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Abstract

A novel semi-supervised learning approach
based on statistical physics is proposed in this
paper. We treat each data point as an Ising
spin and the interaction between pairwise
spins is captured by the similarity between
the pairwise points. The labels of the data
points are treated as the directions of the cor-
responding spins. In semi-supervised setting,
some of the spins have fixed directions (which
corresponds to the labeled data), and our
task is to determine the directions of other
spins. An approach based on the Mean Field
theory is proposed to achieve this goal. Fi-
nally the experimental results on both toy
and real world data sets are provided to show
the effectiveness of our method.

1 Introduction

In many practical applications of pattern classification
and data mining, one often faces a lack of sufficient
labeled data, since labeling often requires expensive
human labor and much time. Meanwhile, in many
cases, large numbers of unlabeled data can be far easier
to obtain. For example, in text classification, one may
have an easy access to a large database of documents
(e.g. by crawling the web), but only a small part of
them are classified by hand.

Consequently,  semi-supervised learning methods,
which aim to learn from partially labeled data,
are proposed [5][25]. The basic assumption behind
semi-supervised learning is the cluster assumption
[6], which states that two points are likely to have
the same class label if there is a path connecting
them passing through the regions of high density
only. Zhou et al. [23] further explored the geometric
intuition behind this assumption: (1) nearby points
are likely to have the same label; (2) points on the
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same structure (such as a cluster or a submanifold)
are likely to have the same label. Note that the first
assumption is local, while the second one is global.
The cluster assumption implies us to consider both
local and global information contained in the dataset
during learning.

In recent years there has been significant interest in
adapting numerical [15] and analytic [1] techniques
from statistical physics to provide beautiful algorithms
and estimates for machine learning and neural compu-
tation problems. In this paper we formulate the prob-
lem of semi-supervised learning as that of measuring
equilibrium properties of an homogeneous Ising model.
In our model, each data point is viewed as a spin, the
direction of the spin stands for the label of the data
point. We also introduce some interactions between
pairwise points based on the intrinsic geometry of the
dataset. The directions of the spins corresponding to
the labeled data points are fixed. And our goal is to
predict the labels of the unlabeled points, which will
be estimated by the directions of these spins in thermal
equilibrium. The experiments show that our method
can give good classification results.

The rest of this paper is organized as follows. The de-
tailed description of the Ising model will be presented
in section 2. In section 3 we will introduce a Mean
Field approach for solving the Ising problems. Our ap-
proach for semi-supervised learning will be described
in section 4, and we also compare it with traditional
Bayesian methods in section 5. The experimental re-
sults on both toy and real world datasets will be in-
troduced in section 6, followed by the conclusions and
discussions in section 7.

2 Ising Model

The Ising model [10] first proposed by E. Ising is a lat-
tice model, which is used for describing intermolecular
forces. The lattice can be of any type. For example,
in magnets, each molecule has a spin that can be ori-



ented either up or down relative to the direction of an
externally applied field.

A configuration of the lattice is a particular set of val-
ues of all spins, e.g. the number of different configu-
rations of the 5x5 regular lattice is 22°.

We usually assign an energy to a specific configu-
ration of an Ising model, typically the energy of a
general Ising model in a given configuration S =
(Sl,SQ, ce ,SN) to be
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where S; € {+1,—1} is the current value of the i-th
spin, < 4,j > represents a neighboring spin pair, J;; is
the symmetric interaction energy of the pairwise spins
i and j, 0; is the energy on spin ¢ brought by the
external fields. The canonical partition function of the
system is defined as’

= / ds; / dSs - - / dSye PE®), (2)

B = (kT)_lv (3)

and k is the Boltzmann constant and T is the temper-
ature. We further define the energy function as

- Z Ji;S:S; — Zeisia (4)

<i,j>

where

where
Jij = BJij,  6; = 50 (5)

Then the probability distribution of the spin system is

1
P(S) = EGZ <i,j> Ji,JS,;Sj.;_ZigiSi’ (6)

where S; (i = 1,2,---
which can only take value +1 or -1.
marginal probability of .S; is

/HdS P(S (7)

J#i

N) are the random variables
Therefore the

Our goal is to approximate the behavior of such an
Ising type interacting spin system in equilibrium. We
will introduce an Naive Mean Field approach [15] in
the next section to solve the problem.

'Here we give a more general form of the partition func-
tion. In our Ising model case, since each random variable
can only have two integer values, we can use the sum op-
erator to replace the integral operator.

3 The Naive Mean Field Approach
For Ising Model

The main idea of the mean field theory is to focus on
one spin and assume that the most important contri-
bution to the interactions of such spin with its neigh-
boring spins is determined by the mean field due to its
neighboring spins [16]. It originally aims to approxi-
mate the behavior of interacting spin systems in ther-
mal equilibrium. We use it here to approximate the
behavior of Ising models in equilibrium. More con-
cretely, the mean state of spin 5; is

(s = [ asip(s)). ®

P(S;) is the marginal distribution in
Eq.(7). So we can define the mean field
(S) = ((S1),(S2),++,(Sn)) by these mean val-
ues. However, in most of the cases, the exact form of
P(8S) is not available. So the computation of the exact
means of S; (i = 1,2,---,N) become intractable.
To solve such a problem, we can first approximates
P(S) by Q(S) which belongs to a family M of easily
tractable distributions [15]. The Q(S) is chosen to
minimize the following Kullback-Leibler divergence

ZQ

Bringing Eq.(6) into the above equation we can get

KL(Q|P) 5(Q), (10)

where
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where
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is the entropy of the dlstrlbutlon @, and
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S

is the wvariational energy. The mean field approxima-
tion can be obtained by first approximate the distri-
bution family M by all product distributions

S) = HQj(Sj)' (13)

For Ising models, the most general form of the @;’s is

1 + Sjmj

Q;(Sj;m5) = —— (14)

where m; = (S;),, and (), represents the mean over
distribution Q. Then the variational entropy of @ is

S(Q)z—Z( 5 In 5 T3 In 5 ),
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Table 1: The NMF Method For Ising Model.

Initialization:
e Start from a tabular rasa
<S> = (<S1> y <SQ> sty <SN>) =0 (OI‘ small
values if (S) = 0 is a fixed point).
e Learning rate n = 0.05.
o Fault tolerance ft = 1073.
Iterate:
do:
for all i:

Compute m; by Eq.(18).
6 (Si) =m; — (S;)

end for

for all i:

(Si) = (Si) +n6 (Si)

end for
while max; |5 (S;) |? > ft

and the variational energy reduces to

V(Q)=(ES)g=— Y Jiymim;—> mib;. (15)

<i,j> i

Hence, according to Eq.(10), what we need to do is
only to minimize?

FQ)=V(Q) - S(Q). (16)
Then
8F(Q) o 1 1+ my;
am; ——;szmj—91+§ln1_mi. (17)
Setting %F—f_) = 0 we can easily get the mean field
equations
m; = tanh Z Jijmj + 01 . (18)

J

In such a way, the intractable task of computing the
exact averages over P is replaced by the solution of
Eq.(18). An iterative method for achieving this goal
is shown in Table 1.

4 Semi-Supervised Learning Based on
the Mean Field Approach

So far we have defined the Ising model and introduced
a mean field approach for solving the states of the spins

2Since Z is not dependent on Q

in such a model in thermal equilibrium. We can now
turn to the problem for which these concepts will be
utilized: semi-supervised learning.

In semi-supervised learning, the dataset X =
{x1,X2," " , X[, Xi41, "+ ,Xpn} Is composed of two
parts. The first part X, = {x;}!_; is the labeled
set, in which the data points are labeled with +1 or
—1 (we consider the two-class case for the moment).
The remaining unlabeled data points Xy = {Xu}7_; 4,
constitute the second part of X. The goal of semi-
supervised learning is to predict the labels of the un-
labeled data3.

Considering the two-class classification problem, we
can just treat each data point as a spin, and its label
as the direction of the spin. Then the labels of the
unlabeled data can be regarded as the state of those
spins in equilibrium, i.e. the spins {S;}¥, can be
viewed as the hidden label variables of the data. So
there are two things remained: (1) how to determine

the interactions between pairwise data (i.e. Ji;); (2)
how to determine the external field (i.e. 6;).

4.1 Compute the Spin-Spin Interactions

No doubtedly, the computation of the spin-spin inter-
actions is at the heart of our semi-supervised algo-
rithm. An intuition here is that the more similar x; to
X;, the stronger the interaction between x; and x; will
be. Therefore, we should define a proper similarity be-
tween pairwise data. Some possible ways for defining
such a similarity including:

1. Unweighted k-Nearest Neighborhood Similarity [2]:
The similarity between x; and x; is 1 if x; is in
the k-nearest neighborhood of x; or x; is in the
k-nearest neighborhood of x;, and 0 otherwise.
k is the only hyperparameter that controls this
similarity. As noted by [27], this similarity has
the nice property of “adaptive scales”, since the
similarities between pairwise points are the same
in low and high density regions.

2. Weighted Linear Neighborhood Similarity [22]:
Assuming x; is in the neighborhood (k-nearest
neighborhood or e-ball neighborhood) of x;, then
the similarity between x; and x;, w;;, can be com-
puted by solving the following optimization prob-

3The task we want to handle here is also called trans-
duction, in which we do not consider to predict the labels
of the data not in the training dataset (induction). Since
according to [21], this may import unnecessary complexity
to the learning algorithm.
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s.t. Wi > O, Zj Wij = 1,

and w;; = 0 if x; is not in the neighborhood of x;.
Note that this similarity is generally asymmetric,
and we can use W;; = %(w” +wj;) for symmetrize
it. The neighborhood size (k or €) is the only

hyperparameter for controlling this similarity.

3. Weighted Exponential Similarity [2][7][23][27]: Let
d;; be the distance between x; and x;, then the
tanh similarity between x; and x; can be com-

puted by
d2.
W;j = €Xp (f) ) (19)

which is also a continuous weighting scheme with
o controlling the decay rate.

Because of its popularity and solid theoretical founda-
tions [3], we adopt the Weighted Exponential Similar-
ity as our similarity measure for computing the pair-
wise similarities (interactions). Then another problem
arises, i.e. defining a proper distance function. We
also list some possible distance functions here.

1. Euclidean Distance [2][23][27]: The distance be-
tween x; and x; can be calculated by

48 =[x = x;1 = \/(xi = x,)7 (i = %), (20)

2. Connectivity Distance [9]: We also need to first
construct a connected neighborhood graph for the
dataset X. Let p be a path from one point to

another with length |p|, and the indices of the

data points on this path are denoted by {pk}Lpil.

Let P;; be the set of paths connecting x; and x;,
then the connectivity distance between x; and x;

is defined by

dij = prggilj 1<Ig§?‘;{|71 ;Ekpwrl’
where df represents the FEuclidean distance.
Chapelle et al [7] further propose to “soften” this
distance to make it more robust to the bridge
points. Such “softened” connectivity distance be-
tween x; and x; is computed by

[p|—1

X (et 1) )

1
dij=—In |1+ min
P k=1

PEPi;

where p > 0 is a free parameter for controlling the
distance.

3. Inner Product Distance [23][25]: The inner prod-
uct distance between x; and x; is computed by

Ty .
X; X

dij =1 (21)
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Note that this distance is one of the most com-
monly used distances in text classification.

In real world applications, using which distance is de-
pendent on our prior knowledge of the datasets. For
example, for the data (nearly) residing on intrinsic
manifolds, then the geodesic distance can be a bet-
ter choice; for the dataset that is corrupted by some
noise, then using connectivity distance might be better;
for text analysis, the inner product distance should be
considered for the first choice. However, if we do not
have any prior information about the dataset, then the
Euclidean distance may be a safe choice.

4.2 Determining the External Fields

Another important issue that we should address in our
method is how to determine the influence of the exter-
nal fields, i.e. 6; (i =1,2,---,N). Recall that what
we want to solve is a semi-supervised learning prob-
lem, that means some data have already been labeled.
Considering an analogy to the spin system, we can
regard the labeled points as the spins having “fixed”

directions, which is forced by some external fields.

For a particular configuration of the spin system, if the
states for the spins corresponding to the labeled data
points are in accordance with their imposed states (la-
bels), then its probability should be higher. Recalling
the definition of the probability of a specific configu-
ration in Eq.(6), as for each spin there are only two
possible directions, spin up (+1), or spin down (-1),
we can define 6; in the following way

n li7
-
In such a definition, if the state of a “labeled” spin is
the same as its label, then ¢; > 0, which will result
in a higher probability, otherwise 6; < 0, which will
make the probability lower. And for simplicity, we

do not consider the influence of the external fields on
unlabeled spins.

if x; is labeled as ;

if x; is unlabeled (22)

4.3 Algorithm Framework

Having computed the spin-spin interactions and the
influence of the external fields, we can derive the
framework of our algorithm, which is shown in Table
2. There are some issues should be addressed here:



Table 2: Semi-Supervised Learning via NMF.

Inputs:
e Dataset X, Scale o, Temperature T
e A proper distance function d(-, -)
Outputs:
e The labels of the unlabeled data.

1. Calculate the distance matrix D with its
(2,7)-th entry D;; = d(xi,x;);

2. Calculate the interaction matrix J with its
(i,)-th entry Ji; = exp (—Dyj/0);

3. Normalize J by J = R~Y2JR /2, where R is
a diagonal matrix with the ¢-th element on its
diagonal line R;; = Zj jij;

4. Compute the matrix J with its (¢, j)-th entry

Jij = ﬂj,;j, where (3 is defined as in Eq.(3),

5. Calculate (S,) (x, € Ay) by the method shown
in Table 1, and fix (S;) (x; € &}) to be ¢, which
is the label of x;;

6. If (S;) > 0, then classify x; as +1, else if
(Si) <0, classify x; as -1

1. The normalization procedure in step 3 is to make
the computed similarities insensitive to the data
distribution, since a single Gaussian function will
always assign high similarities to high density re-
gions, which will bias the final classification re-
sults if the data from different classes have differ-
ent densities [24].

2. Usually the computed (S;) is not just +1 or —1,
so we classify the data points as the sign of (S;).
And (S;) can be viewed as the soft label of x;.

3. For multi-class problems, we can just use (1) one-
vs-rest scheme [21] and classify x; to the class with
the largest S; value; (2) a Potts multi-valued spin
model.

5 Relationship with Bayesian
Discriminative Methods

The Bayesian approach is an importance class of meth-
ods for data mining and machine learning. Tradition-
ally, a Bayesian classifier can be categorized into ei-
ther generative or discriminative classifiers. The goal
of generative classifiers is to learn a joint probability
model, P(x,t), of input x and its class label ¢, and then
making their predictions by using the Bayesian rule
to compute P(t|x). Discriminative classifiers, on the
other hand, model posterior class probabilities P(t|x)
for all classes directly and learn a mapping from x to
t. It has often been argued that for many application

00

Figure 1: The graphical model of a discriminative clas-
sifier.

domains, discriminative classifiers can often achieve
higher test accuracies than generative classifiers[21].

In the following we will use the same symbol system
introduced at the beginning of section 4. We use
t = (t1,t2, - ,t,) to denote the hard labels of the
data points, i.e. t; € {—1,+1}, V1 < i < n, and
vy = (y1,92, - ,Yn) is the hidden soft labels of the
data points, e.g. in the two-class classification prob-
lem, t = sign(y). In the discriminative framework, we
can draw a graphical model for such a problem which
is shown in Fig.1.

For semi-supervised classification, what we observed is
theset D = {X = X |J Xy, tL}, where t, corresponds
to the labels of the labels of the labeled points. And
we aim at learning the posterior P(ty|D), where ty =

(ti41,ti+2, -+ ,tn). The posterior can be written as

P(ty|D) = / P(toly)P(y|D) (23)

The same as in [12], we can first approximate P(y|D)
and then use Eq.(23) to classify the unlabeled data.
Using the Bayesian rule, P(y|D) can be defined as

P(yID) = P(y|X, 1) = - P(y|X) P(tz]y)

The term, P(y|X) is the probability of the hidden
labels given the training set, which can be regarded
as the prior information of y on the training set.
P(trly) is the likelihood term, which is usually writ-
ten as P(tpy) = Hi:l P(t;]y;) [12]. This term models
the probabilistic relation between the observable hard
labels and the hidden soft labels.

The prior term plays an important role in semi-
supervised learning, especially when the size of the
labeled data is small. The recent research shows that
the prior should impose a smoothness constraint with
respect to the intrinsic data structure [12][18], which
means that it should give higher probability to the la-
belings that respect the similarity of the data graph.

More concretely, if we model the whole dataset as a
weighted undirected graph G = (V,£), where V = X is
the node set, and £ is the edge set. Associated with
each edge e;; € £ is a symmetrical nonnegative weight
representing the similarity between x; and x;. In this
way, the intrinsic structure of the dataset can be de-
scribed by a data graph, and the smooth labeling with



respect to the data structure just corresponds to the
smooth labeling over the data graph. As noted in [3],
if we regard y as a function defined on the data graph
G, such that y; is the return value of this function at
X;, then the smoothness of y can be computed by

Sy =y’ My, (24)

where M is the so-called smoothness matriz, some typ-
ical choice of M are

o Combinatorial Graph Laplacian [3][27]
M=R-J (25)
e Normalized Graph Laplacian [23][24]
M=I-RV2JR!/2 (26)

where J is the similarity matrix and R is the diagonal
matrix with its (é,7)-th element equal to the sum of
the i-th row of J.

It is found that using the normalized graph Laplacian
can usually produce better results [23]. Therefore, a
natural choice for the prior of y could be

1 -
P(y|&) = —-exp (*yT(I - R’”zJR’l/?)Y) :
P
The likelihood term P(tr|y) should be defined in the
way that it should be higher when ¢; and y; have the
same sign, and lower otherwise. Therefore a natural
choice for the likelihood term could be

! exXp (Zé:l tiyi)
P(trly) = [[ P(tily:) =
(6] ll () TT._, (exp(ys) + exp(—y;))

Note that for the labeled points, their hard labels are
just the influence of the external fields, i.e. {6;}._;,
as we defined in Eq.(22). As a result, the posterior
probability

1oy y+y"RTVEIRTY 2y 4300 Oy
] L
Hi:l (eyl +e yl)

P(y|D) = £
Since we can always normalize the vector y to have a
unit length, the Maximum A Posteri estimation of y
is equivalent to maximize the following criterion

%eyTR71/23R71/2y4‘Z§:1 éiyi
j =
[Ty (e +e7v)

whose numerator has exactly the same form as Eq.(6).
However, as the denominator is relevant to y, the max-
imization of J becomes very complicated.

So we can see that, our method has a very similar
expression as Bayesian discriminative semi-supervised

Table 4: Basic information of the benchmark datasets.

Dataset | Classes | Dimension | Size | Type
g241d 2 241 1500 | arti.
Digitl 2 241 1500 | arti.
USPS 2 241 1500 | imba.
COIL 6 241 1500

BCI 2 117 400
Text 2 11,960 1500 | spar.

learning methods. Although our method is based
on statistical physics, while the Bayesian methods
are based on Bayesian theory, they are very closely
in spirit. And our method makes an approximation
that works which omits some of the complications of
the Bayesian approach. Moreover, the computational
complexity for Naive Mean Field approach is O(N?),
while for Bayesian methods it is usually O(N?3).

6 Experiments

We apply our algorithm to several standard semi-
supervised learning datasets®*. Table 4 provides us
some basic information about these datasets.

In Table 4, the first column correspond to the name
of the datasets, the second column are the number of
classes contained in the dataset, the third and fourth
column represent the dimensionality and size of the
datasets, and the last column show some properties of
the datasets. For the last column, “arti” means artifi-
cal dataset, “imba” means imbalanced dataset, “spar.”
represents sparse dataset. For detailed description of
these datasets, one can refer to [5].

For each dataset, there are 100 labeled points, and 12
random splits are performed to partition the dataset
into labeled points and remaining unlabeled points. It
is ensured that each split contains at least one point of
each class. For comparison, we also provide the clas-
sification results of 7 semi-supervised learning meth-
ods. The Nearest Neighbor (1-NN) and Linear SVM
are used as the base line algorithms. The detailed con-
figuration of other semi-supervised learning algorithms
are the same as described in [5].

There are two hyperparameters in our method, namely
the temperature T and scale o. In our experiments,
they are tuned by a exhaustive search over the grid
2[=5:0.5:5] 5 9[=5:0.55] ' where 0.5 is the granularity of
the grid. Figure 2 shows the plots of the average test
error vs. T and o, from which we can see that for some
of the datasets (Digitl), the final classification results
are not sensitive to the choice of T" and o, for some

“Available at http://www.kyb.tuebingen.mpg.de/ssl-
book /benchmarks.html



Table 3: Average test errors (%) with 100 labeled training points

g241d | digitl | USPS | COIL | BCI | Text

1-NN 42.45 3.89 5.81 17.35 | 48.67 | 30.11

SVM [21] 24.64 9.53 9.75 22.93 | 34.31 | 26.45
LLE+1-NN [17] 38.20 2.83 6.50 28.71 | 47.89 | 32.83
GRF+CMN [26] 37.49 3.15 6.36 10.03 | 46.22 | 25.71
LLGC [23] 28.20 2.77 4.68 9.61 47.67 | 24.00
TSVM |[11] 22.42 6.15 9.77 25.80 | 33.25 | 24.52
Cluster Kernel [6] | 4.95 3.79 9.68 21.99 | 35.17 | 24.38
LDS [7] 23.74 3.46 4.96 13.72 | 43.97 | 23.15

Our method 20.41 1.83 4.47 8.32 33.40 | 24.25

of the datasets (Text), the optimal (T, 0) only lies in
a small range, and for most of the datasets, the opti-
mal (T, 0) lies in a relatively large area, which makes
the parameter tuning procedure easier. We think the
different properties of the (T, ) is because of the dif-
ferent structures of the datasets, and we are currently
working on an automatic way to self-tune those pa-
rameters.

Table 3 reports the average test errors for various
methods, which shows that our mean field approach
performs the best on digit1, USPS and COIL datasets,
and can produce comparable results on the BCI and
Text dataset. However, as there is no free lunch, it per-
forms fairly poor on the g241d dataset. This is prob-
ably because the complex structure of the dataset, in
which the data from the two classes are heavily over-
lapped and confused, but our method tends to make
the neighboring points have same labels, thus it may
confused in this case.

7 Conclusions and Future Works

In this paper, we propose a novel scheme for semi-
supervised learning which is based on statistical
physics.  Unlike the traditional Bayesian methods
which aims at doing a maximum a posteri estimation
for the labels, our method treats the data labels as a
disordered system and the true labels can be regarded
as the states of such a system in equilibrium. Many
experimental results are presented to show the effec-
tiveness of our method.

In the future, we will focus on two issues of our algo-
rithm: (1) Induction, as induction can be viewed as a
natural extension of the cavity method introduced in
section 3, thus deriving an induction approach seems
to be a straight forward thing. However, the inclusion
of a new spin will affect the state of the original spin
system, thus how to tackle such effects is still a hard
problem; (2) The automatic learning of the hyperpa-
rameters in our algorithm; (3) Acceleration, the Naive

Mean Field approach introduced in section 3 has the
computational complexity of O(n?), which prohibits
the usage of our method to large scale datasets, thus
deriving effective accelerating methods is also an im-
portant direction in our future works.
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