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Abstract

We show that the beta process is the de
Finetti mixing distribution underlying the In-
dian buffet process of [2]. This result shows
that the beta process plays the role for the
Indian buffet process that the Dirichlet pro-
cess plays for the Chinese restaurant process,
a parallel that guides us in deriving analogs
for the beta process of the many known ex-
tensions of the Dirichlet process. In partic-
ular we define Bayesian hierarchies of beta
processes and use the connection to the beta
process to develop posterior inference algo-
rithms for the Indian buffet process. We also
present an application to document classifi-
cation, exploring a relationship between the
hierarchical beta process and smoothed naive
Bayes models.

1 Introduction

Mixture models provide a well-known probabilistic ap-
proach to clustering in which the data are assumed
to arise from an exchangeable set of choices among
a finite set of mixture components. Dirichlet process
mixture models provide a nonparametric Bayesian ap-
proach to mixture modeling that does not require the
number of mixture components to be known in ad-
vance [1]. The basic idea is that the Dirichlet process
induces a prior distribution over partitions of the data,
a distribution that is readily combined with a prior dis-
tribution over parameters and a likelihood. The distri-
bution over partitions can be generated incrementally
using a simple scheme known as the Chinese restaurant
process.

As an alternative to the multinomial representation
underlying classical mixture models, factorial models
associate to each data point a set of latent Bernoulli

variables. The factorial representation has several ad-
vantages. First, the Bernoulli variables may have a
natural interpretation as “featural” descriptions of ob-
jects. Second, the representation of objects in terms
of sets of Bernoulli variables provides a natural way
to define interesting topologies on clusters (e.g., as the
number of features that two clusters have in common).
Third, the number of clusters representable with m
features is 2m, and thus the factorial approach may be
appropriate for situations involving large numbers of
clusters.

As in the mixture model setting, it is desirable to con-
sider nonparametric Bayesian approaches to factorial
modeling that remove the assumption that the car-
dinality of the set of features is known a priori. An
important first step in this direction has been pro-
vided by Griffiths and Ghahramani [2], who defined
a stochastic process on features that can be viewed
as a factorial analog of the Chinese restaurant pro-
cess. This process, referred to as the Indian buffet
process, involves the metaphor of a sequence of cus-
tomers tasting dishes in an infinite buffet. Let Zi be a
binary vector where Zi,k = 1 if customer i tastes dish
k. Customer i tastes dish k with probability mk/i,
where mk is the number of customers that have previ-
ously tasted dish k; that is, Zi,k ∼ Ber(mk/i). Having
sampled from the dishes previously sampled by other
customers, customer i then goes on to taste an ad-
ditional number of new dishes determined by a draw
from a Poisson(α/i) distribution. Modulo a reordering
of the features, the Indian buffet process can be shown
to generate an exchangeable distribution over binary
matrices (that is, P (Z1, . . . Zn) = P (Zσ(1), . . . Zσ(n))
for any permutation σ).

Given such an exchangeability result, it is natural to
inquire as to the underlying distribution that renders
the sequence conditionally independent. Indeed, De
Finetti’s theorem states that the distribution of any



infinitely exchangeable sequence can be written

P (Z1, . . . Zn) =
∫ [

n∏

i=1

P (Zi|B)

]
dP (B),

where B is the random element that renders the vari-
ables {Zi} conditionally independent and where we
will refer to the distribution P (B) as the “de Finetti
mixing distribution.” For the Chinese restaurant pro-
cess, the underlying de Finetti mixing distribution is
known—it is the Dirichlet process. As this result sug-
gests, identifying the de Finetti mixing distribution
behind a given exchangeable sequence is important; it
greatly extends the range of statistical applications of
the exchangeable sequence.

In this paper we make the following three contribu-
tions:

1. We identify the de Finetti mixing distribution be-
hind the Indian buffet process. In particular, in
Sec. 4 we show that this distribution is the beta
process. We also show that this connection mo-
tivates a two-parameter generalization of the In-
dian buffet process proposed in [3]. While the
beta process has been previously studied for its
applications in survival analysis, this result shows
that it is also the natural object of study in non-
parametric Bayesian factorial modeling.

2. In Sec. 5 we exploit the link between the beta
process and the Indian buffet process to provide
a new algorithm to sample beta processes.

3. In Sec. 6 we define the hierarchical beta process,
an analog for factorial modeling of the hierarchical
Dirichlet process [11]. The hierarchical beta pro-
cess makes it possible to specify models in which
features are shared among a number of groups.
We present an example of such a model in an
application to document classification in Sec. 7,
where we also explore the relationship of the hi-
erarchical beta process to naive Bayes models.

2 The beta process

The beta process was defined by Hjort [4] for appli-
cations in survival analysis. In those applications,
the beta process plays the role of a distribution on
functions (cumulative hazard functions) defined on the
positive real line. In our applications, the sample paths
of the beta process need to be defined on more general
spaces. We thus develop a nomenclature that is more
suited to these more general applications.

A positive random measure B on a space Ω (e.g.,
R) is a Lévy process, or independent increment pro-
cess, if the masses B(S1), . . . B(Sk) assigned to disjoint
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Figure 1: Top. A measure B sampled from a beta
process (blue), along with its corresponding cumula-
tive distribution function (red). The horizontal axis
is Ω, here [0, 1]. The tips of the blue segments are
drawn from a Poisson process with base measure the
Lévy measure. Bottom. 100 samples from a Bernoulli
process with base measure B, one per line. Samples
are sets of points, obtained by including each point ω
independently with probability B({ω}).

subsets S1, . . . Sk of Ω are independent1. The Lévy-
Khinchine theorem [5, 8] implies that a positive Lévy
process is uniquely characterized by its Lévy measure
(or compensator), a measure on Ω× R+.

Definition. A beta process B ∼ BP(c,B0) is a pos-
itive Lévy process whose Lévy measure depends on
two parameters: c is a positive function over Ω that
we call the concentration function, and B0 is a fixed
measure on Ω, called the base measure. In the special
case where c is a constant it will be called the concen-
tration parameter. We also call γ = B0(Ω) the mass
parameter.

If B0 is continuous, the Lévy measure of the beta pro-
cess is

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω) (1)

on Ω× [0, 1]. As a function of p, it is a degenerate beta
distribution, justifying the name. ν has the following
elegant interpretation. To draw B ∼ BP(c,B0), draw
a set of points (ωi, pi) ∈ Ω× [0, 1] from a Poisson pro-
cess with base measure ν (see Fig. 1), and let:

B =
∑

i

piδωi (2)

where δω is a unit point mass (or atom) at ω. This

1Positivity is not required to define Lévy processes but
greatly simplifies their study, and positive Lévy processes
are sufficient here. On Ω = R, positive Lévy processes are
also called subordinators.



implies B(S) =
∑

i:ωi∈S

pi for all S ⊂ Ω.

As this representation shows, B is discrete and the
pairs (ωi, pi) correspond to the location ωi ∈ Ω and
weight pi ∈ [0, 1] of its atoms. Since ν(Ω× [0, 1]) = ∞
the Poisson process generates infinitely many points,
making (2) a countably infinite sum. Nonetheless, as
shown in the appendix, its expectation is finite if B0

is finite.

If B0 is discrete2, of the form B0 =
∑

i qiδωi , then B
has atoms at the same locations B =

∑
i piδωi

with

pi ∼ Beta(c(ωi)qi, c(ωi)(1− qi)). (3)

This requires qi ∈ [0, 1]. If B0 is mixed discrete-
continuous, B is the sum of the two independent con-
tributions.

3 The Bernoulli process

Definition. Let B be a measure on Ω. We define
a Bernoulli process with hazard measure B, written
X ∼ BeP(B), as the Lévy process with Lévy measure

µ(dp, dω) = δ1(dp)B(dω). (4)

If B is continuous, X is simply a Poisson process with
intensity B: X =

∑N
i=1 δωi where N ∼ Poi(B(Ω))

and ωi are independent draws from the distribution
B/B(Ω). If B is discrete, of the form B =

∑
i piδωi ,

then X =
∑

i biδωi where the bi are independent
Bernoulli variables with the probability that bi = 1
equal to pi. If B is mixed discrete-continuous, X is
the sum of the two independent contributions.

In summary, a Bernoulli process is similar to a Poisson
process, except that it can give weight at most 1 to
singletons, even if the base measure B is discontinuous,
for instance if B is itself drawn from a beta process.

We can intuitively think of Ω as a space of potential
“features,” and X as an object defined by the features
it possesses. The random measure B encodes the prob-
ability that X possesses each particular feature. In the
Indian buffet metaphor, X is a customer and its fea-
tures are the dishes it tastes.

Conjugacy. Let B ∼ BP(c,B0), and let Xi|B ∼
BeP(B) for i = 1, . . . n be n independent Bernoulli
process draws from B. Let X1...n denote the set
of observations {X1, . . . , Xn}. Applying theorem 3.3
of Kim [6] to the beta and Bernoulli processes, the
posterior distribution of B after observing X1...n is still

2The Lévy measure still exists, but is not as
useful as in the continuous case. ν(dp, dω) =∑

i Beta(c(ωi)qi, c(ωi)(1− qi))(dp)δωi(dω).

a beta process with modified parameters:

B|X1...n ∼ BP

(
c + n,

c

c + n
B0 +

1
c + n

n∑

i=1

Xi

)
. (5)

That is, the beta process is conjugate to the Bernoulli
process. This result can also be derived from Corol-
lary 4.1 of Hjort [4].

4 Connection to the Indian buffet
process

We now present the connection between the beta pro-
cess and the Indian buffet process. The first step is to
marginalize out B to obtain the marginal distribution
of X1. Independence of X1 on disjoint intervals is pre-
served, so X1 is a Lévy process. Since it gives mass
0 or 1 to singletons its Lévy measure is of the form
(4), so X1 is still a Bernoulli process. Its expectation
is E(X1) = E(E(X1|B)) = E(B) = B0, so its hazard
measure is B0.3

Combining this with Eq. (5) and using
P (Xn+1|X1...n) = EB|X1...n

P (Xn+1|B) gives us
the following formula, which we rewrite using the
notation mn,j , the number of customers among X1...n

having tried dish ωj :

Xn+1|X1...n ∼ BeP

(
c

c + n
B0 +

1
c + n

n∑

i=1

Xi

)

= BeP


 c

c + n
B0 +

∑

j

mn,j

c + n
δωj


 .(6)

To make the connection to the Indian buffet process
let us first assume that c is a constant and B0 is contin-
uous with finite total mass B0(Ω) = γ. Observe what
happens when we generate X1...n sequentially using
Eq. (6). Since X1 ∼ BeP(B0) and B0 is continuous, X1

is a Poisson process with intensity B0. In particular,
the total number of features of X1 is X1(Ω) ∼ Poi(γ).
This corresponds to the first customer trying a Poi(γ)
number of dishes.

Separating the base measure of Eq. (6) into its contin-
uous and discrete parts, we see that Xn+1 is the sum of
two independent Bernoulli processes: Xn+1 = U + V
where U ∼ BeP(

∑
j

mn,j

c+n δωj ) has an atom at ωj

(tastes dish j) with independent probability
mn,j

c + n
and

V ∼ BeP( c
c+nB0) is a Poisson process with intensity

c
c+nB0, generating a Poi

(
cγ

c + n

)
number of new fea-

tures (new dishes).

3We show that E(B) = B0 in the Appendix.



Figure 2: Draws from a beta process with concentra-
tion c and uniform base measure with mass γ, as we
vary c and γ. For each draw, 20 samples are shown
from the corresponding Bernoulli process, one per line.

This is a two-parameter (c, γ) generalization of the
Indian buffet process, which we recover when we let
(c, γ) = (1, α). Griffiths and Ghahramani propose
such an extension in [3]. The customers together try
a Poi(nγ) number of dishes, but because they tend to
try the same dishes the number of unique dishes is only
Poi

(
γ

∑n−1
i=0

c
c+i

)
, roughly

Poi
(

γ + γc log
(

c + n

c + 1

))
. (7)

This quantity becomes Poi(γ) if c → 0 (all customers
share the same dishes) or Poi(nγ) if c →∞ (no shar-
ing), justifying the names concentration parameter for
c and mass parameter for γ. The effect of c and γ is
illustrated in Fig. 2.

5 An algorithm to generate beta
processes

Eq. (5), when n = 1 and B0 is continuous,
shows that B|X1 is the sum of two independent
beta processes F1 ∼ BP

(
c + 1, 1

c+1X1

)
and G1 ∼

BP
(
c + 1, c

c+1B0

)
. In particular, this lets us sam-

ple B by first sampling X1, which is a Poisson process
with base measure B0, then sampling F1 and G1.

Let X1 =
∑K1

i=1 δωj . Since the base measure of F1

is discrete we can apply Eq. (3), with c(ωi) = c + 1
and qi = 1/(c + 1). We get F1 =

∑K1
j=1 pjδωj where

pj ∼ Beta(1, c).

G1 has concentration c+1 and mass cγ/(c+1). Since
its base measure is continuous, we can further decom-
pose it via Eq. (5) into two independent beta processes

F2 and G2. By induction we get, for any n

B
d= B̂n + Gn where B̂n =

n∑

i=1

Fi

Since limn→∞ B̂n
d= B, we can use B̂n as an approx-

imation of B. The following iterative algorithm con-
structs B̂n starting with B̂0 = 0. At each step n ≥ 1:

• sample Kn ∼ Poi( cγ
c+n−1 ),

• sample Kn new locations ωj from 1
γ B0 indepen-

dently,

• sample their weight pj ∼ Beta(1, c + n− 1) inde-
pendently,

• B̂n = B̂n−1 +
∑Kn

j=1 pjδωj
.

The expected mass added at step n is E(Fn(Ω)) =
cγ

(c+n)(c+n−1) and the expected remaining mass after
step n is E(Gn(Ω)) = cγ

c+n .

Other algorithms exist to build approximations of beta
processes. The Inverse Levy Measure algorithm of
Wolpert and Ickstadt [12] is very general and can gen-
erate atoms in decreasing order of weight, but requires
inverting the incomplete beta function at each step,
which is computationally intensive. The algorithm of
Lee and Kim [7] bypasses this difficulty by approximat-
ing the beta process by a compound Poisson process
but requires a fixed approximation level. This means
that their algorithm only converges in distribution.

Our algorithm is a simple and efficient alternative. It
is closely related to the stick-breaking construction of
Dirichlet processes [10], in that it generates the atoms
of B in a size-biased order.

6 The hierarchical beta process

The parallel with the Dirichlet process leads us to con-
sider hierarchies of beta processes in a manner akin to
the hierarchical Dirichlet processes of [11]. To mo-
tivate our construction, let us consider the following
application to document classification (to which we re-
turn in Sec. 7).

Suppose that our training data X is a list of docu-
ments, where each document is classified by one of n
categories. We model a document by the set of words
it contains. In particular we do not take the num-
ber of appearances of each word into account. We
assume that document Xi,j is generated by including
each word ω independently with a probability pj

ω spe-
cific to category j. These probabilities form a discrete
measure Aj over the space of words Ω, and we put a
beta process BP(cj , B) prior on Aj .
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Figure 3: Left. Graphical model for the hierarchical
beta process. Right. Example draws from this model
with c0 = cj = 1 and B0 uniform on [0, 1] with mass
γ = 10. From top to bottom are shown a sample for
B0, Aj and 25 samples X1,j , . . . X25,j .

If B is a continuous measure, implying that Ω is infi-
nite, with probability one the Aj ’s will share no atoms,
an undesirable result in the practical application to
documents. For categories to share words, B must be
discrete. On the other hand, B is unknown a priori, so
it must be random. This suggests that B should itself
be generated as a realization of a beta process. We
thus put a beta process prior BP(c0, B0) on B. This
allows sharing of statistical strength among categories.

In summary we have the following model, whose
graphical representation is shown in Fig. 3.

Baseline B ∼ BP(c0, B0)
Categories Aj ∼ BP(cj , B) ∀ j ≤ n (8)
Documents Xi,j ∼ BeP(Aj) ∀ i ≤ nj

To classify a new document Y we need to compare its
probability under each category: P (Xnj+1,j = Y |X)
where Xnj+1,j is a new document in category j. The
next two subsections give a Monte Carlo inference al-
gorithm to do this for hierarchies of arbitrarily many
levels.

6.1 The discrete part

Since all elements of our model are Lévy processes, we
can partition the space Ω and perform inference sep-
arately on each part. We choose the partition that
has cells {ω} for each of the features ω that have been
observed at least once, and has a single (large) cell
containing the rest of the space. We first consider in-
ference over the singletons {ω}, and return to inference
over the remaining cell in the following subsection.

Inference for {ω} deals only with the values b0 =
B0({ω}), b = B({ω}), aj = Aj({ω}) and xij =

Xi,j({ω}). Let x denote the set of all xij and let a
denote the set of all aj . These variables form a slice
of the hierarchy of their respective processes, and they
have the following distributions:

b ∼ Beta(c0b0, c0(1− b0))
aj ∼ Beta(cjb, cj(1− b)) (9)
xij ∼ Ber(aj).

Strictly speaking, if B0 is continuous, b0 = 0 and so the
prior over b is improper. We treat this by considering
b0 to be non-zero and taking the limit as b0 approaches
zero. This is justified under the limit construction of
the beta process (see Theorem 3.1 of [4]).

For a fixed value of b, we can average over a using con-
jugacy. To average over b, we use rejection sampling;
we sample b from an approximation of its conditional
distribution and correct for the difference by rejection.

Let mj =
∑nj

i=1 xij . Marginalizing out a in Eq. (9) and
using Γ(x + 1) = xΓ(x), the log posterior distribution
of b given x is (up to a constant):

f(b) = (c0b0 − 1) log(b) + (c0(1− b0)− 1) log(1− b)

+
n∑

j=1

mj−1∑

i=0

log(cjb + i)

+
n∑

j=1

nj−mj−1∑

i=0

log(cj(1− b) + i). (10)

This posterior is log concave and has a maximum at
b∗ ∈ (0, 1) which we can obtain by binary search. Us-
ing the concavity of log(cjb+i) for i > 0, log(cj(1−b)+
i) for i ≥ 0 and log(1− b) tangentially at b∗ we obtain
the following upper bound on f (up to a constant):

g(b) = (α− 1) log(b)− b/β

where α = c0b0 +
n∑

j=1

1mj>0

and
1
β

=
c0(1− b0)− 1

1− b∗
−

n∑

j=1

mj−1∑

i=1

cj

cjb∗ + i

+
n∑

j=1

nj−mj−1∑

i=0

cj

cj(1− b∗) + i
.

g is, up to a constant, the log density of a Gamma(α, β)
variable, which we can use as a rejection sampling pro-
posal distribution. Setting u = 1− b in Eq. (10) main-
tains the form of f , only exchanging the coefficients.
Therefore we can choose instead to approximate 1− b
by a gamma variable. Among these two possible ap-
proximations we choose the one with the lowest vari-
ance αβ2. In the experiments of Sec. 7 the acceptance



rate was above 90%, showing that g is a good approx-
imation of f .

This algorithm gives us samples from P (b|x). In par-
ticular, with T samples, b1, . . . bT , we can compute the
following approximation:

P (xnj+1,j = 1|x) = E(E(aj |b, x)|x)

=
cjE(b|x) + mj

cj + nj

where E(b|x) ≈ 1
T

∑
t

bt.

In the end if we want samples of a we can obtain them
easily. We can sample from the conditional distribu-
tion of aj which is, by conjugacy:

aj |b, x ∼ Beta (cjb + mj , cj(1− b) + nj −mj) .

6.2 The continuous part

Let’s now look at the rest of the space, where all obser-
vations are equal to zero. We approximate B on that
part of the space by B̂N obtained after N steps of the
algorithm of Sec. 5. B̂N consists of Kk ∼ Poi( cγ

c+k−1 )
atoms at each level k = 1, . . . N . For each atom (ω, b)
out of the Kk atoms of level k, we have the following
hierarchy. It is similar to Eq. (9) except that it refers
to a random location ω chosen in size-biased order.

b ∼ Beta(1, c0 + k − 1))
aj ∼ Beta(cjb, cj(1− b)) (11)
xij ∼ Ber(aj)

We want to infer the distribution of the next observa-
tion Xnj+1,j from group (or category) j, given that all
other observations from all other groups are zero, that
is X = 0. The locations of the atoms of Xnj+1,j will
be B0/γ distributed so we only need to know the dis-
tribution of Xnj+1,j(Ω), the number of atoms. X = 0
implies that all levels k have generated zero observa-
tions. Since each level is independent, we can reason
on each level separately, where we want the posterior
distribution of Kk and of the variables in Eq. (11).

Let x = {xij |j ≤ n, i ≤ nj} and a = {aj |j ≤ n}.
Let Pk be the probability over b, a and x defined by
Eq. (11) and let qk = Pk(x = 0). The posterior distri-
bution of Kk is

P (Kk = m|X = 0) ∝ qm
k Poi

(
c0γ

c0 + k − 1

)
(m)

so Kk|X = 0 ∼ Poi
(

c0γ

c0 + k − 1
qk

)
.

Let pk = Pk(xnj+1,j = 1, x = 0), then Pk(xnj+1,j =
1|x = 0) = pk/qk. Let Dk be the number of atoms of

Xnj+1,j from level k

Dk ∼ Poi
(

c0γ

c0 + k − 1
qk

pk

qk

)
= Poi

(
c0γ

c0 + k − 1
pk

)
.

Adding the contributions of all levels we get the fol-
lowing result (which is exact for N = ∞):

Xnj+1,j(Ω) ∼ Poi

(
N∑

k=1

c0γ

c0 + k − 1
pk

)
.

Using T samples bk,1, . . . bk,T from Eq. (11) we can
compute pk:

Let r(b) = Ek

(
ajt

∏

j′
(1− aj′t)nj′

∣∣∣∣b
)

=
cjb

cj + nj

n∏

j′=1

Γ(cj′)Γ(cj′(1− b) + nj′)
Γ(cj′(1− b))Γ(cj′ + nj′)

then pk = Ek [r(b)] ≈ 1
T

T∑
t=1

r(bk,t). (12)

6.3 Larger hierarchies

We now extend model Eq. (8) to larger hierarchies such
as:

Baseline B ∼ BP(c0, B0)
Categories Aj ∼ BP(cj , B) ∀ j ≤ n

Subcategories Sl,j ∼ BP(cl,j , Aj) ∀ l ≤ nj

Documents Xi,l,j ∼ BeP(Sl,j) ∀ i ≤ nl,j

To extend the algorithm of Sec. 6.2 we draw samples
of a from Eq. (11) and replace b by a in Eq. (12).
Extending the algorithm of Sec. 6.1 is less immediate
since we can no longer use conjugacy to integrate out
a. The Markov chain must now instantiate a and b.
Sec. 6.1 lets us sample a|b, x, leaving us with the task of
sampling b|b0, a. Up to a constant the log conditional
probability of b is

f2(b) = (c0b0 − 1) log(b) + (c0(1− b0)− 1) log(1− b)

−
n∑

j=1

[log(Γ(cjb)) + log(Γ(cj(1− b)))]

+
n∑

j=1

cjb log(aj/(1− aj)). (13)

Let s(x) = − log(Γ(x)) − log x. Since s is concave, f2

itself is concave with a maximum b∗ in (0, 1) which we
can obtain by binary search. Bounding s and log(1−b)
by their tangent yields the following upper bound g2

of f2 (omitting the constant):

g2(b) = (α− 1) log(b)− b/β where



α = c0b0 + n

1
β

=
c0(1− b0)− n− 1

1− b∗
+

n

b∗
−

n∑

j=1

cj log
(

aj

1− aj

)

+
n∑

j=1

[cjψ(cjb
∗)− cjψ(cj(1− b∗))] .

We can use this Gamma(α, β) variable, or the one ob-
tained by setting u = 1 − b in Eq. (13) as a proposal
distribution as in Sec. 6.1. The case of b|b0, a is the
general case for nodes of large hierarchies, so this al-
gorithm can handle hierarchies of arbitrary depth.

7 Application to document
classification

Naive Bayes is a very simple yet powerful probabilistic
model used for classification. It models documents as
lists of features, and assumes that features are inde-
pendent given the category. Bayes’ rule can then be
used on new documents to infer their category. This
method has been used successfully in many domains
despite its simplistic assumptions.

Naive Bayes does suffer however from several known
shortcomings. Consider a binary feature ω and let pj,ω

be the probability that a document from category j has
feature ω. Estimating pj,ω as its maximum likelihood
mj,ω/nj,ω leads to many features having probability 0
or 1, making inference impossible. To prevent such ex-
treme values, pj,ω is generally estimated with Laplace
smoothing, which can be interpreted as placing a com-

mon Beta(a, b) prior on pj,ω: p̂j,ω =
mj,ω + a

nj,ω + a + b
.

Laplace smoothing also corrects for unbalanced train-
ing data by imposing greater smoothing on the proba-
bilities of small categories, for which we have low con-
fidence. Nonetheless, Laplace smoothing can lead to
paradoxes with unbalanced data [9]. Consider the situ-
tation where most categories u have enough data to
show with confidence that pu,ω is close to a very small
value p̄. The impact on classification of pj,ω is relative
to pu,ω for u 6= j so if category j has little data, we
expect pj,ω to be close to p̄ for it to have little im-
pact. Laplace smoothing however brings it close to

a
a+b , very far from p̄, where it will have an enormous
impact. This inconsistency makes rare features hurt
performance, and leads to the practice of combining
naive Bayes with feature selection, potentially wasting
information.

We propose instead to use a hierarchical beta process
(hBP) as a prior over the probabilities pj,ω. Such a hi-
erarchical Bayesian model allows sharing among cate-
gories by shrinking the maximum likelihood probabil-

ities towards each other rather than towards a
a+b .

Such an effect could in principle be achieved using a
finite model with a hierarchical beta prior; however,
such an approach would not permit new features that
do not appear in the training data. The model in
Eq. (8) allows the number of known features to grow
with data, and the number of unknown features to
serve as evidence for belonging to a poorly known cat-
egory, one for which we have little training data. A
hBP gives a consistent prior for varying amounts of
data, whereas Laplace smoothing amounts to chang-
ing the prior every time a new feature appears.

We compared the performance of hBP and naive
Bayes on 1000 posts from the 20 Newsgroups dataset4,
grouped into 20 categories. We chose an unbalanced
dataset, with the number of documents per category
decreasing linearly from 100 to 2. We randomly se-
lected 40% of these papers as a test set for a classifi-
cation task. We encoded the documents Xij as a set
of binary features representing the presence of words.
All words were used without any pruning or feature
selection.

We used the model in Eq. (8), setting the parame-
ters c0, γ and cj a priori in the following way. Since
we expect a lot of commonalities between categories,
with differences concentrated on a few words only,
we take cj to be small. Therefore documents drawn
from Eq. (8) are close to being drawn from a common
BP(c0, γ) prior, under which the expected number of
features per document is γ. Estimating this value from
the data gives γ = 150. Knowing γ we can solve for c0

by matching the expectation of Eq. (7) to the number
of unique features N in the data. This can be done by
interpreting Eq. (7) as a fixed point equation:

c0 ←− F − γ

γ
(log ((c0 + n)/0 + 1)))−1

leading to c0 = 70. Finally we selected the value of cj

by cross-validation on a held-out portion of the train-
ing set, giving us cj = 10−4.

We then ran our Monte Carlo inference procedure and
classified each document Y of the test set by finding
the class for which P (Xnj+1,j = Y |X) was highest,
obtaining 58% accuracy.

By comparison, we performed a grid search over
the space of Laplace smoothing parameters a, b ∈
[10−11, 107] for the best naive Bayes model. For a =
10−8 and b = 107, naive Bayes reached 50% accuracy.

The classification of documents is often tackled with
a multinomial models under the bag-of-words assump-

4The data are available at
http://people.csail.mit.edu/jrennie/20Newsgroups/.



tion. The advantage of a feature-based model is that
it becomes natural to add other non-text features such
as “presence of a header,” “the text is right-justified,”
etc. Since the hBP handles rare features appropriately,
we can safely include a much larger set of features than
would be possible for a naive Bayes model.

8 Conclusions

In this paper we have shown that the beta process—
originally developed for applications in survival
analysis—is the natural object of study for nonpara-
metric Bayesian factorial modeling. Representing data
points in terms of sets of features, factorial models
provide substantial flexibility relative to the multino-
mial representations associated with classical mixture
models. We have shown that the beta process is the
de Finetti mixing distribution underlying the Indian
buffet process, a distribution on sparse binary matri-
ces. This result parallels the relationship between the
Dirichlet process and the Chinese restaurant process.

We have also shown that the beta process can be ex-
tended to a recursively-defined hierarchy of beta pro-
cesses. This representation makes it possible to de-
velop nonparametric Bayesian models in which un-
bounded sets of features can be shared among multiple
nested groups of data.

Compared to the Dirichlet process, the beta process
has the advantage of being an independent increments
process (Brownian motion is another example of an
independent increments process). However, some of
the simplifying features of the Dirichlet process do
not carry over to the beta process, and in particu-
lar we have needed to design new inference algorithms
for beta process and hierarchical beta process mixture
models rather than simply borrowing from Dirichlet
process methods. Our inference methods are elemen-
tary and additional work on inference algorithms will
be necessary to fully exploit beta process models.

9 Appendix

Hjort [4] derives the following moments for any set
S ⊂ Ω. If B0 is continuous,

EB(S) =
∫

S×[0,1]

bν(dω, db) = B0(S).

If B0 is discrete:

EB(S) =
∑

i:ωi∈S

E(bi)δωi =
∑

i:ωi∈S

b0δωi = B0(S)

and V ar B(S) =
∫

S

B0(dω)(1−B0(dω))
c(ω) + 1

.

Thus despite being discrete, B can be viewed as an
approximation of B0, with fluctuations going to zero
as c →∞.
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