Efficient large margin semisupervised learning*

Junhui Wang
School of Statistics
University of Minnesota
Minneapolis, MN 55455

Abstract

In classification, semisupervised learn-
ing involves a large amount of unla-
beled data with only a small number of
labeled data. This imposes great chal-
lenge in that the class probability given
input can not be well estimated through
labeled data alone. To enhance pre-
dictability of classification, this article
introduces a large margin semisuper-
vised learning method constructing an
efficient loss to measure the contribu-
tion of unlabeled instances to classifi-
cation. The loss is iteratively refined,
based on which an iterative scheme is
derived for implementation. The pro-
posed method is examined for two large
margin classifiers: support vector ma-
chines and -learning. Our theoreti-
cal and numerical analyses indicate that
the method achieves the desired objec-
tive of delivering higher performances
over any other method initializing the
scheme.

* This research is supported by NSF grants IIS-
0328802 and DMS-0604394.

1. Introduction

Semi-supervised learning occurs in the context of
classification, where only a small number of la-
beled data is available but with a large amount
of unlabeled data, particularly when it is costly

to query labeled data. For instance, in web-
page classification, a small number of manu-
ally labeled texts (web-pages) is usually avail-
able because of impracticability of manually la-
beling, together with a huge amount of unlabeled
texts (web-pages) because of the speed of collect-
ing texts by a machine; c.f., Blum and Mitchell
(1998). This occurs also in spam email detection
and face recognition, c.f., Baluja (1998); Amini
and Gallinari (2003); Balcan, et al. (2005). In a
situation as such, the primary goal is how to en-
hance predictability of classification by utilizing
unlabeled and labeled data jointly. As a result,
a machine’s generalization ability is enhanced by
integrating humans’ intelligence with machine’s
processing speed.

In semisupervised learning, a labeled sample
(XL YY) = {(X;,Y:)i,} is observed accord-
ing to an unknown distribution P(z,y), to-
gether with an independent unlabeled sample
X* = {X;}7,,1 according to distribution
P(x), where Y = =1 indicates labeling, n =
n; + ny, and n; is usually much smaller than n,,.
Here P(z) may not be necessarily the marginal
distribution of P(x,y).

Two major approaches have been proposed in the
literature; one is distributional while the other
is margin-based. For a distributional approach,
some assumptions are made to relate the marginal
distribution of X to the conditional distribution
P(Y = 1|X = z). Distributional approaches
include, among others, co-training (Blum and
Mitchell, 1998), the EM method (Nigam, Mc-



Callum, Thrun and Mitchell, 1998), the bootstrap
method (Collin and Singer, 1999), the cluster-
and-label method (Dara, Kremer and Stacey,
2002), Bayesian Network (Cozman, Cohen and
Cirelo, 2003), Gaussian random fields (Zhu, Laf-
ferty and Ghahramani, 2003), and discriminative-
generative models (Ando and Zhang, 2004). For
a margin approach, a concept of margins is used
in the form of regularization, including Transduc-
tive SVM (TSVM, Vapnik, 1998; Chapelle and
Zien, 2005; Astorino and Fuduli, 2005; Wang,
Shen and Pan, 2006) and Wang and Shen (2006).

The distributional approach makes various as-
sumptions to relate P(Y = 1|X = z) to the
marginal distribution of X for an improvement
to occur when the assumptions are met. How-
ever, these assumptions are usually not verifiable
or satisfiable in practice. As a consequence, any
departure from the assumptions is likely to de-
grade the “alleged” gain, and may even perform
worse than its supervised counterpart; c.f., Zhang
and Oles (2000).

The margin approach makes no distributional as-
sumptions, utilizing unlabeled data directly to ap-
proximate the classification boundary. However,
all existing margin methods use the unlabeled
data in a weak way that relies purely on the no-
tion of separation.

This article develops a large margin semisuper-
vised learning method, with most effort focused
towards utilizing unlabeled data more efficiently
to deliver high performance of classification. To-
ward this end, we construct an efficient loss for
unlabeled data by incorporating the knowledge
of classification. This allows the loss to provide
information about the optimal Bayes rule when
a reasonably good initial estimate of the condi-
tional class probability is given. On this basis,
an iterative scheme is developed for implement.
This is an analogy of Fisher’s efficient scoring
method with a consistent initial estimate, yield-
ing an improvement over the initial estimate. The
proposed method has been implemented for sup-
port vector machines (SVM) and v-learning. Nu-
merical analysis indicates that the method im-

prove better than or the same as the state-of-the-
art methods.

This article is organized in five sections. Sec-
tion 2 introduces the proposed semisupervised
learning method. Section 3 develops an iterative
algorithm. Section 4 presents some numerical
examples, followed by a discussion in Section 5.
The appendix contains technical proofs.

2. Methodology
2.1 Large margin classification

We begin with our discussion on classification
with labeled data (X, Y;);", alone. In the linear
case, given a class of linear decision functions F
of the form f(z) = Wiz + wso = (1,27 )wy, a
cost function

ny
CZ Ly f(x:)) + J(f)

i=1
is minimized over f € F to obtain the min-
imizer f yielding a classifier Sign(f). Here
J(f) = ||Jwy||?/2 is the reciprocal of the Ly geo-
metric margin, and L(-) is a margin loss defined
by functional margin z = yf(x). In the nonlin-
ear case, a kernel K (-,-) mapping from S x S
to R! is introduced to give a flexible represen-
tation: f;(x) = > i, o;; K(x,2;) + b;. For this
reason, it is also referred to as kernel-based learn-
ing, where the reproducing kernel Hilbert spaces
(RKHS) are useful, c.f., Gu (2000) and Wahba
(1990).

Different margin losses correspond to different
learning methodologies. Margin losses include,
among others, the hinge loss L(z) = (1 —z) for
SVM with its variants L(z) = (1—2)% forg > 1;
c.f., Lin (2002); the v-losses L(z) = 1(z), with
¥(z) = 1-Sign(z)if z > lorz < 0,and 2(1—=2)
otherwise, c.f., Shen, Tseng, Zhang and Wong
(2003), the logistic loss V(z) = log(l 4 e™%),
c.f., Zhu and Hastie (2005); the p-hinge loss
L(z) = (p—z) 4 for nu-SVM (Scholkopf, Smola,
Williamson and Bartlett, 2000) with p > 0 need
to be optimized; the sigmoid loss L(z) = 1 —
tanh(cz); c.f., Mason, et al. (2000). A margin



loss L(z) is said to be large margin if L(z) is non-
increasing in z, penalizing small margin values.

2.2 Construction of cost function for unlabeled
data

In margin classification (1), f* =
argmin,.» EL(Y f(X)) is the target and is
estimated from labeled data.  In presence
of a large amount of unlabeled data, the
focus is how to leverage unlabeled data to
improve upon (1). Toward this end, we con-
struct a margin loss U (mapping: R' — R!)
to measure the performance of unlabeled
data with respect to estimating f* for clas-
sification.  Ideally, such a loss U needs to
satisfy a requirement argmin ;. EU(f(X)) =
argmin,.» EL(Y f(X)). To construct a loss
satisfying this requirement, we seek the optimal
loss U from a class of candidate losses of the
form 7T'(f(x)), which minimizes the L,-distance
between the target classification loss L(yf(x))
and T'(f(z)). The expression of this optimal loss
U is given in Lemma 1.

Lemma 1 For any marginloss L(z),
argminE(L(Y f(X)) — T(f(X))*
= p(@)L(f(x)) + (1 = p(x)) L= f(2)),

where p(z) = PEY = 11X = «z).
Moreover, argmin,.r E(L(Y f(X))|X) =
argmin . EL(Y f(X)).

This optimal loss depends on unknown p that is
a function of f* depending on L and F. For in-
stance, when L(y f(z)) = log(1 +exp(—yf(x)))
is the logistic loss for Import Vector Mahince
(Zhu and Hastie, 2004), p = exp(f*)/(1 +
exp(f*)) provided that F is sufficiently rich. In
the literature, several methods have been pro-
posed to estimate the relationship between p =
p(f) and f for large margin classification, in-
cluding Platt (1999) and Wang, Shen and Liu
(2006). For construction, we define our loss as
U(f(x)) = pa)L(f(x)) + (1 — p()) L(—f(x))

with p in the optimal loss being replaced by its

estimate p to be specified in Section 3.1. Evi-
dently, U is nearly optimal provided that p is a
reasonably good estimate of p.

The forgoing discussion leads to our cost func-
tion for semisupervised learning

s(P) = I() +C (5 3 Llwsf w0+
i=1

n Q)]

— > (p@)L(f () + (1= pa)L(=f(,))) )-
j=n;+1

Minimization of (1) with respect to f € F
gives our estimated decision function f for
classification.

3. Computation
3.1 Iterative scheme

As discussed in Section 2.2, the effectiveness
of U depends largely on the accuracy of p for
p. As argued early, p can be not well estimated
through a small amount of labeled data, suggest-
ing that additional unlabeled data must be uti-
lized. For this purpose, the method of Wang
and Shen (2006) can be used to extract infor-
mation about f from both labeled and unlabeled
data in absence of knowledge about p, which uses
L(|f(z)]). From an estimate f, we may explore
the relationship between f and p to yield an es-
timate p that is more precise than the one using
labeled data alone. Wang, Shen and Liu (2006)
provides a robust probability estimation method
for margin based classifier by designing a se-
quence of weighted classifications, correspond-
ing to a refined partition of [0, 1], to locate which
subinterval contains p(x) for any fixed z. Given
this more accurate estimate p, minimizing (1)
with respect to f yields a more accurate estimate
f , and this in turn leads to better p. This suggests
a scheme by iterating the process of estimating p
given f and that of estimating f from (1). This
iterative scheme is expected to outperform mini-
mizing (1) without iteration because loss U con-
verges to the optimal loss E(L(Y f(X))|X) as
iteration continues, provided that the initial p is
sufficiently accurate. This can be thought of as an
analogy of Fisher scoring method: given a good



initial estimate, a more efficient estimate can re-
sult through efficient scoring. In a sense, the iter-
ative scheme combines the advantage of the loss
L(z) with the optimal loss E(L(Y f(X))|X). A
detailed implementation of this scheme is sum-
marized as follows.

Algorithm 1:

Step 1. (Initialization) Set f© to be solution
of the large margin semisupervised methodology,
and compute p© using Sign(f©) through the
probability estimation method of Wang, Shen and
Liu (2006). Set an initial precision tolerance level
e > 0.

Step 2. (Iteration) At iteration k& + 1, given
p*) solve (1) for ka) This is achieved
through either convex or difference convex pro-
gramming. When L is the hinge loss with
the L, penalty, quadratic programming is used.
When L is a ¢-loss with the L, penalty, sequen-
tial quadratic programming is applicable, as de-
scribed in Section 3.2. Then assign labels to
unlabeled data with Sign(f**+1) and compute

Y through Wang, Shen and Liu (2006). De-
fine p*F+1) = max(ﬁ(k),ﬁgkﬂ)) when f¢+1) > 0

A(k+1 ))

and min(p®), p, otherwise.

Step 3. (Stopping rule) Terminate when
[s(fE+D) = s(f0)] < e.

The final solution f is the best solution among
f®: k = 0,1,---, which yields the estimated
decision function.

Theorem 1 (Monotonicity) Algorithm 1 has a
monotone property such that s(f®*)) is non-
increasing in k. As a consequence, Algorithm
1 converges to a stationary point s(f() in that

s(f®) = s(f&).

One key aspect of the scheme is the monotone
property, which is assured by the choice of p*+1)
such that (p*+D) — p*)) f+) > 0 In this
sense, Algorithm 1 differs from the EM algorithm
in that the monotone property is guaranteed by
the property likelihood with missing at random,
which is in contrast to our situation that neither
L is a likelihood nor label missing at random is

assumed. In addition, it differs from the variant
MM algorithm (Hunter and Lange, 2000) in that
the MM algorithm solves optimization of upper
or low brackets of the original cost function.

In Step 2 of Algorithm 1, given p*) (), mini-
mization in (1) is convex when L(z) is the hinge
loss or the logistic loss, but involves noncon-
vex minimization when L(z) is ¢-loss. It then
requires a nonconvex minimization technique to
solve (1) for f(k“), which will be discussed in
next section.

3.2 Nonconvex minimization

This section develops a nonconvex minimization
technique based on difference convex (DC) pro-
gramming (An and Tao, 1997) for semisuper-
vised v-learning, which has also been used in
Liu, Shen and Wong (2005) for supervised /-
learning.

Key idea to DC programming is to decompose
the cost function s(f) in (1) with L(2) = 9(z)
into a difference of two convex functions as fol-
lows:

5 =81 — Sa, )

- <ﬁ<'f><xj>¢1<f<xj>5 Lo -
P o e~ @)

nlu Zg =n;+1 ( (xj

P (7)) (= f(x)))) with zbl = 2(1 = 2)4
and ¢, = 2(—z),. Here ¢; and v, are obtained
through a convex decomposition of ¢ = 11 — 1,
as in Figure 1.
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With these decompositions, we treat the non-
convex minimization in (1) with given p*)(x)
by solving a sequence of quadratic programming
(QP) problems as in Algorithm 2.

Algorithm 2: (Sequential QP)

Step 1. (Initialization) Set initial values f(*+1.0)
as the solution of SVM with labeled data alone,
and an precision tolerance level € > 0.

Step 2. (Iteration) At iteration [ + 1, compute



Figure 1: Plot of v, v); and 1, for the DC de-
composition of ©» = 1; — 5. Solid, dotted and
dashed lines represent v, 1); and 15, respectively.

see

Flet1141) by solving a subproblem

min {s1(f) = (wy, Vsa(F9) ), ()

where Vs, (f*#+11) is a gradient vector of s5(f)

at wf'(k+1,l) .

Step 3. (Stopping rule) Terminate when
|S(f(k+1,l+1)) _ S(f(k+1,l))| <e.

Then the estimate R+ g the best solution
among fH+L0: 1 =01, ...

In (3), gradient Vsy(f*+10) is defined as
the sum of derivatives of its components with
Via(z) = 0if z > 0 and Vihe(z) = —2 oth-
erwise. Using the definition of Vsy(f*+1:)) and
convexity of so( f*+1:)), the subproblems in (2)
provide a sequence of non-increasing upper en-
velops to (1), which can be solved through its
dual form.

The convergence property of Algorithm 2 can
be derived in similar fashion as in Theorem 3
of Liu, Shen and Wong (2005) for i/-learning,
which along with Theorem 1 of Section 3.1 yields
the convergence speed of Algorithm 1 in Theo-
rem 2.

Theorem 2 (Convergence rate of Algorithm 1)
Algorithm 1 converges superlinearlyinthe sense

that limy oo [|s(f**Y) — s(fC)/1s(f¥) —
s(f))|| = 0 provided that there does not ex-
ist an instance # such that £ (&) = 0, where
FO = (1, K(z,21), -, K (2, 2,))w}™.

Theorem 2 implies that the number of iterations
required to achieve the precision € is o(log(1/¢)).

Remarks: A faster convergence rate can be
achieved by Algorithm 1 due to the piecewise
linearity of the objective function in (1). In fact,
a similar treatment as in proof of Theorem 2
yields that the convergence rate of Algorithm 1
is faster than any polynomial rate.

4. Numerical results

This section examines the effectiveness of the
proposed methodology, as well as the effect
of initial estimates, through two simulated and
five benchmark examples. The performance
is examined for four different initial estimates:
SVM with labeled data alone (SVM), TSVM
(Joachims, 1999), and the method of Wang and
Shen (2006) with the hinge loss (SSVM) and
the ¢-loss (SPSI), denoted as ESVM, ETSVM,
ESSVM and ESPSI, respectively.

A test error, averaged over 100 independent repli-
cations, is used to measure the generalization
performance. For simulation comparison, the
amount of improvement of the test over the ini-
tial estimate f ) is defined as the percent of im-
provement in terms of the Bayesian regret,

(T'(Before) — Bayes) — (T'(After) — Bayes)
T (Before) — Bayes

where T'(Before), T'(After) and Bayes are the
test errors of the initial estimate f ©), the pro-
posed method equipped with f(?), and the Bayes
error. The Bayes error serves as a baseline
for comparison or the best performance over all
methods, and is approximated by the test error of
the Bayes rule over a test sample of large size,
say 10°. For benchmark comparison, the amount
of improvement over the initial estimate f ©) s

, (4)



defined as

T (Before) — T'(After)
T (Before) ’

(&)

which underestimates the amount of improve-
ment in absence of the Bayes rule.

Numerical analyses are performed in R2.1.1. In
the linear case, K (z,y) = (z,y); in the Gaussian
kernel case, K (z,y) = exp(—”gc;—é’”Q), where o is
set to be the median distance between the positive
and negative classes to reduce computational cost

for tuning 2.

Some details are given below concerning the nu-
merical examples.

Simulated examples: Examples 1 and 2 were
used in Wang and Shen (2006), where 200 in-
stances are randomly selected for training, and
the remaining 800 instances are retained for test-
ing. Among the 200 instances, 190 unlabeled in-
stances (X1, X;2) are obtained by removing la-
bels at random, whereas the remaining 10 in-
stances are treated as labeled data. The Bayes
errors for Examples 1 and 2 are 0.162 and 0.089
respectively.

Benchmarks: Five benchmark examples include
Wisconsin Breast Cancer (WBC), Pima Indians
Diabetes (Pima), Heart, Mushroom and Spam
email, each available in the UCI Machine Learn-
ing Repository (Blake and Merz, 1998). In-
stances in the WBC, Pima, Heart and Mushroom
examples are randomly divided into halves with
10 labeled and 190 unlabeled instances for train-
ing, and the remaining instances for testing. In-
stances in the Spam email example are randomly
divided into halves with 20 labeled and 380 un-
labeled instances for training, and the remaining
instances for testing.

In each example, the smallest test errors of
ESVM, ETSVM, ESSVM and ESPSI are com-
puted over 60 grid points for the tuning param-
eter C' in (1) through a grid search over interval
(1073, 103] with ten equally-spaced points within
each interval (10, 10**!]; k = —3,.-- 2. The
results are summarized in Tables 1-2.

As suggested in Tables 1-2, the proposed method
yields an improvement over any initializing
method in almost all the examples except ESVM
in the spam email example. That is, ESVM,
ETSVM, ESSVM and ESPSI outperform their
counterparts SVM, TSVM, SSVM and SPSI re-
spectively. The amount of improvement, how-
ever, varies over examples and types of classi-
fiers. In the linear case, the improvements of the
proposed method are from 1.9% to 67.8% over
the initializing methods except in the spam email
example where ESVM performs slightly worse
than SVM. In the nonlinear case, the improve-
ments range from 0.0% to 23.2% over their ini-
tializing methods in the all the examples. With
regard to initializing methods, SPSI seems to
be preferable, leading to the best performances
across all the examples.

5. Summary

This article proposes a novel iterative semisu-
pervised learning method that that is applicable
to a class of semisupervised classifiers, leading
to an improvement over these methods. The
method constructs an efficient loss to measure
the contribution of unlabeled instances to clas-
sification. An iterative scheme DCA is derived
for implementation. Our numerical analysis
suggests that the proposed method compares
favorably against the existing semisupervised
methods.

Appendix

Proof of Lemma 1: Let U(f(z)) =
E(L(Y f(X))|X = z). Using the orthogonality
property, we have E(L(Y f(X)) - T(f(X)))? =
B(L(V (X)) — U(F(X)? + BU(f(X)) —
T(f(X)))?, which implies that U(f(z))
minimizes E(L(Y f(X)) — T(f(X)))?* over

any 7. Furthermore, it is easy to ver-
ify that argmin, - E(L(Y f(X))|X) =
argmin, .z EL(Y f(X)). This completes
the proof.

A~

Proof of Theorem 1: For clarity, write s(f)
as s(f,p) in what follows. Then it suffices to



Table 1: Linear learning. Averaged test errors as well as the estimated standard errors (in parenthesis)
of our proposed methodology with three different initial estimates: TSVM, large margin semisuper-
vised methodology with SVM and ¢/-learning, denoted as ETSVM, ESSVM, ESPSI, over 100 pairs
of training and testing samples, in the simulated and benchmark examples. Here TSVM, SSVM and
SPSI stand for the three initial estimates. The amount of improvement is defined in (4) or (5).

Data  Example 1 Example 2 WBC Pima Heart Mushroom Spam
SVM  .344(.0104) .333(.0129) .053(.0071) .351(.0070) .284(.0085) .232(.0135) .216(.0097)
ESVM  .281(.0143) .297(.0177) .031(.0007) .320(.0059) .214(.0066) .172(.0084) .217(.0178)
Improv. 53.8% 19.8% 41.5% 8.8% 24.6% 25.9% -0.5%
TSVM  .249(.0121) .222(.0128)  .077(.043)  .315(.0067) .270(.0082)  .204(.113)  .227(.0120)
ETSVM  .190(.0074) .147(.0131) .029(.0009) .309(.0063) .211(.0062) .153(.0054) .179(.0101)
Improv. 67.8% 56.4% 62.3% 1.9% 21.9% 25.0% 21.1%
SSVM  .188(.0084) .129(.0031) .032(.0025) .307(.0054) .240(.0074) .186(.0095) .191(.0114)
ESSVM  .182(.0065) .124(.0034) .028(.0006) .293(.0029) .205(.0059) .162(.0054) .169(.0107)
Improv. 23.1% 12.5% 12.5% 4.6% 14.6% 12.9% 11.5%
SPSI  .184(.0084) .128(.0084) .029(.0022) .291(.0032) .232(.0067) .184(.0095) .189(.0107)
ESPSI  .182(.0065) .123(.0029) .027(.0006) .284(.0026) .181(.0052) .137(.0067) .167(.0107)
Improv. 9.1% 12.8% 6.9% 4.5% 22.0% 25.5% 10.1%

Table 2: Nonlinear learning with Gaussian kernel. Averaged test errors as well as the estimated
standard errors (in parenthesis) of our methodology with three different initial estimates TSVM, large
margin semisupervised methodology with SVM and w-learning respectively, over 100 pairs of training
and testing samples, in the simulated and benchmark examples. The amount of improvement is defined

in (4) or (5).

Data  Example 1  Example 2 WBC Pima Heart Mushroom Spam

SVM 385(0099) 347(0119) 047(.0038) 342(0044) 331(.0094) 217(0135) 226(0108)
ESVM  368(0077) 322(.0109) .039(.0067) .335(.0035) .308(.0107) .187(.0118) .212(.0104)
Improv.  7.6% 9.7% 17.0% 2.0% 6.9% 13.8% 6.2%
TSVM  267(0132) 258(0157) .037(.0015) 353(.0073) 331(0087) 217(01T7) .275(.0158)
ETSVM  236(.0090) .235(.0084) .030(.0005) .323(.0028) .303(.0094) 201(.0093) .198(.0106)
Improv.  11.6% 13.6% 18.9% 8.5% 8.5% 7.4% 28.0%
SSVM  201(.0072) .175(.0092) .030(.0005) 304(.0044) 226(.0063) .173(0126) .I89(.0120)
ESSVM  201(.0072) .170(0083) .030(.0005) .304(.0042) 223(0054) .147(.0105) .170(.0103)
Improv.  0.0% 5.8% 0.0% 0.0% 13% 15.0% 10.1%

SPSI200(.0069) .175(.0092) .030(.0005) 295(.0037) .215(.0057) .164(0123) .I89(0112)
ESPSI  .198(.0072) .169(.0082) .030(.0005) .294(.0033) .215(.0054) .126(.0083) .169(.0091)
Improv. 1.0% 7.0% 0.0% 0.3% 0.0% 232% 10.6%

prove that s(f®) pk)) > g fltD) plk+1) any f in the neighborhood, the corresponding

Note that s(f®, p*)

since f(+1)
more,

Z?:nri—l (ﬁ(k)

>
minimizes s(f,p"*)).
S(f010 50

S(fO4D, ikl
s Further-
S(f(k-i—l)’ﬁ(k-‘rl))

PEDNL(FED ()

classifier Sign(f) is identical to Sign(f()) for
all labeled and unlabeled instances, implying that
p = p>). Therefore, the convergence speed of
Algorithm 1 is equivalent to that of Algorithm 2

L(—f®+1(z,))), which is always nonnegative
by the definition of p{+1).

Proof of Theorem 2: It follows from Theorem 1
that there exists a stationary point s(f(*)) such
that limy_.. s(f®) = s(f(>)). By assump-
tion, there does not exist an instance Z such that
f(>)(#) = 0. This property holds in a small
neighborhood of f(*) by continuity. Then for

up to a constant. The desired result then follows
through an argument similar to that in Liu, Shen
and Wong (2005).
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