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Abstract

In many estimation problems, the measure-
ment process can be actively controlled to
alter the information received. The control
choices made in turn determine the perfor-
mance that is possible in the underlying in-
ference task. In this paper, we discuss perfor-
mance guarantees for heuristic algorithms for
adaptive measurement selection in sequential
estimation problems, where the inference cri-
terion is mutual information. We also demon-
strate the performance of our tighter online
computable performance guarantees through
computational simulations.

1 Introduction

Active sensing is motivated by modern sensors which
can be controlled to observe different aspects of an un-
derlying probabilistic process. For example, if we use
cameras to track people in buildings, we can steer the
camera to focus or zoom on different people or places;
in a sensor network, we can choose to activate and de-
activate different nodes and different sensing modali-
ties within a particular node; or in a medical diagnosis
problem we can choose which tests to administer to
a patient. In each of these cases, our control choices
impact the information that we receive in our obser-
vation, and thus the performance achieved in the un-
derlying inference task.

A commonly used performance objective in active
sensing is mutual information (MI) (e.g., [1]). De-
noting the quantity that we are aiming to infer as X
and the observation resulting from control choice u
as zu, the MI between X and zu is defined as the
expected reduction in the entropy produced by the
observation [2], i.e., I(X; zu) = H(X) − H(X|zu) =
H(zu)−H(zu|X).1 Since H(X) is independent of the

1Note that when we condition on a random variable

control choice u, choosing u to maximize I(X; zu) is
equivalent to minimizing the uncertainty in X as mea-
sured by the conditional entropy H(X|zu). We also
refer to the MI performance objective (which we seek
to maximize) as the reward function.

In different problems, the collection of subsets of ob-
servations from which one may choose can have a dra-
matically different structure. One common structure
involves selection of any K-element subset of a set of
observations, e.g., the subset of sensors to activate in
a sensor network application [3, 4]. Another structure
is one in which there is a single sensor which can oper-
ate in one mode at each time increment; the resulting
selection structure is one in which we may choose a sin-
gle element from each of a series of observation sets,
each of which corresponds to a different time instant
[5, 6]. Application areas range from network fault de-
tection and diagnosis [7] to environmental sensing [3]
to object tracking [1, 5]. The greedy heuristic, which
at each stage chooses the observation which maximizes
the MI with X conditioned on the already selected ob-
servations, is used widely across the breadth of these
applications [1, 3, 4, 5, 7].

Recent work [8] has applied results from [9] to establish
that, when the selection structure is such that any sub-
set of observations with cardinality ≤ K may be cho-
sen, the greedy heuristic achieves a total MI of within a
constant multiple (1−1/e) ≈ 0.632 of the optimal sub-
set of observations. Our analysis extends this to the
larger class of problems involving sequential processes,
providing the surprising result that in sequential prob-
lems, under quite general assumptions one may select
the control for the current time instant neglecting fu-
ture observation opportunities, and still have perfor-
mance within a multiple 0.5 of the optimal. Further-
more, the online computable bounds demonstrated in
Sections 2.4 and 3.3 can be significantly stronger in

(such as a yet unrealized observation) the conditional en-
tropy involves an expectation over the distribution of that
random variable.



certain circumstances. Several new results relating to
closed loop operation are presented in Section 4.

The guarantees we develop are based upon submodu-
larity, the same property exploited in [8, 9, 11]. Sub-
modularity captures the notion that as we select more
observations, the value of the remaining unselected ob-
servations decreases, i.e., the notion of diminishing re-
turns.

Definition 1. A set function f is submodular if f(C∪
A)− f(A) ≥ f(C ∪ B)− f(B) ∀ B ⊇ A.

It was established in [8] that, assuming that observa-
tions are independent conditioned on the quantity to
be estimated (herein referred to as the state), MI is a
submodular function of the observation selection set.
In many applications the requirement for all observa-
tions to be independent conditioned on the state is
not overly restrictive, since the definition of state may
be expanded to include latent variables that provide
the required conditional independence. The simple re-
sult that we will utilize from submodularity is that
I(x; zC |zA) ≥ I(x; zC |zB) ∀ B ⊇ A.

2 A Simple Performance Guarantee

To commence, consider a simple sequential problem
involving two time steps, where at each step we must
choose a single observation (e.g., in which mode to op-
erate a sensor) from a different set of observations.
The goal is to maximize the information obtained
about an underlying quantity X. Let {o1, o2} de-
note the optimal choice for the two stages, i.e., that
which maximizes I(X; zu1

1 , zu2
2 ) over possible choices

for {u1, u2}. Let {g1, g2} denote the choice made by
the greedy heuristic, where g1 = arg maxu1

I(X; zu1
1 )

and g2 = arg maxu2
I(X; zu2

2 |z
g1
1 ) (where condition-

ing is on the random variable zg1
1 , not on the result-

ing observation value). Then the following analysis
establishes a performance guarantee for the greedy al-
gorithm:

I(X; zo1
1 , zo2

2 )
(a)

≤ I(X; zg1
1 , zg2

2 , zo1
1 , zo2

2 )
(b)
= I(X; zg1

1 ) + I(X; zg2
2 |z

g1
1 )

+ I(X; zo1
1 |z

g1
1 , zg2

2 )
+ I(x; zo2

2 |z
g1
1 , zg2

2 , zo1
1 )

(c)

≤ I(X; zg1
1 ) + I(X; zg2

2 |z
g1
1 )

+ I(X; zo1
1 ) + I(x; zo2

2 |z
g1
1 )

(d)

≤ 2I(X; zg1
1 ) + 2I(X; zg2

2 |z
g1
1 )

(e)
= 2I(X; zg1

1 , zg2
2 ) (1)

where (a) results from the nondecreasing property of
MI, (b) is an application of the MI chain rule, (c) re-

sults from submodularity (assuming that all observa-
tions are independent conditioned on X), (d) from the
definition of the greedy heuristic, and (e) from a re-
verse application of the chain rule. Thus the optimal
performance can be no more than twice that of the
greedy heuristic, or, conversely, the performance of the
greedy heuristic is at least half that of the optimal.2

Theorem 1 presents this result in its most general form;
the proof directly follows the above steps. The fol-
lowing assumption establishes the basic structure: we
have N sets of observations, and we can select a spec-
ified number of observations from each set in an arbi-
trary order.

Assumption 1. There are N sets of observations,
{{z1

1 , . . . , z
n1
1 }, {z1

2 , . . . , z
n2
2 }, . . . , {z1

N , . . . , z
nN
N }},

which are mutually independent conditioned on the
quantity to be estimated (X). Any ki observations can
be chosen out of the i-th set ({z1

i , . . . , z
ni
i }). The se-

quence (w1, . . . , wM ) (where wi ∈ {1, . . . , N} ∀ i) spec-
ifies the order in which we visit observation sets using
the greedy heuristic (i.e., in the i-th stage we select a
previously unselected observation out of the wi-th set).

The abstraction of the observation set sequence
(w1, . . . , wM ) allows us to visit observation sets more
than once (allowing us to select multiple observations
from each set) and in any order. The greedy heuristic
operating on this structure is defined below, followed
by the general form of the guarantee.

Definition 2. The greedy heuristic operates according
to the following rule:

gj = arg max
u∈{1,...,nwj }

I(X; zuwj |z
g1
w1
, . . . , zgj−1

wj−1
)

Theorem 1. Under Assumption 1, the greedy heuris-
tic in Definition 2 has performance guaranteed by the
following expression:

I(X; zo1
w1
, . . . , zoMwM ) ≤ 2I(X; zg1

w1
, . . . , zgMwM )

where {zo1
w1
, . . . , zoMwM } is the optimal set of

observations, i.e., the one which maximizes
I(X; zu1

w1
, . . . , zuMwM ) over the possible choices for

{u1, . . . , uM}.

The proof of the theorem can be found in [10]; it di-
rectly follows the steps in Eq. (1).

2.1 Comparison to matroid guarantee

The prior work using matroids [11] provides another
algorithm with the same guarantee for problems of this

2Note that this is considering only open loop control;
we will discuss closed loop control in Section 4.



structure. However, to achieve the guarantee on ma-
troids it is necessary to consider every observation at
every stage of the problem. Computationally, it is far
more desirable to be able to proceed in a dynamic
system by selecting observations at time k consider-
ing only the observations available at that time, dis-
regarding future time steps (indeed, countless previ-
ous works, such as [1], do just that). The freedom of
choice of the order in which we visit observation sets
in Theorem 1 extends the performance guarantee to
this commonly used sequential selection structure.

2.2 Tightness of bound

The bound derived in Theorem 1 can be arbitrarily
close to tight, as the following example shows.

Example 1. Let X = [a, b]T where a and b are in-
dependent binary random variables with P (a = 0) =
P (a = 1) = 0.5 and P (b = 0) = 0.5 − ε; P (b = 1) =
0.5 + ε for some ε > 0. We have two sets of obser-
vations with n1 = 2, n2 = 1 and k1 = k2 = 1. In
the first set of observations we may measure z1

1 = a
for reward I(X; z1

1) = H(a) = 1, or z2
1 = b for reward

I(X; z2
1) = H(b) = 1 − δ(ε), where δ(ε) > 0 ∀ ε > 0,

and δ(ε) → 0 as ε → 0. At the second stage we have
one choice, z1

2 = a. Our walk is w = (1, 2), i.e., we
visit the first set of observations once, followed by the
second set. The greedy algorithm selects at the first
stage to observe z1

1 = a, as it yields a higher reward
(1) than z2

1 = b (1 − δ(ε)). At the second stage, the
algorithm already has the exact value for a, hence the
observation at the second stage yields zero reward. The
total reward is 1. The optimal sequence selects obser-
vation z2

1 = b for reward 1 − δ(ε), and then gains a
reward of 1 from the second observation z1

2 . The to-
tal reward is 2 − δ(ε). By choosing ε arbitrarily close
to zero, we may make the ratio of optimal reward to
greedy reward, 2− δ(ε), arbitrarily close to 2.

2.3 Online version of guarantee

Modifying step (c) of Eq. (1), we can also obtain an
online performance guarantee, which will often be sub-
stantially tighter in practice (as demonstrated in Sec-
tion 2.4). The online bound will tend to be tight in
cases where the amount of information remaining after
choosing the set of observations is small.

Theorem 2. Under the same assumptions as Theo-
rem 1, for each i ∈ {1, . . . , N} define k̄i = min{ki, ni−
ki}, and for each j ∈ {1, . . . , k̄i} define

ḡji = arg max
u∈{1,...,ni}−{ḡli|l<j}

I(X; zui |zg1
w1
, . . . , zgMwM ) (2)

Then the following two performance guarantees, which

are computable online, apply:

I(X; zo1
w1
, . . . , zoMwM ) ≤ I(X; zg1

w1
, . . . , zgMwM )

+
N∑
i=1

k̄i∑
j=1

I(X; zḡ
j
i
i |z

g1
w1
, . . . , zgMwM ) (3)

I(X; zo1
w1
, . . . , zoMwM ) ≤ I(X; zg1

w1
, . . . , zgMwM )

+
N∑
i=1

k̄iI(X; zḡ
1
i
i |z

g1
w1
, . . . , zgMwM ) (4)

The proof of this result may be found in [10]. The
quantity ḡji represents the j-th next best observation
in the i-th set, conditioned on the observation choices
made in the greedy selection. Determining these quan-
tities and their rewards requires no more reward evalu-
ations than the initial calculation of the greedy choices.
The reward values of these observations serve to bound
the information remaining given the choice made by
the greedy heuristic. The count k̄i is an upper bound
to the number of observations out of the i-th set that
are in the optimal choice but not in the greedy choice.
The online bound can be used to calculate an upper
bound for the optimal reward starting from any se-
quence of observation choices, not just the choice made
by the greedy heuristic in Definition 2, (g1, . . . , gM ).

2.4 Example of online guarantee

Suppose that we are using a surface vehicle travelling
at a constant velocity along a fixed path (as illustrated
in Fig. 1(a)) to map the depth of the ocean floor in a
particular region. Assume that, at any position on the
path (such as the points denoted by ‘4’), we may steer
our sensor to measure the depth of any point within a
given region around the current position (as depicted
by the dotted ellipses), and that we receive a linear
measurement of the depth corrupted by Gaussian noise
with variance R. Suppose that we model the depth of
the ocean floor as a Gauss-Markov random field with a
500×100 thin membrane grid model where neighboring
node attractions are uniformly equal to q. One cycle
of the vehicle path takes 300 time steps to complete.
The number of observation choices available (i.e., the
number of cells inside the ellipses in Fig. 1(a)) varies
between 380 and 400 due to changing geometry as the
vehicle moves.

Defining the state X to be the vector containing one
element for each cell in the 500×100 grid, the problem
can be seen to fit into the structure of Assumption 1
(with wi = i and ki = 1 ∀ i). The selection algorithm
simply selects at each stage the most informative ob-
servation conditioned on the observations previously
chosen. A single observation of the cell directly be-
neath the sensing platform is used as initialization to
obtain a full rank information matrix.
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(a) Region boundary and vehicle path

Figure 1: (a) shows region boundary and vehicle path
(counter-clockwise, starting from the left end of the
lower straight segment). When the vehicle is located
at a ‘4’ mark, any one grid element with center inside
the surrounding dotted ellipse may be measured. (b)
graphs reward accrued by the greedy heuristic after
different periods of time, and the bound on the optimal
sequence for the same time period. (c) shows the ratio
of these two curves, providing the factor of optimality
guaranteed by the bound.

Fig. 1(b) shows the accrual of reward over time as well
as the bound on the optimal sequence obtained us-
ing Theorem 2 for each time step when q = 100 and
R = 1/40, while Fig. 1(c) shows the ratio between the
achieved performance and the optimal sequence bound
over time. The graph indicates that the greedy heuris-
tic achieves at least 0.8× the optimal reward. In this
case, finding the optimal plan for the 600 time slots
through full enumeration would require on the order of
101556 reward evaluations. The tightness of the online
bound depends on particular model characteristics: if
q = R = 1, then the guarantee ratio is much closer to
the value of the offline bound (i.e., 0.5).

2.5 Errors in rewards

The previous analysis assumes that all reward values
can be calculated exactly. While this is possible for
some common classes of problems (such as linear Gaus-
sian models), approximations are often necessary; one
method of approximately evaluating the MI terms for
closed loop selection problems in complex networks is
proposed in [7]. The analysis in [8] can be easily ex-
tended to the algorithms described in this paper. As
an example, consider the proof of Theorem 1, where
the greedy heuristic is used with estimated MI rewards,

gj = arg max
g∈{1,...,nwj }

Î(X; zgwj |z
g1
w1
, . . . , zgj−1

wj−1
)

and the error in the MI estimate is bounded by ε, i.e.,

|I(X; zgwj |z
g1
w1
, . . . , zgj−1

wj−1
)−Î(X; zgwj |z

g1
w1
, . . . , zgj−1

wj−1
)| ≤ ε

From the proof of Theorem 1, we can easily show that

I(X; zo1
w1
, . . . , zoMwM ) ≤ 2I(X; zg1

w1
, . . . , zgMwM ) + 2Mε

Hence the deterioration in the performance guarantee
is at most 2Mε.

3 Exploiting diffusiveness

In problems such as object tracking, the kinematic
quantities of interest evolve according to a diffusive
process, in which correlation between states at differ-
ent time instants reduces as the time difference in-
creases. Intuitively, one would expect that a greedy
algorithm would be closer to optimal in situations in
which the diffusion strength is high. This section de-
velops a performance guarantee which exploits the dif-
fusiveness of the underlying process to obtain a tighter
bound on performance.

The general form of the result, stated in Theorem 3,
deals with an arbitrary graph in the latent structure.
The simpler cases involving trees and chains are dis-
cussed in the sequel. The theorem is limited to only
choosing a single observation from each set; the proof
of Theorem 3 exploits this fact. The basic model struc-
ture is set up in Assumption 2.

Assumption 2. Let the latent structure which we seek
to infer consist of an undirected graph G with nodes
X = {x1, . . . , xL}, with an arbitrary interconnection
structure. Assume that each node has a set of obser-
vations {z1

i , . . . , z
ni
i }, which are independent of each

other and all other nodes and observations in the graph
conditioned on xi. We may select a single observa-
tion from each set. Let (w1, . . . , wL) be a sequence
which determines the order in which nodes are visited
(wi ∈ {1, . . . , L} ∀ i); we assume that each node is
visited exactly once.



The results of Section 2 were applicable to any sub-
modular, nondecreasing objective for which the reward
of an empty set was zero. In this section, we exploit an
additional property of mutual information which holds
under Assumption 2, that for any set of conditioning
observations zA:

I(X; zji |z
A) = H(zji |z

A)−H(zji |X, z
A)

= H(zji |z
A)−H(zji |xi)

= I(xi; z
j
i |z
A) (5)

We then utilize this property in order to exploit pro-
cess diffusiveness. The general form of the diffusive
characteristic is stated in Assumption 3. This is a
strong assumption that is difficult to establish glob-
ally for any given model; in Section 3.1 we present an
online computable guarantee which exploits the char-
acteristic to whatever extent it exists in a particular
selection problem. In Section 3.2 we then specialize
the assumption to cases where the latent graph struc-
ture is a tree or a chain.
Assumption 3. Under the structure in Assump-
tion 2, let the graph G have the diffusive property
in which there exists α < 1 such that for each i ∈
{1, . . . , L} and each observation zjwi at node xwi ,

I(xN (wi); z
j
wi |z

g1
w1
, . . . , zgi−1

wi−1
)

≤ αI(xwi ; z
j
wi |z

g1
w1
, . . . , zgi−1

wi−1
)

where xN (wi) denotes the neighbors of node xwi in the
latent structure graph G.

Assumption 3 states that the information which the
observation zjwi contains about xwi is discounted by a
factor of at least α when compared to the information
it contains about the remainder of the graph. Theo-
rem 3 uses this property to bound the loss of optimal-
ity associated with the greedy choice to be a factor of
(1 + α) rather than 2.
Theorem 3. Under Assumptions 2 and 3, the perfor-
mance of the greedy heuristic in Definition 2 satisfies
the following guarantee:

I(X; zo1
w1
, . . . , zoLwL) ≤ (1 + α)I(X; zg1

w1
, . . . , zgLwL)

Proof. The proof follows an induction on the following
expression, which trivially holds for j = 1,

I(X; zo1
w1
, . . . , zoLwL) ≤ (1 + α)I(X; zg1

w1
, . . . , zgj−1

wj−1
)

+ I(X; zojwj , . . . , z
oL
wL |z

g1
w1
, . . . , zgj−1

wj−1
) (6)

The steps necessary to establish the induction step are
similar to those in Eq. (1); details may be found in
[10].

3.1 Online guarantee

For many models the diffusive property is difficult to
establish globally. Following from step (d) of Theo-
rem 3, one may obtain an online computable bound
which does not require the property of Assumption 3
to hold globally, but exploits it to whatever extent it
exists in a particular selection problem.

Theorem 4. Under the model of Assumption 2, but
not requiring the diffusive property of Assumption 3,
the following performance guarantee, which can be
computed online, applies to the greedy heuristic of Def-
inition 2:

I(X; zo1
w1
, . . . , zoLwL) ≤ I(X; zg1

w1
, . . . , zgLwL)+

L∑
j=1

I(xN (wj); z
gj
wj |z

g1
w1
, . . . , zgj−1

wj−1
)

The proof of this result may be found in [10].

3.2 Specialization to trees and chains

In the common case where the latent structure X =
{x1, . . . , xL} forms a tree, we may avoid including all
neighbors of a node in the condition of Assumption 3
and in the result of Theorem 4, replacing it instead
with the parent in the tree. An additional require-
ment on the sequence (w1, . . . , wL) is necessary to ex-
ploit the tree structure, namely that the walk must be
“bottom-up”, i.e., no node may be visited before all of
its children have been visited. Theorems 3 and 4 both
hold under these modified assumptions; the proofs
pass directly once xN (wj) is replaced by xπ(wj) in step
(d). Details may be found in [10]. The most common
application of the diffusive model is in Markov chains
(a special case of a tree), where the i-th node corre-
sponds to time i. In this case, the sequence is simply
wi = i, i.e., we visit the nodes in time order. Choos-
ing the final node in the chain to be the tree root, this
sequence respects the bottom-up requirement, and the
diffusive requirement becomes:

I(xk+1; zjk|z
g1
1 , . . . , z

gk−1
k−1 ) ≤ αI(xk; zjk|z

g1
1 , . . . , z

gk−1
k−1 )

(7)

3.3 Example of online diffusive guarantee

Consider an object which moves in two dimensions ac-
cording to a Gaussian random walk:

xk+1 = xk +wk

where wk ∼ N{wk; 0, I}. The initial position of the
object is distributed according to x0 ∼ N{x0; 0, I}.
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Figure 2: (a) shows average total reward accrued by
the greedy heuristic in the 200 time steps for different
diffusion strength values (q), and the bound on optimal
obtained through the tree version of Theorem 4. (b)
shows the ratio of these curves, providing the factor of
optimality guaranteed by the bound.

Noisy bearing observations are available from four sen-
sors positioned at (±100,±100), but only one obser-
vation may be utilized at any instant. Simulations
were run for 200 time steps. The total reward and the
bound obtained from the tree version of Theorem 4
are shown in Fig. 2(a) as a function of the measure-
ment noise standard deviation (in degrees). The re-
sults demonstrate that the performance guarantee be-
comes stronger as the measurement noise decreases;
the same effect occurs if the observation noise is held
constant and the dynamics noise increased. Fig. 2(b)
shows the ratio of the greedy performance to the up-
per bound on optimal, demonstrating that the greedy
heuristic is guaranteed to be within a factor of 0.77 of
optimal with a measurement standard deviation of 0.1
degrees.

In this example, we utilized the closed loop greedy
heuristic examined in Section 4, hence it was necessary
to use multiple Monte Carlo simulations to compute
the online guarantee. Tracking was performed using
an extended Kalman filter, hence the bounds are ap-
proximate (the EKF variances were used to calculate
the rewards). In this scenario, the low degree of non-
linearity in the observation model provides confidence
that the inaccuracy in the rewards is insignificant.

4 Closed loop control

The preceding analysis concentrates on an open loop
control structure, i.e., it assumes that all observation
choices are made before any observation values are re-
ceived. Greedy heuristics are often applied in a closed
loop setting, in which an observation is chosen, and
then its value is received before the next choice is
made.

The performance guarantees of Theorems 1 and 3 both
apply to the expected performance of the greedy heuris-
tic operating in a closed loop fashion, i.e., in expecta-
tion the closed loop greedy heuristic achieves at least
half the reward of the optimal open loop selection.
Theorem 5 establishes the result of Theorem 1 for the
closed loop heuristic. The same process can be used
to establish a closed loop version of Theorem 3. To
obtain the closed loop guarantee, we need to exploit
an additional characteristic of mutual information:

I(X; zA|zB) =
∫
I(X; zA|zB = ζ)pzB(ζ)dζ (8)

While the results are presented in terms of mutual in-
formation, they apply to any other objective which
meets the previous requirements as well as Eq. (8).

We define hj = (u1, z
u1
w1
, u2, z

u2
w2
, . . . , uj−1, z

uj−1
wj−1) to be

the history of all observation actions chosen, and the
resulting observation values, prior to stage j (this con-
stitutes all the information which we can utilize in
choosing our action at time j). Accordingly, h1 = ∅,
and hj+1 = (hj , uj , z

uj
wj ). The greedy heuristic operat-

ing in closed loop is defined in Definition 3.

Definition 3. Under the same assumptions as The-
orem 1, define the closed loop greedy heuristic policy
µg:

µgj (hj) = arg max
u∈{1,...,nwj }

I(X; zuwj |hj) (9)

We use the convention that conditioning on hi in an
MI expression is always on the value, and hence if hi
contains elements which are random variables we will
always include an explicit expectation operator. The
expected reward-to-go from stage j to the end of the
planning horizon for the greedy heuristic µgj (hj) com-
mencing from the history hj is denoted as:

Jµ
g

j (hj) = I(X; z
µgj (hj)
wj , . . . , z

µgN (hN )
wN |hj) (10)

= E

 N∑
i=j

I(X; zµ
g
i (hi)

wi |hi)

∣∣∣∣∣∣ hj

 (11)

The expectation in Eq. (11) is over the
random variables corresponding to the actions



{µgj+1(hj+1), . . . , µgN (hN )},3 along with the
observations resulting from the actions,
{zµ

g
j (hj)

wj , . . . , z
µgN (hN )
wN }, where hi is the concatenation

of the previous history sequence hi−1 with the new
observation action µgi (hi) and the new observation
value z

µgi (hi)
wi . The expected reward of the greedy

heuristic over the full planning horizon is Jµ
g

1 (∅). We
also define the expected reward accrued by the greedy
heuristic up to and including stage j, commencing
from an empty history sequence (i.e., h1 = ∅), as:

Jµ
g

→j = E

[
j∑
i=1

I(X; zµ
g
i (hi)

wi |hi)

]
(12)

This gives rise to the recursive relationship:

Jµ
g

→j = E[I(X; z
µgj (hj)
wj |hj)] + Jµ

g

→j−1 (13)

Comparing Eq. (11) with Eq. (12), we have Jµ
g

→N =
Jµ

g

1 (∅). We define Jµ
g

→0 = 0.

The expected reward of the tail of the optimal open
loop observation sequence (oj , . . . , oN ) commencing
from the history hj is denoted by:

Joj (hj) = I(X; zojwj , . . . , z
oN
wN |hj) (14)

Using the MI chain rule and Eq. (8), this can be writ-
ten recursively as:

Joj (hj) = I(X; zojwj |hj) + E
z
oj
wj
|hj
Joj+1[(hj , oj , zojwj )] (15)

where JoN+1(hN+1) = 0. The reward of the optimal
open loop observation sequence over the full planning
horizon is:

Jo1 (∅) = I(X; zo1
w1
, . . . , zoNwN ) (16)

We now seek to obtain a guarantee on the performance
ratio between the optimal open loop observation se-
quence and the closed loop greedy heuristic. The proof
of the theorem uses the following simple result, which
is proven in [10].

Lemma 1. Given the above definitions:

E
z
oj
wj
|hj
Joj+1[(hj , oj , zojwj )] ≤ J

o
j+1(hj)

≤ I(X; z
µgj (hj)
wj |hj)+ E

z
µ
g
j

(hj)
wj

|hj

Joj+1[(hj , µ
g
j (hj), z

µgj (hj)
wj )]

3We assume a deterministic policy, hence the action at
stage j is fixed given knowledge of hj .

Theorem 5. Under the same assumptions as Theo-
rem 1,

Jo1 (∅) ≤ 2Jµ
g

1 (∅)
i.e., the expected reward of the closed loop greedy
heuristic is at least half the reward of the optimal open
loop policy.

Proof. To establish an induction, assume that

Jo1 (∅) ≤ 2Jµ
g

→j−1 + EJoj (hj) (17)

Noting that h1 = ∅, this trivially holds for j = 1 since
Jµ

g

→0 = 0. Now, assuming that it holds for j, we show
that it also holds for (j + 1). Applying Eq. (15),

Jo1 (∅) ≤ 2Jµ
g

→j−1

+ E

{
I(X; zojwj |hj) + E

z
oj
wj
|hj
Joj+1[(hj , oj , zojwj )]

}
By the definition of the closed loop greedy heuristic
(Definition 3),

I(X; zojwj |hj) ≤ I(X; z
µgj (hj)
wj |hj)

hence:

Jo1 (∅) ≤ 2Jµ
g

→j−1

+ E

{
I(X; z

µgj (hj)
wj |hj) + E

z
oj
wj
|hj
Joj+1[(hj , oj , zojwj )]

}
Applying Lemma 1, followed by Eq. (13):

Jo1 (∅) ≤ 2Jµ
g

→j−1 + E

{
2I(X; z

µgj (hj)
wj |hj)

+ E
z
µ
g
j

(hj)
wj

|hj

Joj+1[(hj , µ
g
j (hj), z

µgj (hj)
wj )]

}

= 2Jµ
g

→j + EJoj+1(hj+1)

where hj+1 = (hj , µ
g
j (hj), z

µgj (hj)
wj ). This establishes the

induction step.

Applying the induction step N times, we obtain:

Jo1 (∅) ≤ 2Jµ
g

→N + EJoN+1(hN+1) = 2Jµ
g

1 (∅)

since JoN+1(hN+1) = 0 and Jµ
g

→N = Jµ
g

1 (∅).

We emphasize that this performance guarantee is for
expected performance: it does not provide a guaran-
tee for the change in entropy of every sample path.
An online bound cannot be obtained on the basis of
a single realization, although online bounds similar to
Theorems 2 and 4 could be calculated through Monte
Carlo simulation (to approximate the expectation).
The guarantee for K-element subset selection in [8]
can be extended similarly to closed loop selection; the
analogous result is proven in [10].



4.1 Closed loop greedy vs closed loop
optimal

While Theorem 5 provides a performance guarantee
with respect to the optimal open loop sequence, there
is no guarantee relating the performance of the closed
loop greedy heuristic to the optimal closed loop con-
troller, as the following example illustrates. One ex-
ception to this is linear Gaussian models, where closed
loop policies can perform no better than open loop se-
quences, so that the open loop guarantee extends to
closed loop performance.

Example 2. Consider the following two-stage prob-
lem, where X = [a, b, c]T , with a ∈ {1, . . . , N}, b ∈
{1, . . . , N + 1}, and c ∈ {1, . . . ,M}. The prior dis-
tribution of each of these is uniform and independent.
In the first stage, we may measure z1

1 = a for reward
logN , or z2

1 = b for reward log(N + 1). In the second
stage, we may choose zi2, i ∈ {1, . . . , N}, where

zi2 =

{
c, i = a

d, otherwise

where d is independent of X, and is uniformly dis-
tributed on {1, . . . ,M}. The greedy algorithm in the
first stage selects the observation z2

1 = b, as it yields
a higher reward (log(N + 1)) than z1

1 = a (logN).
At the second stage, all options have the same reward,
1
N logM , so we choose one arbitrarily for a total re-
ward of log(N + 1) + 1

N logM . The optimal algorithm
in the first stage selects the observation z1

1 = a for re-
ward logN , followed by the observation za2 for reward
logM , for total reward logN+logM . The ratio of the
greedy reward to the optimal reward is

log(N + 1) + 1
N logM

logN + logM
→ 1

N
, M →∞

Hence, by choosing N and M to be large, we can obtain
an arbitrarily small ratio between the greedy closed-loop
reward and the optimal closed-loop reward.

We conjecture that it may be possible to establish a
closed loop performance guarantee for diffusive pro-
cesses, but it is likely to be dramatically weaker than
the bounds presented in this paper. In [7] it is estab-
lished that the number of tests required by the closed
loop greedy heuristic to perfectly learn the state of a
collection of K binary random variables4 from a set
of possible tests (each of which depends on one or
more of the underlying variables) is within a factor
of O(logK) of the optimal (smallest) set. Our ex-
ample demonstrates just how bad the factor can be

4or learn it as well as it can be learned using a fixed
group of observations

in the related problem where the criterion is to maxi-
mize performance using a fixed set of resources (rather
than minimizing resources to obtained a fixed level of
performance), and where variables can be of arbitrary
cardinality (rather than binary) and the set of obser-
vations from which we choose changes from iteration
to iteration (rather than selecting at each stage from
a fixed set of observations).

5 Conclusion

The performance guarantees presented in this paper
provide theoretical basis for simple heuristic algo-
rithms that are widely used in practice. The guaran-
tees apply to both open loop and closed loop operation,
and are naturally tighter for diffusive processes.
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