
Fast Mean Shift with Accurate and Stable Convergence

Ping Wang

pingwang@cc.gatech.edu

Dongryeol Lee

dongryel@cc.gatech.edu

Alexander Gray

agray@cc.gatech.edu

James M. Rehg

rehg@cc.gatech.edu

College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Mean shift is a powerful but computationally
expensive method for nonparametric cluster-
ing and optimization. It iteratively moves
each data point to its local mean until con-
vergence. We introduce a fast algorithm for
computing mean shift based on the dual-tree.
Unlike previous speed-up attempts, our al-
gorithm maintains a relative error bound at
each iteration, resulting in significantly more
stable and accurate convergence. We demon-
strate the benefit of our method in clustering
experiments with real and synthetic data.

1 Introduction

This paper presents a fast algorithm for computing
mean shift (MS). MS is a nonparametric, iterative
method for unsupervised clustering and global/local
optimization. It has a wide range of applications in
clustering and data analysis. For example, the com-
puter vision community has utilized MS for (1) its clus-
tering property in image segmentation, feature analy-
sis (Comaniciu & Meer, 2002) and texture classifica-
tion (Georgescu et al., 2003); and for (2) its quadratic
optimization property in visual tracking (Collins, 2003;
Comaniciu et al., 2000). MS is attractive for cluster-
ing and optimization problems due to its ability to
adapt to the data distribution. However, it suffers
from high computational cost - O(NM) operations in
each iteration (see the pseudo code in algorithm 1),
where N is the size of reference data and M is the
size of query data.1 Therefore, applications of MS
have either used fairly small datasets (Comaniciu &
Meer, 2002; Comaniciu et al., 2000), or avoided up-
dating all of the points in the query set (e.g. a local
optimization process is started from a single query).

1We follow the terminology used in (Gray & Moore,
2001; Lee & Gray, 2006)

Alternatively, some fast approximations of MS have
been proposed (Georgescu et al., 2003; Yang et al.,
2003). While these methods have been shown experi-
mentally to have high efficiency, they suffer from three
major limitations: 1) Improved Fast Gauss Transform-
based MS (Yang et al., 2003) (IFGT-MS) can use only
the Gaussian kernel; 2) Both IFGT-MS and Locality
Sensitive Hashing-based MS (Georgescu et al., 2003)
(LSH-MS) have many tuning parameters; 3) Both
methods lack an explicit error bound for the vector
approximation required in each iteration of MS.

We believe speedup techniques should ensure both the
accuracy and the stability of the approximation. “Ac-
curacy” means that the approximation has a guar-
anteed error bound. “Stability” means that the ap-
proximation should return almost identical results over
different runs. Nondeterminism typically stems from
randomized initialization, and approximation methods
which lack reliable error control mechanisms can be
sensitive to these initial values, resulting in a signif-
icant variation in their outputs for a fixed input. In
this paper, we introduce an acceleration technique that
achieves both accuracy and stability – Dual-tree (Gray
& Moore, 2001) based mean shift (DT-MS). DT-MS
can use any kernel, has a user-specified relative error
tolerance on each computation of m(xq) (eq. 1) and
requires no other parameter tuning. Our experiments
on datasets with dimensionality ranging from 2 to 16
and size ranging from 6000 to 68040 demonstrate the
superiority of DT-MS over IFGT-MS and LSH-MS in
terms of speed, accuracy, and stability. This paper
makes three contributions:

1. Introduction of DT-MS, a novel approximation
method for MS which is fast, accurate, and stable

2. An extension of the dual-tree method (introduced
in (Gray & Moore, 2001) for positive scalar tar-
gets) to the signed mean vector case. To achieve
this extension, we have developed (i) A new global
error bound (Theorem 1) for pruning nodes, (ii)
A novel finite difference approximation for the



signed mean vector, and (iii) A new algorithm for
updating bounds on the L1 norm.

3. The first experimental comparison of fast MS al-
gorithms on a standardized dataset. We highlight
for the first time the issue of stability in MS ap-
proximation.

1.1 Mean shift

Algorithm 1 Mean shift

Input: XQ, XR, ε (the pre-defined distance threshold)
Output: The converged query set

Mean-Shift(XQ, XR, w(·), Kh(·), ε)
dist = 100 ∗ ones(NQ, 1) {initialize distance vector}
while max(dist)≥ ε do

for each xq ∈ XQ do

m(xq) =
P

xr∈XR
Kh(xr−xq)w(xr)xr

P

xr∈XR
Kh(xr−xq)w(xr)

dist(xq) = ‖m(xq) − xq‖2 {distance can be of any
norm}
xq ← m(xq)

Return XQ

Mean shift (Cheng, 1995; Fukunaga & Hostetler, 1975)
moves each query to its local mean until conver-
gence (see algorithm 1). Let XR denote the refer-
ence data set, and XQ denote the query data set.
XR ⊂ RD, XQ ⊂ RD, xr ∈ XR, xq ∈ XQ. The mean
of query xq is defined as:

m(xq) =
h(xq)

f(xq)
=

∑

xr∈XR
Kh(xr − xq)w(xr)xr

∑

xr∈XR
Kh(xr − xq)w(xr)

(1)

where w : RD → R is a weight function which can vary
with xr and time. In this paper we set w(xr) = 1 for
all xr. The kernel function Kh : RD → R has profile
k : [0,∞] → R, such that Kh(x) = k(‖x

h‖
2), where h is

the bandwidth and k is monotonically nonincreasing,
nonnegative and piecewise continuous (Cheng, 1995).
Cheng (Cheng, 1995) proves that MS is a step-varying
gradient ascent optimization. (Fashing & Tomasi,
2005) shows MS is equivalent to Newton’s method with
piecewise constant kernels, and is a quadratic bound
maximization for all kernels.

1.2 Previous acceleration methods

The denominator of Equation 1 is a kernel density
estimate (KDE) while the numerator is a weighted
vector sum. The key challenge in accelerating MS
is to approximate this ratio. Since MS is closely re-
lated to KDE, most speedup methods focus on fast
approximation of f(xq) or fast search of the neighbor-
hood around xq (defined by the bandwidth). The two
most important related works are the Improved Fast
Gauss Transform-based MS (IFGT-MS) (Yang et al.,
2003) and Locality Sensitive Hashing-based MS (LSH-
MS) (Georgescu et al., 2003).

IFGT-MS is only applicable to the Gaussian ker-
nel. IFGT-MS first clusters the reference points us-
ing the k-center algorithm, and loops over each query
point/reference cluster pair, evaluating the precom-
puted (truncated) Taylor coefficients for clusters that
are within the distance threshold from the query point.
IFGT-MS requires a significant amount of manual pa-
rameter tuning for good performance.2

LSH (Gionis et al., 1999) has been popular recently
for k-nearest neighbor (k-NN) search in high dimen-
sions. It performs L random partitions of the data set.
For each partition, a boolean vector of size K is gen-
erated for each datum, thus the data set are indexed
into 2K cells. Each query xq belongs to L cells simul-
taneously. The union of the L cells is returned as the
neighborhood of xq. The choice of (K,L) is critical.
The training process (Georgescu et al., 2003) selects
the (K,L) that minimizes the query time on a subset
of XQ and satisfies a user-specified k-NN distance ap-
proximation error bound, which unfortunately is not
directly related to the approximation of m(xq).

Unlike these two previous speedup techniques, our
dual-tree based mean shift method imposes a rela-
tive error bound on the entire mean vector m(xq).
Achieving this stronger accuracy guarantee requires
more computation than other approaches, but our ex-
perimental results demonstrate that DT-MS achieves
much more stable convergence results while still pro-
viding a significant speedup. In particular, DT-MS is
faster than IFGT-MS, LSH-MS and naive MS in speed
and convergence when using the Epanechnikov kernel.

2 Dual-tree based mean shift
Dual-tree methodology and Dual-tree KDE.

The dual-tree framework (Gray & Moore, 2001) gen-
eralizes all of the well-known node-to-node algorithms
(Barnes & Hut, 1986; Greengard & Rokhlin, 1987;
Appel, 1985; Callahan & Kosaraju, 1995). Dual-tree
based algorithms have the computational advantage of
considering a region of query points with a region of
reference points, whereas IFGT-based and LSH-based
methods consider one query point at a time. The DT
framework can use adaptive data structures such as kd-
trees (Freidman et al., 1977) and ball-trees (Chavez
et al., 2001), and are bichromatic (can specialize for
differing query and reference sets). The idea is to rep-
resent both the query points and the reference points
with separate trees, denoted as Qtree (Query tree) and

2The important parameters are: p-polynomial order,
Kc-number of partitions, e-ratio of the cutoff radius to the
bandwidth, which determines the absolute error bound.
We follow the authors’ suggestion: Kc =

√
NR; we gradu-

ally increase e and p as we tune them to achieve comparable
result to DT-MS(Epan.), though the authors recommend
e = 3 and p ≤ 3.



Figure 1: Dual-tree illustration. Top: A kd-tree parti-
tions 2-dimensional points. Each node in the kd-tree
records the bounding hyper-rectangle for the subset of
the data it contains (highlighted in color). In dual-
tree recursion, a pair of nodes chosen from the query
tree and the reference tree is compared at each step.
Bottom: Zoom-in on the two nodes (Q,R) which are
linked by a dashed arc in the top figure. Minimum and
maximum distance bounds are illustrated.

Dualtree(Q, R)
if Can-approximate(Q, R, τ),

Approximate(Q, R), return
if leaf(Q) and leaf(R), DualtreeBase(Q, R)
else Dualtree(Q.l, R.l), Dualtree(Q.l, R.r),

Dualtree(Q.r, R.l), Dualtree(Q.r, R.r)

Figure 2: Generic structure of dual-tree.

Rtree (Reference tree). Then node R’s (a node from
Rtree) kernel sum contribution to node Q (a node from
Qtree) is recursively updated by first comparing Q and
R, and then possibly comparing the pairs of their chil-
dren. The method can be viewed as a simultaneous
traversal of two trees.

Figure 2 shows the generic structure of a dual-tree al-
gorithm. τ denotes the user-specified error tolerance.
We will explain the method in the context of KDE,
while the readers should keep in mind that all the
functions can be modified to suit other N -body prob-
lems. Can-approximate(Q,R,τ) computes the max-
imal and minimal distances between Q and R, δmax

QR

and δmin
QR (illustrated by Figure 1), and checks whether

the kernel values Kh(δmax
QR ) and Kh(δmin

QR ) are close
to each other. If they are, Approximate assumes
the midpoint kernel value for all points in R, i.e., R’s
contribution to Q is linearly approximated as NRK̄h,
where K̄h = (Kh(δmax

QR ) + Kh(δmin
QR ))/2 and NR is the

number of reference points in R. When τ is chosen as
a relative error bound (|f̂(xq) − f(xq)|/|f(xq)| ≤ τ),
Can-approximate in Dual-tree KDE returns true if
Kh(δmin

QR ) − Kh(δmax
QR ) ≤ 2τfmin

Q /N (which we call

the pruning criterion), where N = |XR| is the size
of the reference dataset. Otherwise, the algorithm re-
curses on each possible child-pair of Q,R to consider
a smaller subset of points in both datasets, until it ei-
ther encounters a prunable node-pair or computes the
non-prunable leaf-leaf pair using DualtreeBase.

The geometric intuition behind dualtree algorithms
is that the distance between Q and R is bounded
by δmax

QR and δmin
QR . Therefore the lower and up-

per bounds for f(xq) are fmin
Q = NRKh(δmax

QR ) and

fmax
Q = NRKh(δmin

QR ). The bounds are tightened in
every recursion when smaller subsets of the query and
the reference datasets are compared. The following
relationship always holds:

δmin
QR ≤ δmin

Q.l/r,R.l/r ≤ δmax
Q.l/r,R.l/r ≤ δmax

QR

where (Q.l/r,R.l/r) represents any combination of a
child node from Q and a child node from R. This
inequality guarantees that fmin

Q increases and fmax
Q

decreases, until pruning occurs. The distance bounds
between the two roots (i.e. the bounds for the query
set and reference set) are used for fmax

Q and fmin
Q ’s

initialization. The error in the approximation of f(xq)
is due to the pruning.

2.1 Dual-tree mean shift

As in the case of KDE, the DT methodology can
be applied to the mean shift computation because
it computes m(xq) = h(xq)/f(xq) (which involves
summations of weighted pairwise kernel values) in
every iteration of MS. In every iteration of MS,
a query tree is rebuilt because xq is updated as
m(xq), while the reference tree remains fixed. In
contrast to KDE, mean shift involves the numera-
tor h(xq) which is a weighted vector sum and f(xq)
which is in the form of KDE. Here we ensure a
relative error bound in L1 norm (other norms are
applicable too) on the mean vector m(xq) directly:

|ĥ(xq)/f̂(xq) − h(xq)/f(xq)|1/|h(xq)/f(xq)|1 ≤ τ .

ĥ(xq) and f̂(xq) denote approximations to the numer-
ator and the denominator, respectively.

This error bound brings up three questions: 1) How
to distribute the global error bound τ into the local
node-node pruning? 2) How to maintain the bounds
for the vector? 3) How to apply these bounds in ap-
proximation? We answer these questions below.

Maintaining the bounds. The distance bounds
between Q and R, and hence the bounds on f(xq)
and h(xq), are used in the linear approximation and
error bounds distribution. Unlike KDE, the vector
term takes on both positive and negative values, so
we need to keep track of them separately. For each
query point xq and for each query node Q, we main-
tain dimension-wise lower and upper bounds for the



numerator: hmin
q,d and hmax

q,d for xq, and hmin
Q,d and hmax

Q,d

for Q for 1 ≤ d ≤ D, denoted hmin
q , hmax

q , hmin
Q ,

and hmax
Q collectively as a vector. Similarly, the lower

and the upper bounds for the denominator can be
maintained: fmax

q , fmax
q , fmin

Q , and fmax
Q . We de-

fine the following sums of directional coordinate values
for all reference points: SA

d =
∑

xr∈XR
|xr(d)|, S+

d =
∑

xr∈XR,xr(d)>0 xr(d), S−
d =

∑

xr∈XR,xr(d)<0 xr(d),
and the sums for reference points belonging to a
given reference node R: S+

R,d =
∑

xr∈R,xr(d)>0 xr(d),

S−
R,d =

∑

xr∈R,xr(d)<0 xr(d), SR,d = S+
R,d + S−

R,d,

SA
R,d =

∑

xr∈R |xr(d)|, where xr(d) is the dth coor-
dinate of xr, d = 1, ..., D. After the query and the
reference trees are built, we initialize the lower and
the upper bounds for the numerator and the denomi-
nator for all xq’s and all Q’s as follows:

hmin
Q,d = hmin

q,d = S−
d Kh(δmin

root) + S+
d Kh(δmax

root )

hmax
Q,d = hmax

q,d = S+
d Kh(δmin

root) + S−
d Kh(δmax

root )

fmin
Q = fmin

q = NKh(δmax
root )

fmax
Q = fmax

q = NKh(δmin
root)

where δmin
root and δmax

root denote the min/max distances
between the root node of the query tree and the root
node of the reference tree. The bounds above will be
maintained and updated at all times, such that for
any query node Q, we have: hmin

Q,d ≤ hq(d) ≤ hmax
Q,d for

1 ≤ d ≤ D and fmin
Q ≤ f(xq) ≤ fmax

Q for any xq ∈ Q.

Specifying the Approximate function. Given
a query node Q and a reference node R, we can
approximate R’s contribution to the numerator as
hR(xq) and to the denominator as fR(xq) for all
xq ∈ Q by the linear finite difference approximation

with the bounds: ĥR,d(xq) = (hmin
R,d + hmax

R,d )/2 =

((S−
R,dKh(δmin

QR ) + S+
R,dKh(δmax

QR )) + (S+
R,dKh(δmin

QR ) +

S−
R,dKh(δmax

QR )))/2 = SR,dK̄h, d = 1, ..., D and to the

denominator fR(xq) by: fR(xq) = NRK̄h. During re-
cursion, the bounds are tightened as:

hmin
Q,d + =S−

R,d(Kh(δmin
QR ) − Kh(δmin

root))

+ S+
R,d(Kh(δmax

QR ) − Kh(δmax
root ))

hmax
Q,d + =S+

R,d(Kh(δmin
QR ) − Kh(δmin

root))

+ S−
R,d(Kh(δmax

QR ) − Kh(δmax
root ))

fmin
Q + =NR(Kh(δmax

QR ) − Kh(δmax
root ))

fmax
Q + =NR(Kh(δmin

QR ) − Kh(δmin
root))

Specifying the Can-approximate function. The
global relative error bound τ is satisfied by ensur-
ing a local pruning criterion in the function Can-

approximate. Simple algebraic manipulation reveals
that: |ĥ(xq)/f̂(xq) − h(xq)/f(xq)|1/|h(xq)/f(xq)|1 ≤

τ ⇔ |f(xq)ĥ(xq) − f̂(xq)h(xq)|1 ≤ τ f̂(xq)|h(xq)|1.

Theorem 1 derives the pruning condition based on
the triangle inequality, which shows how to satisfy the
right hand side of the above relationship. The con-
dition specifies the Can-approximate function for
DT-MS to guarantee the global error bound. Mul-
tipole expansion is also used for more pruning (Lee
& Gray, 2006). We define some notations first.
Given a query node Q, the bounds for h(xq) in
L1 norm for any xq ∈ Q are defined as: LQ =
D
∑

d=1

I(hmin
Q,d , hmax

Q,d ), UQ =
D
∑

d=1

max (|hmin
Q,d |, |h

max
Q,d |)

where I(a, b) =











a, a ≥ 0

−b, b < 0

0, otherwise

for a, b ∈ R, such

that LQ ≤ |h(xq)|1 ≤ UQ for all xq ∈ Q.

Theorem 1. Given a query node Q and a refer-
ence node R, if R’s contribution to all xq ∈ Q

is approximated as ĥR,d(xq) = (SR,d(Kh(δmax
QR ) +

Kh(δmin
QR )))/2, d = 1, ..., D and f̂R(xq) = NRK̄h, the

following local pruning criterion must be enforced to
guarantee the global relative error bound τ : Kh(δmin

QR )−

Kh(δmax
QR ) ≤ min {

τfmin
Q LQ

NUQ
,

τLQ
P

d SA
d

}

Proof: If the local pruning criterion is met and

R’s contribution is approximated, we have |ĥR,d(xq)−
hR,d(xq)| ≤ (hmax

R,d − hmin
R,d )/2 = SA

R,d(Kh(δmin
QR ) −

Kh(δmax
QR ))/2, d = 1, ..., D and |f̂R(xq) − f(xq)| ≤

NR(Kh(δmin
QR )−Kh(δmax

QR ))/2. Given xq ∈ Q, suppose

ĥ(xq) and f̂(xq) were computed using reference nodes
R = {R1, R2, · · ·Rk}. By the triangle inequality,

|f(xq)ĥ(xq)− f̂(xq)h(xq)|1
≤|ĥ(xq)|1|f(xq)− f̂(xq)|+ f̂(xq)|(ĥ(xq)− h(xq))|1
≤

X

R

|ĥ(xq)|1(fR(xq)− f̂R(xq))|+ f̂(xq)|ĥR(xq)− hR(xq)|1

≤|ĥ(xq)|1
X

R

NR(Kh(δmin
QR )−Kh(δmax

QR ))/2+

f̂(xq)
X

R

X

d

SA
R,d(Kh(δmin

QR )−Kh(δmax
QR ))/2

≤
X

R

"

|ĥ(xq)|1
τNRfmin

Q LQ

2NUQ

+ f̂(xq)
τ

P

d SA
R,dLQ

2
P

d
SA

d

#

≤τ f̂(xq)|h(xq)|1

3 Experiments and discussions

We have two tasks in the experiments. One is to
compare the speedup of DT-MS over the naive MS.
The other is to compare the speed, accuracy and sta-
bility in convergence among DT-MS, IFGT-MS and
LSH-MS. We used the IFGT-MS and LSH-MS codes
provided by the authors. LSH uses an Epanechnikov-
like kernel. So we tested both the Gaussian kernel
(Kh(xq−xr) = e−‖xq−xr‖

2/2h2

) and Epanechnikov ker-
nel (Kh(xq −xr) = 1−‖xq −xr‖

2/h2 if ‖xq −xr‖ ≤ h,



Algorithm 2

MS-Dualtree(Q, R)

if !leaf(Q) then
for each dimension d do

hmin
Q,d = max (hmin

Q,d , min (hmin
Q.l,d, hmin

Q.r,d))
hmax

Q,d = min (hmax
Q,d , max (hmax

Q.l,d, hmax
Q.r,d))

fmin
Q = max (fmin

Q , min (fmin
Q.l , fmin

Q.r ))
fmax

Q = min (fmax
Q , max (fmax

Q.l , fmax
Q.r ))

∆K = Kh(δmin
QR )−Kh(δmax

QR )

∆Kmin = Kh(δmin
QR )−Kh(δmin

root)
∆Kmax = Kh(δmax

QR )−Kh(δmax
root )

dlf = NR∆Kmax, duf = NR∆Kmin.

if ∆K ≤ min { τfmin
Q LQ

NUQ
,

τLQ
P

d SA
d

} then

for each dimension d do
dlhd

= S−

R,d∆Kmin + S+
R,d∆Kmax

duhd
= S+

R,d∆Kmin + S−

R,d∆Kmax

hmin
Q,d + = dlhd

,hmax
Q,d + = duhd

fmin
Q + = dlf ,fmax

Q + = duf

else if leaf(Q) and leaf(R) then
MS-DualtreeBase(Q, R)

else
MS-Dualtree(Q.l, R.l),MS-Dualtree(Q.l, R.r)
MS-Dualtree(Q.r, R.l),MS-Dualtree(Q.r, R.r)

MS-DualtreeBase(Q, R)

for each xq ∈ Q do
for each xr ∈ R do

c = Kh(‖xq − xr‖), fmin
q + = c, fmax

q + = c,

fmin
q − = NRKh(δmax

root ), fmax
q − = NRKh(δmin

root)
for each dimension d do

hmin
q,d + = c · xr(d),hmax

q,d + = c · xr(d),

hmin
q,d − = (S−

R,dKh(δmin
QR ) + S+

R,dKh(δmax
QR )),

hmax
q,d − = (S−

R,dKh(δmax
QR ) + S+

R,dKh(δmin
QR ))

fmin
Q = minq∈Q fmin

q , fmax
Q = maxq∈Q fmax

q

for each dimension d do
hmin

Q,d = min
q∈Q

hmin
q,d , hmax

Q,d = max
q∈Q

hmax
q,d

otherwise 0) for DT-MS. 3 XQ is initialized as XR for
all the datasets.

Speedup of DT-MS over the naive MS. We chose
image segmentation as a representative clustering task.
The goal of image segmentation is to cluster pixels
into several distinct groups. We followed (Yang et al.,
2003)’s approach of segmentation, where each datum
represents the normalized CIE LUV color space for
each pixel and the labels are assigned to the pixels by
applying a k-means algorithm to the converged XQ

returned by MS. In other words, one image forms one
dataset XR ⊂ R3 and the size of XR equals the num-
ber of pixels in the image. We applied DT-MS and
the naive MS to 10 test images from the Berkeley seg-

3The optimal bandwidth hg for the Gaussian kernel
is automatically selected by DT-KDE using leave-one-out
least square cross validation. The optimal bandwidth
he for the Epanechnikov kernel is determined as he =
2.214 ∗ hg according to the equivalent kernel rescaling in
Table 6.3 in (Scott, 1992).

mentation dataset.4 The image size is 481 × 321, i.e.
N = 154401. The speedup is an order of magnitude in
7 images and two orders of magnitude in one image.
A summary of running time and speedups for a set of
representative images is given in table 1. Segmentation
results for these images are shown in figure 3.

Table 1: Running time (in seconds) of DT-MS and
naive-MS with the Gaussian kernel. Nit is the number
of iterations in MS, τ = 0.1, ε = 0.01.

Images Speedup Time(DT/Naive) Nit hg

Fox 44.74 155.22/6944.54 1/1 0.0166
Snake 136.51 39.71/5420.36 1/1 0.0065

Cowboys 1.75 3059.38/5352.24 2/1 0.0172
Vase 19.06 300.66/5729.44 1/1 0.0163
Plane 32.86 187.54/6162.65 1/1 0.0102
Hawk 48.88 127.35/6224.48 1/1 0.0136

Figure 3: Selected segmentation results. For each im-
age pair, top: DT-MS, bottom: naive-MS.

Comparison among DT-MS, IFGT-MS and

LSH-MS. The speed, accuracy and stability in con-
vergence of the three algorithms are empirically eval-
uated on synthetic and real datasets. The accuracy
of convergence is evaluated by the relative error in L1

norm as |m̂(xq)−m(xq)|1/|m(xq)|1, where m(xq) is the
final convergence of xq using naive MS and m̂(xq) is
produced by the approximation algorithm. Stable al-
gorithms should exhibit low variance in the converged
point positions over multiple runs. We demonstrate
stability by displaying the results from different runs.

Experiment 1: We first compare the three methods
on two typical images for segmentation (figure 4). Ta-
ble 2 shows the average running time and accuracy
of convergence (represented in relative error) for two
images. The results over different runs are not shown
because the variations are mostly cancelled by apply-

4http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/



ing k-means to group the converged pixels. LSH’s run-
ning time has two parts: MS+(K,L) training. We in-
clude the training time because it is required for every
dataset, and (K,L) training comprises the majority
of the running time. DT-MS(Epan.) is the best in
both speed and accuracy. The average number of it-
erations for IFGT-MS and DT-MS is very small (1 to
2) because the normalized CIE LUV space is sparse
for the tested images.5 Therefore, after a few itera-
tions the query point will have no neighbors within
distance hg or he to itself. IFGT-MS is faster than
DT-MS(Gauss.), but has a slightly higher relative er-
ror. In the image segmentation case, such a difference
can be ignored.

Table 2: Running time (in seconds) and relative error
averaged over 3 runs. Top row: woman.ppm with hg =
0.027, he = 0.0598. Bottom row: hand.ppm with hg =
0.0186, he = 0.0412. ε = 0.01, τ = 0.1 for both images.
IFGT-MS: e = 4, p = 3. DT-MS(Epan.) gives the best
result in terms of speed and accuracy.

Alg. Time Rel. Err.
naive/DT(Epan.) 55.07/0.35 0/0
naive/DT(Gauss.) 194.6/2.08 0/0
IFGT 0.47 0.0093
LSH 0.21 + 266.95 0.3154
naive/DT(Epan.) 308.74/0.92 0/0
naive/DT(Gauss.) 1258.4/5.81 0/0
IFGT 1.24 8.245e− 5
LSH 0.52 + 621.15 0.052501

DT(Epan.) IFGT DT(Gauss.) LSH

Figure 4: Image segmentation results. Size of
woman:116 × 261. Size of hand: 303 × 243.

Experiment 2: The segmentation is obtained by ap-
plying k-means to group the converged points. This
is potentially a confounding factor, since k-means can
compensate for poorly-converged points. Therefore we
synthesized a dataset where k-means cannot work well,
but MS can still find the correct modes. This exper-
iment and the next one demonstrate MS’s ability in
noise reduction of the dataset to help reveal its in-
trinsic dimensionality (Fukunaga & Hostetler, 1975).
Testing data containing 6000 2-D points was gener-
ated by adding Gaussian noise to sampled points on
two intersected half circles (the blue dots in figure 5),

5IFGT-MS often returns NaN because absolute error
pruning creates zeroes in the numerator and the denomi-
nator of m(xq).

Table 3: Running time (in seconds) and relative error
of convergence on 2-C-shape data averaged over 3 runs.
he = 8.856, hg = 4, ε = 0.2, τ = 0.01 for Epanechnikov
kernel and τ = 0.001 for Gaussian kernel. IFGT-MS:
e = 8, p = 30. Nit is N/A for LSH-MS because it uses
a different loop order from IFGT-MS and DT-MS.

Alg. Time Nit Rel. Err.
naive/DT(Epan.) 38.56/11.89 22/22 0/1.8e-4
naive/DT(Gauss.) 190.21/207.6 26/26 0/1.16e-2
IFGT 10.74 25 0.015
LSH 0.58+279.73 N/A 0.1174

Table 4: Running time (in seconds) and relative er-
ror of convergence on noisyswissroll.ds averaged over
3 runs. he = 4.06, hg = 1.833, ε = 0.02, τ = 0.1 for
Epanechnikov kernel and τ = 0.01 for Gaussian kernel.
IFGT-MS: e = 9, p = 20. DT-MS(Epan.) is best in
both speed and accuracy.

Alg. Time Nit Rel Err.
naive/DT(Epan.) 992.39/148.16 44/44 0/1.5e-4
naive/DT(Gauss.) 4314.85/3116.9 51/51 0/0.025
IFGT 240.05 20 0.0573
LSH 3.81+713.58 N/A 0.2137

viewed as 2 c-shape clusters. Table 3 and figure 5 again
show that DT-MS(Epan.) achieves the best overall re-
sult among speed, accuracy and stability. IFGT-MS
is slightly faster than DT-MS(Epan.) with slightly
bigger variations in different runs. Naive-MS(Gauss.)
runs faster than the DT-MS(Gauss.) for this dataset.
This is because when the data points are not well
clustered under certain bandwidth, the pruning does
not happen frequently enough to cancel the additional
cost for distance computation per each query/reference
node pair.

Experiment 3: Swissroll data with additive Gaus-
sian noise(N(0, 4)) (figure 6).6 N = 20000, D = 3.
Though the dataset size is larger and the dimension is
bigger, DT-MS(Epan.) still achieves best performance
in speed, accuracy and stability (table 4 and figure 7).

Experiment 4: High-dimensional data (N = 68040,
D = 16).7 The running time and relative error of con-
vergence are shown in table 5. DT-MS(Epan.) again
achieves the best performance in both speed and ac-
curacy. We could improve IFGT-MS’s relative error
further by increasing p and e (which will increase the
running time), but the algorithm failed due to memory
limit. Even at its current level of accuracy, IFGT is
slower than DT-MS(Epan.). DT-MS(Gauss.) is slower
than the naive case for the same reason as explained
in Experiment 2.

6http://isomap.stanford.edu/datasets.html
7http://www.ics.uci.edu/ kdd/databases/CorelFeatures/

CorelFeatures.data.html



−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
original
converged

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
original
converged

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
run 1
run 2
run 3

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
run 1
run 2
run 3

DT-MS(Epan.) DT-MS(Gauss.)

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
original
converged

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
original
converged

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
run 1
run 2
run 3

−80 −60 −40 −20 0 20 40 60 80
−20

0

20

40

60

80

100

120
run 1
run 2
run 3

IFGT-MS LSH-MS

Figure 5: Accuracy/stability of convergence. Con-
verged queries (red) imposed on the original data
(blue). Stability illustrated by the converged queries
of 3 runs(indicated by 3 colors).

Summary of the Experiments. DT-MS with the
Epanechnikov and the Gaussian kernels provides con-
sistent and accurate convergence, and is faster than
naive MS (by two orders of magnitude in some cases
with both kernels). DT-MS(Epan.) returns almost
zero relative error when compared to the naive case.
DT-MS(Gauss.) also returns zero relative error for
well-clustered data (table 2). For less well-clustered
data, DT-MS(Gauss.) returns slightly bigger rela-
tive error than DT-MS(Epan.), but the error is small
enough to be safely ignored (table 4, 5).

DT-MS(Epan.) is always faster than DT-MS(Gauss.)
in our datasets, because the Epanechnikov kernel
has finite extent and can be pruned more frequently
than the Gaussian kernel with zero approximation er-
ror (Gray & Moore, 2001). The Epanechnikov kernel

Figure 6: Noisy swissroll
(in blue) and the clean
swissroll (in red).

Table 5: Running time (in seconds) and relative error
of convergence on high-dimensional data averaged over
3 runs. he = 0.49, hg = 0.2212, ε = 0.02, τ = 0.1 for
both the Epanechnikov and Gaussian kernels. IFGT-
MS: e = 9, p = 7. DT-MS(Epan.) gives the best result
in terms of speed and accuracy.

Alg. Time Nit Rel Err.
naive/DT(Epan.) 3515.74/516.34 7/7 0/0
naive/DT(Gauss.) 24189.8/39680 17/17 0/7.6e-6
IFGT 1260.56 2 0.2539
LSH 390.7+1026.9 N/A 0.4605

is also optimal in the sense of minimizing asymptotic
mean integrated squared error, so it is statistically pre-
ferred.

For some datasets the relative error for DT-
MS(Gauss.) is bigger than τ (table 3, 4). This is
because τ controls the relative error of m̂(xq) in one
iteration of MS, not in the converged result. Thus, the
approximated trajectory of a point may not match the
one computed by the naive method.

DT-MS(Epan.) always dominates IFGT-MS and LSH-
MS in speed, accuracy and stability, and requires
no parameter tuning. IFGT-MS can achieve very
good speedup and accuracy, if the parameters are set
correctly (table 3 and figure 5). LSH-MS with an
adequate (K,L) pair is very fast. However, train-
ing (K,L) takes much time and is dependent on the
dataset and the search range of (K,L). Both IFGT-
MS and LSH-MS require trial-and-error, manual tun-
ing of parameters, and also require much more storage
than DT-MS.

4 Conclusions

This paper presents a new algorithm DT-MS for ac-
celerating mean shift. It extends the dual-tree method
to the fast approximation of the signed mean vector
in MS. Our experiments have demonstrated its fast,
accurate and stable approximation of MS. Especially
with the Epanechnikov kernel, DT-MS scales quite well
to larger datasets with higher dimensions. It has the
best performance in terms of speed, accuracy and sta-
bility in comparison to IFGT-MS, LSH-MS and DT-
MS(Gauss.).



naive-MS(Epan.) naive-MS(Gauss.)

DT-MS(Epan.) DT-MS(Gauss.)

IFGT-MS LSH-MS

Figure 7: Accuracy and stability of convergence: For
clarity all the MS results (red) are imposed on the
original swissroll (blue). Stability is illustrated by the
converged queries of 3 runs (indicated by 3 colors). For
comparison, the results obtained by the naive MS are
shown in the top row.

Acknowledgements

Dongryeol Lee is supported by a Dept. of Homeland Secu-

rity Fellowship. This material is based upon work which

was supported in part by the NSF under IIS-0433012.

References

Appel, A. W. (1985). An efficient program for many-body
simulations. SIAM J. Sci. Stat. Comput., 6, 85–103.

Barnes, J., & Hut, P. (1986). A hierarchical o(n log n)
force-calculation algorithm. Nature 324, 446–449.

Callahan, P., & Kosaraju, S. (1995). A decomposition of
multidimensional point sets with applications to k-nearest-
neighbors and n-body potential fields. J. of the ACM, 62,
67–90.

Chavez, E., Navarro, G., Baeza-Yates, R., & Marroqun,
J. L. (2001). Proximity searching in metric spaces. ACM
Computing Surveys, 33, 273–321.

Cheng, Y. (1995). Mean shift, mode seeking, and cluster-
ing. IEEE Trans. Pattern Anal. Mach. Intel., 17, 790–799.

Collins, R. (2003). Mean-shift blob tracking through scale
space. Conf. on Computer Vision and Pattern Rec. (pp.
234–240).

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans. Pat-
tern Anal. Mach. Intel., 24, 603–619.

Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time
tracking of non-rigid objects using mean shift. Conf. on
Computer Vision and Pattern Rec. (pp. 142 – 149).

Fashing, M., & Tomasi, C. (2005). Mean shift is a bound
optimization. IEEE Trans. Pattern Anal. Mach. Intel., 27,
471–474.

Freidman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An
algorithm for finding best matches in logarithmic expected
time. ACM Trans. Math. Softw., 3, 209–226.

Fukunaga, K., & Hostetler, L. D. (1975). The estimation
of the gradient of a density function, with applications in
pattern recognition. IEEE Trans. on Information Theory,
21, 32–40.

Georgescu, B., Shimshoni, I., & Meer, P. (2003). Mean
shift based clustering in high dimensions: A texture clas-
sification example. Intl. Conf. on Computer Vision (pp.
456–463).

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity
search in high dimensions via hashing. VLDB (pp. 518–
529).

Gray, A., & Moore, A. (2001). N-body problems in statis-
tical learning. NIPS (pp. 521–527).

Greengard, L., & Rokhlin, V. (1987). A fast algorithm for
particle simulations. J. of Comp. Physics, 73, 325–348.

Lee, D., & Gray, A. (2006). Faster gaussian summation:
Theory and empirical experiments. UAI.

Scott, D. W. (1992). Multivariate density estimation: The-
ory, practice, and visualization. Wiley.

Yang, C., Duraiswami, R., Gumerov, N. A., & Davis, L.
(2003). Improved fast gauss transform and efficient kernel
density estimation. Intl. Conf. on Computer Vision (pp.
464–471).


