maximize the lower

bound

L ≥
〈

log Q
(

HT
1

)

P
(

V T
1 |HT

1

)〉

Papprox
+H (Papprox) , (23)

with respect toQ. This is very similar to the bound in equa-
tion 20, except for the use of the approximate posterior. At
the beginning of the optimization this bound is strictlyless
thanlog P (V T

1 ) even whenQ(HT
1 ) = P (HT

1 ), because an
approximate posterior is used. It could, therefore, remain
less thanlog P (V T

1 ). This is not the case for RBM’s, since
the exact posteriorP (H |V ) is easily computable, so the
lower bound is equal tolog P (V ) at the beginning of the
optimization.

Although our learning procedure maximizes a lower bound
that is initially smaller thanlog P (V T

1 ), it is very likely that
by the end of learning the bound will exceedlog P (V T

1 ). In
addition, since we use an approximate posterior during the
learning ofP (V T

1 ) (recall that inference is intractable in
our TRBM model), we are performing approximate max-

imization of a lower bound onlog P (V T
1 ) as well (this is

also equation 14; see subsection 2.4):

log P (V T
1 ) ≥

〈

log P
(

HT
1

)

P
(

V T
1 |HT

1

)〉

Papprox
+H (Papprox) ,

(24)
(the maximization is approximate in that we ignore the
effect that changing the approximate posterior has on the
bound), so by introducingQ the new lower bound of equa-
tion 23 will be equal to the bound in equation 24 ifQ is
properly initialized. Therefore, the lower bound in Eq. 23
will be greater than the lower bound in Eq. 24.

In order to initializeQ such thatQ(HT
1 ) = P (HT

1 ), it is
necessary forQ to have directed connections between its
visible variables (the variablesHT

1 ) so thatQ(HT
1 ) can rep-

resent every distributionP (HT
1 ) can. For RBM’s, learning

one hidden layer at a time works well even ifQ(H) is not
initialized to be equal toP (H) [7], so in our experiments
(see section 4.3), we did not initializeQ(HT

1 ) = P (HT
1 ).

We can also add further hidden layers in the same way as
is done for RBM’s and each time another layer is added we
should get a better generative model.

Notice that for the model TRBM-HH, for which
P (HT

1 |V T
1 ) is exactly factorial, the situation is signifi-

cantly better. Not only does it have an exact learning proce-
dure (if we ignore the approximations introduced by con-
trastive divergence), but its augmented modelalwayshas
a greater likelihood since the lower bound (Eq. 24) is
equal to the log likelihood ifQ(HT

1 ) = P (HT
1 ), because

Papprox(H
T
1 |V T

1 ) = P (HT
1 |V T

1 ).

A drawback of all of our TRBM models is thatP (V T
1 |HT

1 )
is not factorial because of the directed connections into
V . This makes it intractable to generate unbiased sam-
ples from the augmented models, so further approximations
must be used.

4.3 Results for multilevel models

We conducted experiments to determine whether adding an
extra hidden layer improves the quality of generative mod-
els. For each of TRBM, TRBM-VV, TRBM-VH, TRBM-
HH, we used the same type of TRBM with 400 hidden units
(and 200 visibles) to learn the aggregated posterior distribu-
tion of the hidden units in the first-level model. The learn-
ing parameters of all these models were the same as those
for the original TRBM’s and training lasted for 10,000 up-
dates. All of the generative models improved and they all
became better at denoising (see figure 3 for a typical de-
noising example, or the URL for many movies of denoising
and generation).

Despite the improved performance, we cannot generate ex-
actly from the improved multilevel models. Recall that
to generate, we first need to useQ(HT

1 , UT
1 ) to sample

the activities ofHT
1 and then we need to sample from



P (V T
1 |HT

1 ), which is the distribution oversequencesof
visible frames given a sequence of hidden frames. This
distribution is intractable for the same reasons inferenceis
intractable in our models, and we approximate it in a simi-
lar spirit.

The conditional distributionP (V T
1 |HT

1 ) is intractable to
sample from, but ifHt

1 andV t−1
1 are known and the rest of

the variablesHT
t+1 are not given, then generatingVt is easy.

Indeed, all the explaining away effects disappear and the
distribution overVt is factorial. We therefore use an “on-
line” approximation toP (V T

1 |HT
1 ), one where we go over

t from 1 to T , samplingVt givenHt
1 andV t−1

1 ignoring
HT

t+1.

5 Conclusions and discussion

In this paper we introduced a family of sequence models
that can learn good generative models in an online fashion.
We demonstrated that the learning works despite relying on
several approximations:

• The filtering distribution is approximate because it
uses a mean-field approximation to model the effects
of the previous filtering distribution on the current
one.

• There is no smoothing so the learning is using the fil-
tering distribution to approximate the posterior. This
means that it is ignoring the effect of changing param-
eters on the likelihood of the future observations.

• Even if the posterior was correct, the learning would
be following the approximate gradient of the con-
trastive divergence instead of the exact gradient of the
log likelihood.

We believe that there are two main reasons why the fam-
ily of models that we have described will work much bet-
ter than the more familiar family of directed models (i. e.
dynamic Bayes nets) for modeling video sequences at the
pixel level. The first is that our observation model leads
to a factorial posterior over the hidden variables at a sin-
gle timestep when all the past hidden variables are given.
The second is that we have an effective way to decompose
the task of learning a model with many hidden layers into
a series of one hidden layer tasks.
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