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Abstract

The idea of local learning, classifying a par-
ticular point based on its neighbors, has been
successfully applied to supervised learning
problems. In this paper, we adapt it for
Transductive Classification (TC) problems.
Specifically, we formulate a Local Learning
Regularizer (LL-Reg) which leads to a solu-
tion with the property that the label of each
data point can be well predicted based on
its neighbors and their labels. For model
selection, an efficient way to compute the
leave-one-out classification error is provided
for the proposed and related algorithms. Ex-
perimental results using several benchmark
datasets illustrate the effectiveness of the pro-
posed approach.

1 Introduction

In this paper, we mainly consider the binary Trans-
ductive Classification (TC) problem: We are given l
labeled data points (x1, y1), . . . , (xl, yl), and u un-
labeled points xl+1, . . . , xl+u, where xi ∈ X ⊆ Rd,
1 ≤ i ≤ l + u, is the input data, X is the input space,
and yi ∈ {−1,+1}, 1 ≤ i ≤ l, is the class label. The
goal is to predict the class labels of the given unlabeled
data points, i.e. xl+1, . . . , xl+u.1

In many TC algorithms [15, 13, 2, 5], a real valued fi,
1 ≤ i ≤ l + u, is assigned to each data point xi, based
on which the final classification is performed as

yj = sign(fj) l + 1 ≤ j ≤ l + u (1)

In this case, how to compute fi of each xi is the
main part of a TC algorithm. The key to this task

1Binary TC algorithms can be easily extended to the
multi-class case by adopting the one-versus-all approach.

is the prior assumption about the properties that fi

should have over the available data points. For exam-
ple, graph Laplacian based regularization is a popular
TC method [15, 13, 2]. It is based on the “cluster as-
sumption” that if two data points xi and xj are on the
same structure (manifold or cluster), then the values
of fi and fj should be similar to each other.

In the present paper, we propose a local learning reg-
ularization for TC problems. In our approach, the de-
sirable properties of fi are described by a local learning
regularizer, which constrains that the real valued solu-
tion fi of each data point xi should be well estimated
based on its neighbors and their real value solutions.

The rest of this paper is organized as follows. In
section 2, a general quadratic cost function and the
Laplacian regularization for TC problems are briefly
described. In section 3, the details of our local learning
regularizer are presented. Comparison with related ap-
proaches is given in section 4. In section 5, we address
the model selection issue. In particular, we derive a
method to compute the Leave-One-Out (LOO) classi-
fication error efficiently for the proposed algorithm and
some other related approaches. Experimental results
are provided in section 6 and we conclude the paper
in the last section.

2 A Quadratic Objective Function and
Laplacian Regularization for TC

Several TC algorithms [15, 8, 13, 1] can be formulated
as or are closely related to the following quadratic op-
timization problem,

min
f∈Rn

f>Rf + (f − y)>C(f − y) (2)

where R ∈ Rn×n is the regularization matrix, f =
[f1, . . . , fn]> ∈ Rn is the vector of real valued solu-
tion, y = [y1, . . . , yl, 0, . . . , 0]> ∈ Rn, and C ∈ Rn×n is
a diagonal matrix, its i-th diagonal element ci is com-
puted as: ci = Cl > 0 for 1 ≤ i ≤ l, and ci = Cu ≥ 0



for l+1 ≤ i ≤ n, where Cl and Cu are two parameters.

It can be easily proved that the solution of (2) is

f = (R + C)−1Cy (3)

In (2), the second term is just similar to the quadratic
loss function used in supervised learning, which re-
stricts that fi should be close to yi for 1 ≤ i ≤ l.

The key part in (2) for solving the TC problem is the
first term, the regularizer, which specifies the desir-
able properties of fi. Currently the Laplacian regular-
izer (Lap-Reg) is very popular for TC problems. To
compute its regularization matrix L, we first build a
weighted k-nearest neighbor graph of n nodes,2 each
node of which corresponds to a data point, and L is
computed as [15]:

L = D−W (4)

where W = [wij ] ∈ Rn×n is the adjacency matrix of
this graph and it is calculated as:

wij = exp(− 1
γ
‖xi − xj‖2) (5)

if xi and xj are connected, and 0 otherwise. In (4),
D ∈ Rn×n is a diagonal matrix, its i-th diagonal ele-
ment di is defined as di =

∑n
j=1 wij . When R = L,

the first term of (2) can be written as:

f>Lf =
1
2

n∑
i=1

n∑
j=1

wij(fi − fj)2 (6)

The Normalized Laplacian Regularizer (NLap-Reg) is
also widely used in TC algorithms. Its regularization
matrix Ln is calculated as [13]:

Ln = I−D− 1
2 WD− 1

2 (7)

where I is the unit matrix, while W and D are the
same as in (4). When R = Ln, the first term of (2)
becomes:

f>Lnf =
1
2

n∑
i=1

n∑
j=1

wij(
fi√
di

− fj√
dj

)2 (8)

According to (6) and (8), both Lap-Reg and NLap-Reg
put a smoothness constraint on f . Namely, the value of
fi should not change too much between nearby points.

The problem (2) represents several typical TC algo-
rithms in literature. For example, in the approach
of [15], the Laplacian matrix L is used for R. And
Cl = ∞, Cu = 0. That is, fi must strictly equal to yi

for 1 ≤ i ≤ l, while there is no constraints on fi for
2Other strategies of building the graph are also possible.

l + 1 ≤ i ≤ n. In [1], R = L, Cu = 0 but 0 < Cl < ∞,
hence the constraint on fi (1 ≤ i ≤ l) is soft. In [13],
the normalized Laplacian matrix Ln is adopted for R
and 0 < Cl = Cu < ∞. Here Cu = Cl arises from
the label propagation process defined in [13], and it
has the effect of keeping fi of unlabeled xi within a
reasonable range.

In this paper, we propose a new regularization matrix,
and we will focus on problem (2) to solve TC problems,
as it allows us to concentrate on the effectiveness of the
regularization matrix R.

3 TC via Local Learning
Regularization

In the following, Ni denotes the set of neighboring
points of xi, not including xi. And ni denotes |Ni|,
i.e. the number of points in Ni. Here, “neighboring
points” or “neighbors” of xi simply means the near-
est neighbors of xi according to some distance metric,
such as a the Euclidean distance.

3.1 Local Learning methods for Supervised
Classification

In supervised classification algorithms, a classifier is
trained with all the labeled training data and used to
predict the class labels of unseen test data. These
algorithms can be called global learning algorithms
since the classifier is built based on the whole train-
ing dataset. In contrast, in local learning algorithms
[3], for a given test data point, a classifier is trained
only with its neighboring training data, and then the
given test data point is classified by this locally learned
model. It has been reported that local learning algo-
rithms often outperform global ones [3] since the local
models are trained only with the points that are re-
lated to the particular test data.

3.2 Basic Idea

Local learning algorithms described above can not be
applied directly to TC problems, where there are usu-
ally many unlabeled points that do not have any la-
beled neighbors at all. However, we will show in the
following that the idea of local learning can be adapted
for TC problems.

The good performance of local learning methods in-
dicates that the label of a data point can be well esti-
mated based on its neighbors. Based on this, in order
to find a good real valued solutions vector f , we pro-
pose to replace the first term of problem (2) with the



following:
n∑

i=1

(fi − oi(xi))2 (9)

where oi(·) denotes the output function of a model,
trained locally with some supervised learning algo-
rithms, using the labeled data {(xj , fj)}xj∈Ni

. De-
tails on how to compute oi(xi) will be given later. For
the function oi(·), the subscript i means the model is
trained based on the neighbors of xi. Hence apart from
xi, {(xj , fj)}xj∈Ni also influence the value of oi(xi).

A related idea is proposed in [6], where the local es-
timation of fi for an unlabeled xi is performed us-
ing only the labeled neighbors of xi. When the num-
ber of labeled neighbors of xi is zero, xi is ignored
in the training stage. This is different from our ap-
proach, where oi(·) is trained using all the neighbor-
ing points of xi, no matter whether they are labeled or
not. Therefore in [6], the result of local estimation of
fi is a specific real number, while in our approach, as
can be seen later, oi(xi) is expressed as an analytical
equation of fj for xj ∈ Ni.

To explain the idea behind the (9), let us consider the
following problem:

Problem 1. For a data point xi, given the values of
fj at xj ∈ Ni, what should be the proper value of fi at
xi?

This problem is a typical learning problem and can
be solved by some supervised learning algorithms.
In particular, following the same approach as in [3],
we can build a linear model with the training data
{(xj , fj)}xj∈Ni . As mentioned before, let oi(·) denote
the output function of this locally learned model, then
the good performance of local learning methods men-
tioned above implies that oi(xi) is probably a good
guess of fi, or the proper fi should be similar to oi(xi).

Therefore a good f should have the following property:
For any xi (1 ≤ i ≤ n), the value of fi can be well esti-
mated based on the neighbors of xi. That is, fi should
be similar to the output of the model that is trained lo-
cally with the data {(xj , fj)}xj∈Ni . This suggests that
a good f will make the value of (9) as small as possi-
ble. We call this term the Local Learning Regularizer
(LL-Reg), since it enforces that fi should be well esti-
mated by a model trained locally with the neighbors
of xi. This regularizer is our main contribution in this
paper.

Replacing the regularizer of (2) with (9) leads to the
following optimization problem:

min
f∈Rn

‖f − o‖2 + (f − y)>C(f − y) (10)

where o = [o1(x1), . . . , on(xn)]>.

3.3 Computing oi(xi)

Having explained the basic idea, now we consider how
to compute oi(xi) to make the regularizer (9) more
specific. As stated above, following the approach pre-
sented in [3], for each xi, a linear model is built
with the training data {(xj , fj)}xi∈Ni . To obtain this
model, we need to solve the following training problem:

min
wi∈Rd,bi∈R

λ ‖wi‖2+
∑

xj∈Ni

(w>i (xj−xi)+bi−fj)2 (11)

And the output function oi(·) of this linear model is:

oi(x) = w>i (x− xi) + bi, ∀x ∈ Rd (12)

The reason for xi being subtracted in (11) and (12) is
as follows [3]: The number of data ni used to train the
linear model for xi is usually small, therefore a regu-
larization term, i.e. the first term in (11), is needed
to control the capacity of this linear model. However,
this term pulls the weight vector wi toward some ar-
bitrary origin. For isotropy reasons, the origin of the
input space is translated on the testing pattern xi, by
subtracting xi from the training points xj ∈ Ni.

According to (12), oi(xi) equals the bias bi. So by
solving the problem (11), oi(xi) can be calculated as:

oi(xi) = α>i fi (13)

where fi ∈ Rni is the vector [fj ]> for xj ∈ Ni, and

αi
> =

1> − 1>X>i Xi(λI + X>i Xi)−1

ni − 1>X>i Xi(λI + X>i Xi)−11
(14)

In the above equation, 1 is the vector of all 1’s, Xi ∈
Rd×ni denotes the matrix [xj − xi] for xj ∈ Ni.

It can be seen that αi is independent of fi and it is
different for different xi. Note that fi is a sub-vector of
f , so equation (13) can be written in a compact form
as:

o = Af (15)

where o is the same as in (10), while the matrix A =
[aij ] ∈ Rn×n is constructed as follows: ∀xi and xj , 1 ≤
i, j ≤ n, if xj ∈ Ni, then aij equals the corresponding
element of αi in (14), otherwise aij equals 0. Similar
as αi, the matrix A is also independent of f .

Substituting (15) into the objective function (10) re-
sults in a quadratic optimization problem of the same
form as (2), where the LL-Reg is transformed as f>Rf ,
and

R = (I−A)>(I−A) (16)

where A ∈ Rn×n is the matrix contained in (15).

Computing the matrix A in (16) requires calculating
αi in (14) for each xi. Equation (14) shows that αi



can be computed with time complexity O(n3
i ), there-

fore calculating A needs time complexity O(
∑n

i=1 n3
i ).

Usually the number of neighboring points ni for each
xi is small, but sometimes we are also interested in a
special case: ni = n− 1 for all xi, i.e. all the data are
neighboring to each other. In this case, computing A
as above is very time consuming. So for this case, we
just build a single linear model for all xi by solving
the following training problem:

min
w∈Rd,b∈R

λ ‖w‖2 +
n∑

i=1

(w>xi + b− fi)2 (17)

And oi(xi) = w>xi + b. Correspondingly, the matrix
A in equation (15) and (16) should be changed as:

A = P−PQ + Q (18)

where

P = X>X(λI + X>X)−1

Q = 1
1> − 1>X>X(λI + X>X)−1

n− 1>X>X(λI + X>X)−11

with X = [x1, . . . ,xn] ∈ Rd×n.

Thus the overall time complexity of our algorithm
is O(n3), which is identical to many other TC algo-
rithms.

4 Comparison with Related
Approaches

4.1 Comparison with Laplacian Regularizers

By considering the problem 1 (cf. Section 3.2), we
have derived the LL-Reg. It seeks a vector f with
the property that for each point xi, the value of fi

is similar to the solution we would obtain by training
a model locally if we had known the values of fj for
xj ∈ Ni.

The popular Lap-Reg (6) and NLap-Reg (8) explicitly
emphasize the pairwise similarities. They are usually
regarded as putting smoothness constraints on the so-
lution vector f . Apart from this, they have also been
explained with random walk [15, 14]. And the NLap-
Reg is derived from the label propagation process in
[13]. Here we show that these two regularizers can also
be investigated from the local learning point of view.

In fact, the Lap-Reg (6) implicitly gives an answer to
problem 1. By setting the gradient ∂

∂f f
>Lf to 0, it

can be seen that the optimal f minimizing (6) must
satisfy the following harmonic property [15]:

fi =

∑
xj∈Ni

wijfj∑
xj∈Ni

wij
(19)

Equation (19) tells that ideally Lap-Reg expects that
fi equals the convex combination of fj for xj ∈ Ni, and
the weight of fj is proportional to wij , which measures
the similarity between xi and xj . This is the answer
we will obtain for problem 1 if we choose the classical
Nadaraya-Watson algorithm [9] to estimate fi based
on {(xj , fj)}xj∈Ni . Similarly, we can find out that the
answer to problem 1 implicitly given by NLap-Reg (8)
is:

fi =
∑

xj∈Ni

wij√
didj

fj (20)

Therefore, from the local learning point of view, we
have obtained some new insights for the popular Lapla-
cian regularizers, based on which we can see that Lap-
Reg, NLap-Reg and LL-Reg differ from each other
mainly in their answers to the local learning problem
1. Clearly their final classification performance heavily
relies on whether the corresponding local models can
properly estimate fi based on {(xj , fj)}xj∈Ni

. Note
that problem 1 has two distinct characteristics: the
number of training data ni is usually small, and xi is
the only point whose label need to be predicted.3 The
approach (11) of [3] is derived from supervised learn-
ing algorithms, specially tuned for this local learning
problem. Hence the local model (12) used in LL-Reg
is probably a good choice for problem 1, and conse-
quently we can expect LL-Reg can generally result in
a good classification performance. We will see this
later in the experimental results.

Just like no supervised learning algorithm is univer-
sally better than the others, approach (11) is by no
means the unique answer to the local learning prob-
lem 1. In this paper, we simply follow the method in
[3] to build a linear local model, but probably other
supervised learning algorithms can also result in good
performance. In fact, local learning regularization (9)
is a flexible framework, which offers us a possible way
to adapt various supervised learning techniques for
TC problems, as long as the resulting local model
can be expressed in the form of (13), where αi has
an analytical expression. Note that to build the lo-
cal model, some nonlinear learning algorithms, such
as kernel ridge regression, also result in the same form
as (13). Therefore equation (13) is quite general, not
just restricted to linear local models.

Given a local model of the form (13) or equivalently
(15), it may be also possible to build a regularizer using
the label propagation approach proposed in [13]. For
example, the NLap-Reg is obtained in [13] as a result
of using the local model (20) for label propagation. It
is an iterative method. In each iteration, f is replaced

3Interestingly, this problem itself is a transductive learn-
ing problem with labeled data {(xj , fj)}xj∈Ni , and only
one unlabeled point xi.



with tAf + (1 − t)y, where 0 < t < 1 is a parame-
ter and y is the same as in (2). However, to ensure
the convergence of iteration, the matrix A should sat-
isfy some additional constraints. This indicates that
deriving regularizers based on local learning has more
flexibilities than based on label propagation.4

4.2 Comparison with Locally Linear
Embedding

Another related approach is the Locally Linear Embed-
ding (LLE) algorithm [10], which focuses on building a
linear relationship among neighboring points. In LLE,
the following optimization problem need to be solved
for each xi:

min
βij

||xi −
∑

xj∈Ni

βijxj ||2 (21)

subject to
∑

xj∈Ni

βij = 1 (22)

Then xi is estimated by
∑

xj∈Ni
βijxj . We can see

that in the LLE algorithm, no label information is
used and the linear relationship is built in an unsu-
pervised manner between the input data. While in our
approach, we estimate the real valued solution fi based
on {(xj , fj)}xj∈Ni

, using supervised learning methods.

One might argue that despite the above concep-
tual difference, it is still possible to estimate fi by∑

xj∈Ni
βijfj . To test this idea, and thanks to the

flexibility of the local learning approach, we can build
a LLE regularizer (LLE-Reg) by computing the oi(xi)
in (9) and (13) as:

oi(xi) =
∑

xj∈Ni

βijfj (23)

Then replacing equation (13) with (23), the same
method in section 3.3 can be applied to compute the
corresponding regularization matrix R. A similar reg-
ularizer is proposed in [12]. However, the method pre-
sented in [12] is based on the label propagation ap-
proach, which is different from ours.

5 Computing the Leave-One-Out
Classification Error

As mentioned before, several TC algorithms can be
formulated as (2). In this section, we derive a method
to compute the Leave-One-Out (LOO) classification
error efficiently for these algorithms. This is useful for
model selection. The content of this section is inspired

4Actually the local model used in LL-Reg can not be
used for label propagation since the convergence can not
be guaranteed.

by a similar result presented in [11], which is proposed
for some supervised learning algorithms,

The LOO procedure of the TC problem consists of l it-
erations. In the i-th (1 ≤ i ≤ l) iteration, we just omit
the class label yi and treat xi as an unlabeled point.
Specifically, in the i-th iteration, we need to solve the
TC problem where the labeled data are (x1, y1), . . . ,
(xi−1, yi−1), (xi+1, yi+1), . . . , (xl, yl), while the unla-
beled points are xi, xl+1, . . . , xl+u. This is different
from the LOO procedure of the supervised learning
problem, where there is no unlabeled data, and in the
i-th iteration, we simply remove (xi, yi) from the train-
ing set, without keeping xi for LOO error calculation.

Let f
(i)
i denote the i-th element of f (i), 1 ≤ i ≤ l,

which is the real valued solution vector of the i-th it-
eration in the LOO procedure. In order to compute
the LOO classification error, we need to know whether
xi is correctly classified in the i-th iteration. Hence
we need to calculate f

(i)
i . Instead of computing f

(i)
i

(1 ≤ i ≤ l) directly by following the LOO procedure
described above, which requires solving l different TC
problems, we derive the following lemma, based on
which all the f

(i)
i can be computed by solving only a

single problem (2).
Lemma 1. Let M = (R + C)−1 (cf. equation (3)),
and mii denote the i-th (1 ≤ i ≤ l) diagonal element
of M. Suppose f = [fj ]>, 1 ≤ j ≤ n, is the solution of
problem (2), then f

(i)
i can be computed as

f
(i)
i =

fi − Clyimii

1− (Cl − Cu)mii
1 ≤ i ≤ l (24)

Proof. To simplify the notation, in the proof, we use
C0 to denote Cl − Cu.

In the i-th iteration of the LOO procedure, we remove
the label yi and keep xi as an unlabeled point. There-
fore, in the i-th iteration, we need to solve the following
optimization problem:

min
f (i)∈Rn

(f (i))>Rf (i)+(f (i)−y(i))>C(i)(f (i)−y(i)) (25)

where f (i) is the solution of the i-th iteration in the
LOO procedure, and according to the above descrip-
tion, C(i) and y(i) are computed as follows:

C(i) = C− C0eie>i (26)

y(i) = y − yiei (27)

where ei ∈ Rn is the vector whose i-th element equals
1 and 0 otherwise. The solution of (25) is

f (i) = (R + C(i))−1C(i)y(i) (28)

Substituting (26) and (27) into (28) leads to

f (i) = (R+C−C0eie>i )−1(C−C0eie>i )(y−yiei) (29)



We now evaluate the first term on the right hand side
of the above equation. To this end, we consider the
matrix identity [7]

(S+UV)−1 = S−1−S−1U(I+VS−1U)−1VS−1 (30)

where I is the unit matrix, S ∈ Rp×p, U ∈ Rp×q and
V ∈ Rq×p, where p, q are arbitrary positive integers.
If we now identify R + C with S, −C0ei with U, and
e>i with V, then M = S−1 and we can apply (30) to
the first term of the right hand side of (29) to obtain

(R + C− C0eie>i )−1 = M +
C0Meie>i M
1− C0e>i Mei

(31)

Using mi to denote the i-th column of M and recall
that mii is the i-th diagonal element of M, we have

mi = Mei (32)
mii = e>i mi = m>

i ei (33)

Then based on (32) and (33), together with the fact
that M is symmetric, equation (31) can be simplified
as

(R + C− C0eie>i )−1 = M +
C0mim>

i

1− C0mii
(34)

Now we turn to calculate the product of the second
and the third term on the right hand side of (29).

(C− C0eie>i )(y − yiei) (35)
= Cy −Cyiei − C0eie>i y + C0yieie>i ei

= Cy −Cyiei − C0yiei + C0yiei

= Cy − Clyiei

where the third line uses e>i y = yi and e>i ei = 1, and
the last line uses Cei = Clei for 1 ≤ i ≤ l.

Substituting (34) and (35) into (29), we have

f (i) = (M +
C0mim>

i

1− C0mii
)(Cy − Clyiei) (36)

= MCy − Clyimi +
C0mim>

i

1− C0mii
(Cy − Clyiei)

where we used (32) in the second line. The sum of the
last two terms of the last equation can be computed
as

−Clyimi +
C0mim>

i

1− C0mii
(Cy − Clyiei) (37)

= −Clyimi +
C0mim>

i Cy − ClC0yimiimi

1− C0mii

=
C0m>

i Cy − Clyi

1− C0mii
mi

where we used mii = m>
i ei (cf. (33)) in the second

line.

Combining (36) and (37) leads to

f (i) = MCy +
C0m>

i Cy − Clyi

1− C0mii
mi (38)

Recall that M = (R + C)−1 and according to (3)

f = (R + C)−1Cy = MCy (39)

As M is symmetric and mi is the i-th column of M,
we have

fi = m>
i Cy (40)

Based on (39) and (40), (38) can be re-written as

f (i) = f +
C0fi − Clyi

1− C0mii
mi (41)

According to (41), we can compute f
(i)
i , the i-th ele-

ment of f (i), as the following

f
(i)
i = fi +

C0fi − Clyi

1− C0mii
mii =

fi − Clyimii

1− C0mii

The lemma is proven.

Note that the proof of lemma 1 is based only on the
general form of (2), therefore it can be applied to any
TC algorithms that can be formulated as (2). This is
the second contribution of this paper.

Hence in order to compute the LOO classification er-
ror, first f is computed with (3), where the matrix
M = (R + C)−1 is also computed at the same time,
then f

(i)
i can be calculated with (24) for 1 ≤ i ≤ l,

based on which the LOO classification error can be
easily obtained, since the classification result for xi is
totally determined by f

(i)
i in the i-th iteration of the

LOO procedure.5

6 Experimental Results

In this section, we empirically compare the following
regularizers for the TC problem: Lap-Reg, NLap-Reg,
LLE-Reg (cf. Section 4.2) and LL-Reg.

6.1 Datasets and Experimental Settings

Two groups of datasets are adopted in the exper-
iments. The first group is composed of the seven

5Note that for f
(i)
i , the same symbol i is needed for both

the superscript and subscript, since to compute the LOO
error, we need to know the real valued output of xi in the
i-th iteration, 1 ≤ i ≤ l.



datasets provided in [4]: g241c, g241d, Digit1, USPS,
COIL, BCI and Text.6 For each one of them, 20
labeled/unlabeled splits are randomly created. The
number of labeled point is 100 in each splits for all the
datasets.7

To further investigate the performance of each method,
we construct a second group of data, which contains
eight datasets, which are derived from eight classifi-
cation benchmarks: Banana, Diabetis, German, Im-
age, Ringnorm, Splice, Twonorm and Waveform.8 The
whole set of Diabetis and German are taken directly
for the experiments, which contain 768 and 1000 data
points respectively. For the remaining six datasets,
following the scheme in [4], 1500 data points are ran-
domly sampled from each of them. Similarly as in the
first group, 20 labeled/unlabeled splits are randomly
generated for each of these eight datasets. For the Di-
abetis, which contains 768 points, 10% data are ran-
domly selected as labeled points, while for the other
seven datasets, the number of labeled points equals
100.

On each dataset, the regularization matrix of each reg-
ularizer is calculated and substituted into the matrix
R of problem (2), based on which the corresponding
real valued solution vector f , and consequently the fi-
nal classification result can be obtained. The average
classification error on unlabeled data over the 20 la-
beled/unlabeled splits is used to evaluate the classi-
fication performance. And the t-test is conducted to
examine whether the performance difference between
different approaches are statistically significant.

6.2 Parameter Selection

All the regularizers studied here need to define the
neighbors for each point. In the experiments, to well
preserve the local structure, we adopt the k-mutual
neighbors, i.e. xj is defined as a neighbor of xi only if
xi is also one of the k-nearest neighbors of xj .

In the experiments, a single value k is used for all
ni, 1 ≤ i ≤ n. The parameters of each method are
searched over some grids by computing the LOO error
based on (24).

For LL-Reg, the number of neighbors k of each point,
the regularization parameter λ (cf. (11)) are searched
over the following grids: k ∈ {5, 10, 20, 50, n − 1},
λ ∈ {0.1, 1, 10}. The loss parameter Cl (cf. (2)) does
not affect the classification performance too much,

6See http://www.kyb.tuebingen.mpg.de/ssl-book for
detailed descriptions of these datasets.

7For these seven datasets, 12 labeled/unlabeled splits
are already provided in [4], so we just randomly generate
additional 8 splits.

8From http://ida.first.fraunhofer.de/projects/bench.

hence it is fixed at 10 for LL-Reg.

For Lap-Reg and NLap-Reg, a weighted k-mutual
nearest neighbor graph need to be built, whose ad-
jacency matrix is computed based on equation (5).
The number of neighbors k, the parameter γ (cf.
(5)) are searched from: k ∈ {5, 10, 20, 50, n −
1}, γ ∈ {σ2

0/64, σ2
0/16, σ2

0/4, σ2
0 , 4σ2

0 , 16σ2
0 , 64σ2

0},
where in a c-class problem, σ0 is the 1/c2 quan-
tile of the pairwise distance of all the data. In ad-
dition, we also search the parameter Cl in: Cl ∈
{0.1, 1, 10, 100}.

For LLE-Reg, the parameter k and Cl are searched
over the following grids: k ∈ {5, 10, 20, 50}, Cl ∈
{0.1, 1, 10, 100}. For LLE-Reg, we do not consider
the case where k = n−1, because that requires solving
problem (21)–(22) for each point with ni = n−1, which
is infeasible.

For simplicity, we would fix Cu = 0. However set-
ting Cu to 0 can sometimes cause R + C to be ill-
conditioned, in which case computing (3) is problem-
atic, therefore in the experiments, we set Cu to a fixed
small value, 10−6, for all regularization methods.

6.3 Numerical Results

Numerical results are summarized in Table 1. It can
be seen that LL-Reg compares favorably to the other
regularizers. Actually it obtains the best performance
on most datasets. On the other hand, the LLE algo-
rithm is known to be capable of keeping the manifold
structure in the data. Correspondingly LLE-Reg has
good performance on Digit1, where the data are close
to a low-dimensional manifold embedded into a high-
dimensional space [4]. These observations corroborate
the statement in section 4 that the property of the lo-
cal model used by each regularizer can strongly affect
the final classification performance.

7 Conclusions

We have proposed a local learning regularization ap-
proach for the transductive classification problem.
This approach requires that the label of each data
point should be well estimated based on its neighbors.
Comparison with related approaches illustrates that
local learning regularization is a flexible framework,
under which we can examine some current regulariz-
ers for transductive classification. It also allows us
to adapt various learning algorithms for transduction.
We have also derived an efficient way to compute the
leave-one-out classification error for transductive clas-
sification algorithms that can be formulated as (2).
Finally, experimental results have been provided to
validate the effectiveness of our approach.



Table 1: Average test error rates (%) and the standard deviations (%) on the fifteen datasets. For each dataset,
the results shown in boldface are significantly better than the others, judged by t-test, with a significance level
of 0.01. The multiple results in boldface on the same row are not significantly different.

Dataset Lap-Reg NLap-Reg LLE-Reg LL-Reg

g241c 39.00±2.23 45.00±3.92 41.46±4.51 21.36±3.67
g241d 36.12±1.50 43.31±3.30 40.15±4.05 22.51±1.79
Digit1 3.02±0.84 2.91±0.59 2.54±0.72 2.63±0.66
USPS 7.09±3.37 4.60±2.04 4.70±1.86 3.67±1.24
COIL 11.11±2.72 10.71±3.29 13.61±4.01 12.04±2.30
BCI 47.60±2.29 47.22±2.31 44.23±3.74 31.15±5.02
Text 29.29±2.36 23.55±3.55 50.11±0.37 24.23±3.28

Banana 14.26±1.69 14.15±1.96 17.09±2.48 12.75±1.70
Diabetis 32.80±2.54 31.93±2.71 33.31±2.51 27.63±2.40
German 31.76±2.51 30.82±1.40 33.69±2.95 29.95±2.49
Image 14.39±1.63 14.28±1.88 18.67±2.44 12.08±2.07

Ringnorm 19.06±2.17 9.66±0.86 11.85±1.48 10.28±0.38
Splice 37.48±3.75 36.01±8.50 39.36±2.31 27.27±5.05

Twonorm 4.17±1.30 4.05±1.29 7.54±1.33 3.35±1.02
Waveform 17.09±3.27 16.88±3.28 19.02±1.80 13.50±1.94
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