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Abstract

We study the relationship between Support
Vector Machines (SVM) and Least Squares
SVM (LS-SVM). Our main result shows that
under mild conditions, LS-SVM for binary-
class classifications is equivalent to the hard
margin SVM based on the well-known Maha-
lanobis distance measure. We further study
the asymptotics of the hard margin SVM
when the data dimensionality tends to infin-
ity with a fixed sample size. Using recently
developed theory on the asymptotics of the
distribution of the eigenvalues of the covari-
ance matrix, we show that under mild condi-
tions, the equivalence result holds for the tra-
ditional Euclidean distance measure. These
equivalence results are further extended to
the multi-class case. Experimental results
confirm the presented theoretical analysis.

1 Introduction

Support Vector Machines (SVM) [3, 4, 15, 17] have
been shown to be effective for many classification prob-
lems. For binary-class classifications, SVM constructs
an optimal separating hyperplane between the positive
and negative classes with the maximal margin. It can
be formulated as a quadratic programming problem
involving inequality constraints. The Least Squares
formulation of SVM, called LS-SVM was recently pro-
posed [5, 16], which involves the equality constraints
only. Hence, the solution is obtained by solving a sys-
tem of linear equations. Efficient and scalable algo-
rithms, such as those based on conjugate gradient can
be applied to solve LS-SVM. Extensive empirical stud-
ies [5, 20] have shown that LS-SVM is comparable to
SVM in terms of generalization performance. How-
ever, the underlying reason for their similarity is not
well understood yet.

In this paper, we study the intrinsic relationship be-
tween linear SVM and linear LS-SVM under a spe-
cific circumstance. More specifically, we show that
for binary-class classifications, LS-SVM with no reg-
ularization is equivalent to hard margin SVM based
on the well-known Mahalanobis distance measure [10],
called Hard M-SVM, under mild conditions. Maha-
lanobis distance is based on correlations between vari-
ables by which different patterns can be identified and
analyzed. It differs from Euclidean distance in that
it takes into account the correlations of the dataset
and is scale-invariant, i.e., not dependent on the scale
of measurements. The well-known Linear Discrimi-
nant Analysis (LDA) [10] is based on the Mahalanobis
distance measure and is optimal when each class is
Gaussian and has a common covariance matrix. The
Mahalanobis distance measure has also been used in
the Maxi-Min Margin Machine algorithm (M4) [11] to
improve the generalization performance of SVM and
form a unified framework for SVM, LDA, and Mini-
max Probability Machine (MPM) [12]. More general
Mahalanobis distance measures can be learned from
the data (see [6, 18]).

We further study the asymptotics of hard margin SVM
when the data dimensionality tends to infinity with a
fixed sample size. Using recently developed asymp-
totics theory on the distribution of the eigenvalues
of the covariance matrix [1, 9], we show that under
mild conditions, the equivalence result between LS-
SVM and the hard margin SVM holds for the tradi-
tional Euclidean distance measure. This implies that
the hard margin SVM based on the Euclidean distance
measure, called Hard E-SVM, may be comparable to
LS-SVM for high-dimensional small sample size data.

We also consider the multi-class classification prob-
lems. For the multi-class case, the one-against-rest
approach [14] is commonly applied, which combines k
binary classifications, where k is the number of classes
in the training dataset. We extend our equivalence
result to the multi-class case. Specifically, we show



that using the one-against-rest approach, multi-class
LS-SVM is equivalent to the multi-class Hard M-SVM
under mild conditions. We have conducted our exper-
imental studies using a collection of high-dimensional
datasets, including microarray gene expression data
and text documents. Experimental results confirm our
theoretical analysis.

Notation ||·||2 denotes the L2 norm; ||·||S denotes the
norm under the Mahalanobis distance measure; Hard
E-SVM and Hard M-SVM refer to the hard margin
SVM under the Euclidean and Mahalanobis distance
measure, respectively.

1.1 An overview of SVM and LS-SVM

We are given a set of n training samples {(xi, yi)}n
i=1,

where xi ∈ IRd is drawn from a domain X and each of
the label yi is an integer from Y = {−1, 1}. The goal
of the binary-class classification in SVM or LS-SVM is
to learn a model that assigns the correct label to an
unseen test sample. This can be thought of as learning
a function f : X → Y which maps each instance x to
an element y of Y. Let S be the covariance matrix
defined as follows:

S =
1
n

(X − ceT )(X − ceT )T , (1)

where X = [x1, x2, · · · , xn] is the data matrix, c is the
centroid of X and e is the vector of all ones.

Assuming the data is separable, the hard margin SVM
looks for some hyperplane:

f(x) = (x, w) + b = 0,

which separates the positive from the negative exam-
ples [3], where w is the normal to the hyperplane,
(x,w) = xT w is the inner product between x and
w, and |b|/||w||2 is the perpendicular distance from
the hyperplane to the origin. For the linearly separa-
ble case, the hard margin SVM simply looks for the
separating hyperplane with the largest margin. The
optimal hyperplane is computed by minimizing ||w||2
subject to the constraint that

yi ((xi, w) + b) ≥ 1,

for all i. A test point x is assigned to the positive class,
if (w, x) + b > 0, and to the negative class otherwise.
The above formulation can be extended to deal with
nonseparable data by introducing the slack variables
and a tuning parameter C > 0 [3]. This is known as
the soft margin SVM. The optimal value of the tuning
parameter C is commonly estimated through cross-
validation.

Least Squares SVM (LS-SVM) applies the linear
model [16]:

f(x) = (x, w) + b,

where w ∈ IRd is the weight vector, and b is the bias of
the linear model. w and b are estimated by minimizing
the following objective function:

L(w, b) =
n∑

i=1

||f(xi)− yi||22 + C||w||22, (2)

where y is the vector of class labels, and C > 0 is
the regularization parameter. Minimization of L(w, b)
leads to

w =
2n1n2

n2

(
S +

C

n
Id

)−1

(c1 − c2),

b =
n1 − n2

n
− cT w, (3)

where c is the global centroid of the data, n1 and n2

denote the number of samples from the positive and
negative classes, respectively, and c1 and c2 are the
centroids of the positive and negative classes, respec-
tively. If no regularization is applied, i.e., C = 0, the
optimal solution to LS-SVM is given by

w =
2n1n2

n2
S+(c1 − c2), (4)

where S+ denotes the pseudo-inverse of S [7]. Similar
to SVM, a test point x is assigned to the positive class,
if f(x) = (w, x) + b > 0, and to the negative class
otherwise. Note that the LS-SVM algorithm in [5, 16]
is formulated in the dual space using the kernel trick.
In this paper, we focus on the primal formulation for
LS-SVM.

2 SVM versus LS-SVM for
binary-class classifications

We study in this section the relationship between LS-
SVM and SVM for binary-class classifications. Our
main result in Theorem 2.2 below shows that under
mild conditions, LS-SVM is equivalent to Hard M-
SVM (hard margin SVM based on the Mahalanobis
distance measure) for the binary-class case.

The inner product between two vectors u and v un-
der the Mahalanobis distance measure is defined as
(u, v)S = uT S−1v, assuming S is nonsingular. In the
general case where S may be singular, the inner prod-
uct between u and v is given by

(u, v)S = uT S+v. (5)

Note that when S is nonsingular, S+ equals S−1. The
length of u is then given by

||u||S =
√

(u, u)S =
√

uT S+u. (6)

u and v are said to be orthogonal to each other, if and
only if

(u, v)S = uT S+v = 0. (7)



Next, we define two matrices B and W , which
are closely related to the between-class and within-
class scatter matrices in Linear Discriminant Analysis
(LDA) [10]. The matrix B is defined as

B = n1n2/n2(c1 − c2)(c1 − c2)T , (8)

where c1 and c2 are the centroids of the the positive
and negative classes, respectively, as introduced in the
last section. Define W = S−B. It can be verified that

W =
1
n

(
(X1 − c1e

T )(X1 − c1e
T )T

+ (X2 − c2e
T )(X2 − c2e

T )T
)
, (9)

where X1 and X2 are the data matrices of the positive
and negative classes, respectively, and e is the vector
of all ones with an appropriate length.

We show in the following lemma that under the condi-
tion that {xi}n

i=1 are linearly independent, the vector
c1 − c2 is orthogonal to the difference vector between
each data point in the training set and its correspond-
ing centroid.

Lemma 2.1 Let c1, c2, X1, X2, and S be defined as
above. Assume that {xi}n

i=1 are linearly independent.
Then (u − c1, c1 − c2)S = 0, for any u ∈ X1, and
(v − c2, c1 − c2)S = 0, for any v ∈ X2. That is, under
the Mahalanobis distance measure, c1−c2 is orthogonal
to u− c1 and v − c2, for any u ∈ X1 and v ∈ X2.

Proof Since {xi}n
i=1 are linearly independent,

rank(S) = n−1. Let S = UDUT be the Singular Value
Decomposition (SVD) [7] of S, where U ∈ IRd×(n−1)

has orthonormal columns, and D ∈ IR(n−1)×(n−1) is
diagonal with positive diagonal entries. Then S+ =
UD−1UT and (S+)1/2 = UD−1/2UT . It follows from
S = B + W that

In−1 = UT (S+)1/2S(S+)1/2U

= UT (S+)1/2(B + W )(S+)1/2U

= B̃ + W̃ , (10)

where

B̃ = UT (S+)1/2B(S+)1/2U = b1b
T
1 ,

b1 =
√

n1n2

n2
UT (S+)1/2(c1 − c2)

=
√

n1n2

n2
D−1/2UT (c1 − c2),

W̃ = UT (S+)1/2W (S+)1/2U

= D−1/2UT WUD−1/2.

Thus,

bT
1 W̃ b1 =

n1n2

n2
(c1 − c2)T S+WS+(c1 − c2). (11)

Construct Q̂ ∈ IR(n−1)×(n−2) so that

Q =
[
b1/||b1||2, Q̂

]

is orthogonal. That is, Q̂T b1 = 0. From Eq. (10), we
have

In−1 = QT In−1Q = QT (B̃ + W̃ )Q
= diag(||b1||22, 0, · · · , 0) + QT W̃Q.

That is,

QT W̃Q = diag(1− ||b1||22, 1, · · · , 1). (12)

Since {xi}n
i=1 are linearly independent, we have

rank(S) = n−1 and rank(B) = 1. From the definition
of W , rank(W ) ≤ n−2. Since S = B +W and both B
and W are positive semi-definite, we have rank(W ) ≥
rank(S) − rank(B) = n − 2. Thus, rank(W ) = n − 2.
It follows that rank(QT W̃Q) = rank(W ) = n − 2.
From Eq. (12), we have 1−||b1||22 = 0, since QT W̃Q ∈
IR(n−1)×(n−1). From Eq. (11), the first diagonal entry
of QT W̃Q in Eq. (12) is given by

0 = bT
1 /||b1||2W̃ b1/||b1||2 = bT

1 W̃ b1

=
n1n2

n2
(c1 − c2)T S+WS+(c1 − c2).

It follows from the definition of W in Eq. (9) that
(u− c1, c1− c2)S = 0, for any u ∈ X1, and (v− c2, c1−
c2)S = 0, for any v ∈ X2.

We will show in the following theorem that the opti-
mal normal vector to the maximal margin hyperplane
in Hard M-SVM is in the direction of c1 − c2. It is
based on the idea [2] that the optimal normal vector
of the hard margin SVM is identical to that of the
hyperplane bisecting closest points in the two convex
hulls with vertices consisting of data points from X1

and X2, respectively.

Theorem 2.1 Assume x and y lie in the convex hull
of {xi}xi∈X1 and {xj}xj∈X2 , respectively. That is, x =∑

xi∈X1
αixi and y =

∑
xj∈X2

βjxj, where αi ≥ 0, for
all i, βj ≥ 0, for all j,

∑
i αi = 1, and

∑
j βj = 1.

Assume that {xi}n
i=1 are linearly independent. Then

||x − y||S ≥ ||c1 − c2||S, and ||c1 − c2||S is the largest
margin between X1 and X2. Furthermore, the optimal
normal vector w of Hard M-SVM is in the direction of
c1 − c2.

Proof Denote x̂ = c2−c1+x. We have x−x̂ = c1−c2

and y − x̂ = y − c2 − (x − c1). From Lemma 2.1,
(xi−c1, c1−c2)S = 0 for all xi ∈ X1 and (xj−c2, c1−
c2)S = 0 for all xj ∈ X2. Hence,

(x− c1, c1 − c2)S =
∑

xi∈X1

αi(xi − c1, c1 − c2)S = 0,

(y − c2, c1 − c2)S =
∑

xj∈X2

βj(xj − c2, c1 − c2)S = 0.



It follows that (y − x̂, x − x̂)S = (y − c2, c1 − c2)S −
(x− c1, c1 − c2)S = 0. Thus

||x− y||2S = (x− x̂ + x̂− y, x− x̂ + x̂− y)S

= (x− x̂, x− x̂)S + (x̂− y, x̂− y)S

≥ ||x− x̂||2S = ||c1 − c2||2S .

On the other hand, the maximal margin between X1

and X2 is no larger than the distance between c1 and
c2, i.e., ||c1 − c2||S , as c1 and c2 are the centroids of
X1 and X2. Thus, under the Mahalanobis distance
measure, the maximal margin is ||c1 − c2||S . Consider
the projection of all data points onto the direction c1−
c2. The distance between the two projection points
of x and y is given by (x − y, c1 − c2)S/||c1 − c2||S =
(x−c1−y+c2+c1−c2, c1−c2)S/||c1−c2||S = ||c1−c2||S .
Thus, the optimal normal vector w is in the direction
of c1 − c2.

Note that the Mahalanobis distance measure is essen-
tially equivalent to the normalization of the data by
(S+)1/2, that is, xi → (S+)1/2xi. The projection of
xi onto the normal vector w under the Mahalanobis
distance measure is given by

(xi, w)S = ((S+)1/2xi, (S+)1/2w) = (xi, S
+w).

Thus the projection of xi onto the normal vector w un-
der the Mahalanobis distance measure is equivalent to
the projection of xi onto the direction S+w under the
Euclidean distance measure. Since w is in the direc-
tion of c1 − c2, S+w is in the direction of S+(c1 − c2),
which coincides with the weight vector of LS-SVM in
Eq. (4). We thus have the following main result:

Theorem 2.2 Let c1, c2, X1, X2, and X be defined
as above. Assume that the data points in X are linearly
independent. Then LS-SVM under the Euclidean dis-
tance measure is equivalent to Hard M-SVM.

Proof Let wM be the normal vector of Hard M-SVM.
From Theorem 2.1, the distance between any two data
points from X1 and X2 after the projection onto the
direction c1−c2 is ||c1−c2||S , which is the largest mar-
gin between X1 and X2. Thus, under the Mahalanobis
distance measure,

yi

(
(xi, w

M )S + bM
)

= 1,

for all i, that is, all data points lie on these two hyper-
planes:

(x,wM )S + bM = ±1.

Here both wM and bM need to be estimated. It follows
that

(xi, w
M )S + bM = 1,

for all xi ∈ X1, and

(xj , w
M )S + bM = −1,

for all xj ∈ X2. Summing over all xi ∈ X1

⋃
X2, we

have
(

n∑

i=1

xi, w
M

)

S

+ nbM = n(c, wM )S + nbM = n1 − n2

and
bM = (n1 − n2)/n− (c, wM )S .

Summing over all xi ∈ X1, we have

(c1, w
M )S + bM = 1.

Similarly, we have

(c2, w
M )S + bM = −1.

It follows that (c1− c2, w
M )S = 2. From Theorem 2.1,

wM is in the direction of c1 − c2, that is wM = (c1 −
c2)α, for some α. We have

α = 2/||c1 − c2||2S ,

and
wM = 2(c1 − c2)/||c1 − c2||2S .

Let wLS be the weight vector of LS-SVM, which ap-
plies the decision function:

f(x) = x · wLS + bLS .

From Section 1.1, the bias term bLS in LS-SVM is

bLS = (n1 − n2)/n− cT wLS ,

and the normal vector is given by

wLS = 2n1n2/n2S+(c1 − c2).

From Lemma 2.1, ||b1||2 = 1, where

b1 =
√

n1n2

n2
D−1/2UT (c1 − c2).

Thus,

1 = ||b1||22 = bT
1 b1 =

n1n2

n2
(c1 − c2)T S+(c1 − c2)

=
n1n2

n2
||c1 − c2||2S .

We have 1/||c1 − c2||2S = n1n2
n2 . It follows that

wLS =
2n1n2

n2
S+(c1 − c2)

= S+2(c1 − c2)/||c1 − c2||2S
= S+wM ,



and

bLS = (n1 − n2)/n− cT wLS

= (n1 − n2)/n− cT S+2(c1 − c2)
n1n2

n2

= (n1 − n2)/n− (c, wM )S+ = bM .

Hence, the decision functon in LS-SVM: fLS =
(x,wLS)+ bLS is identical to the one in Hard M-SVM:
fM = (x,wM )S + bM . Thus, LS-SVM is equivalent to
Hard M-SVM.

Theorem 2.2 above shows the equivalence relationship
between LS-SVM and Hard M-SVM. However, the tra-
ditional SVM formulation is based on the Euclidean
distance measure. We show in the following theorem
that under a certain condition on S, the normal vector
w of Hard E-SVM (hard margin SVM based on the Eu-
clidean distance measure) is equivalent to that of Hard
M-SVM (hard margin SVM based on the Mahalanobis
distance measure), as summarized below.

Theorem 2.3 Assume that the data points in X are
linearly independent and that all nonzero eigenvalues
of S are λ. Then the normal vector w to the maximal
margin hyperplane in Hard E-SVM is in the direction
of c1 − c2. Furthermore, Hard E-SVM is equivalent to
Hard M-SVM.

Proof Let

S = Udiag(λ, · · · , λ)UT = λUUT

be the SVD of S and let Û ∈ IRd×(d−n+1) be the or-
thogonal complement of U . Since Û lies in the null
space of S and S = B + W , Û also lies in the null
space of B and W . That is,

ÛT (c1 − c2) = 0, ÛT (u− c1) = 0,

ÛT (v − c2) = 0, ÛT (u− v) = 0,

for any u ∈ X1 and v ∈ X2. Since S+ = λ−1UUT , we
have

||c1 − c2||2S = λ−1(c1 − c2)T UUT (c1 − c2)
= λ−1||UT (c1 − c2)||22
= λ−1||[U, Û ]T (c1 − c2)||22
= λ−1||c1 − c2||22,

||u− v||2S = λ−1(u− v)T UUT (u− v)
= λ−1||UT (u− v)||22
= λ−1||[U, Û ]T (u− v)||22
= λ−1||u− v||22.

From Theorem 2.1, we have ||u − v||S ≥ ||c1 − c2||S ,
for any u ∈ X1 and v ∈ X2. It follows that ||u−v||2 ≥

||c1 − c2||2. Following similar arguments in Theo-
rem 2.1, the maximal margin between X1 and X2 un-
der the Euclidean distance measure is ||c1 − c2||2.
Consider the projection of all data points onto the di-
rection, c1− c2, under the Euclidean distance. Similar
to the case of the Mahalanobis distance measure as
in Lemma 2.1, the following orthogonality condition
holds:

(u− c1, c1 − c2) =
(
[U, Û ]T (u− c1), [U, Û ]T (c1 − c2)

)

=
(
UT (u− c1), UT (c1 − c2)

)

= (c1 − c2)T UUT (u− c1)
= λ(u− c1, c1 − c2)S = 0,

(v − c2, c1 − c2) =
(
[U, Û ]T (v − c2), [U, Û ]T (c1 − c2)

)

=
(
UT (v − c2), UT (c1 − c2)

)

= (c1 − c2)T UUT (v − c2)
= λ(v − c2, c1 − c2)S = 0.

It follows that the projection of u− v, for any u ∈ X1

and v ∈ X2, onto the direction, c1 − c2, under the
Euclidean distance measure is

(u− v, c1 − c2)/||c1 − c2||2 = ||c1 − c2||2.

Thus, under the Euclidean distance measure, the op-
timal normal vector w of the hard margin SVM is in
the direction of c1 − c2. Recall that the projection
onto the normal vector in Hard M-SVM is equivalent
to the projection onto the direction S+(c1− c2) under
the Euclidean distance measure. To show the equiv-
alence between Hard E-SVM and Hard M-SVM, we
need to show that S+(c1− c2) is in the same direction
as c1 − c2. Since S+ = λ−1UUT , we have

S+(c1 − c2) = λ−1UUT (c1 − c2)
= λ−1(Id − Û ÛT )(c1 − c2)
= λ−1(c1 − c2),

where the second equality follows since Û is the or-
thogonal complement of U , and the last equality fol-
lows since ÛT (c1− c2) = 0. Thus S+(c1− c2) is in the
same direction as c1 − c2.

The assumption in Theorem 2.3 above is unlikely to
hold exactly for most real-world datasets. However,
recent studies on the geometric representation of high-
dimensional small sample size data [1, 9] show that un-
der mild conditions, S approaches to a scaled identity
matrix, when the data dimension d tends to infinity
with a fixed sample size n. This makes all the eigen-
values of S have a common value. In other words, the
data behave as if the underlying distribution is spheri-
cal. Thus, for high-dimensional small sample size data,



the condition in Theorem 2.3 is likely to be approxi-
mately satisfied. It is thus expected that the normal
vector of Hard E-SVM is close to that of Hard M-SVM,
which has been shown in Theorem 2.2 to be equiva-
lent to the weight vector of LS-SVM. (see Section 4 for
detailed empirical studies)

3 SVM versus LS-SVM for multi-class
classifications

We study in this section the relationship between LS-
SVM and SVM for multi-class classifications. In the
multi-class case, each of the label yi is an integer from
Y = {1, 2, · · · , k} with k ≥ 3. Many different ap-
proaches have been proposed to solve multi-class SVM
[14] and multi-class LS-SVM [5]. A common way to
solve the multi-class problems in the context of SVM
is to first build a set of k one-versus-rest binary classi-
fication models {f1, · · · , fk}, use all of them to predict
an instance x, and then based on the prediction of
these classifiers, assign x to y∗ given by

y∗ = argmaxi=1,···,k{fi(x)}. (13)

In learning the i-th binary classifier fi, the i-th class is
assigned to the positive class, while the rest of classes
is assigned to the negative class. Let Xi be the data
matrix of the i-th class and ci be its mean, and X̂i be
the data matrix from all classes except the i-th class
and ĉi be its mean. Define

Bi =
nin̂i

n2
(ci − ĉi)(ci − ĉi)T . (14)

It can be verified that

Wi = S −Bi (15)

=
1
n

(
(Xi − ci(e(i))T )(Xi − ci(e(i))T )T +

(X̂i − ĉi(ê(i))T )(X̂i − ĉi(ê(i))T )T
)

, (16)

where e(i) and ê(i) are vectors of all ones.

Assume that {xi}n
i=1 are linearly independent. It fol-

lows from Lemma 2.1 and Theorem 2.1 that ||ci− ĉi||S
is the largest margin between Xi and X̂i, under the
Mahalanobis distance measure with the optimal nor-
mal vector w given in the direction of ci − ĉi, as sum-
marized in the following theorem:

Theorem 3.1 Let Xi, ci, X̂i, and ĉi be defined as
above. Assume that {xi}n

i=1 are linearly independent.
Then the normal vector wi to the maximal margin hy-
perplane in Hard M-SVM between Xi and X̂i is in
the direction of ci − ĉi. Furthermore, the multi-class
LS-SVM is equivalent to the multi-class Hard M-SVM,
when one-versus-rest approach is applied for the clas-
sification in both cases.

Note that the key to the equivalence result in the
above theorem is the use of a common covariance ma-
trix for all pairs (Xi, X̂i), as Xi

⋃
X̂i = X, for all i.

The equivalence result may not hold when other ap-
proaches [13, 14] for multi-class classifications such as
the one-against-one method are applied.

4 Experiments and discussions

We use two types of data in our empirical study: Mi-
croarray gene expression data (ALL, LEUKEMIA, and
ALLAML3), and text documents (re0, re1, and tr41).

• The ALL dataset [19] is one that covers six sub-
types of acute lymphoblastic leukemia (248 sam-
ples with 12558 dimensions). The LEUKEMIA
dataset ( 72 samples with 7129 dimensions) comes
from a study of gene expression in two types of
acute leukemias: acute lymphoblastic leukemia
(ALL) and acute myeloblastic leukemia (AML).
This dataset was fist studied in the seminal pa-
per of Golub et al. [8]. Golub et al. studied this
problem to address the binary classification prob-
lem between the AML samples and the ALL sam-
ples. The ALL part of the dataset comes from
two sample types, B-cell and T-cell. Thus it can
also be treated as a three-class dataset, named
ALLAML3.

• re0 and re1 are from Reuters-21578 text catego-
rization test collection Distribution 1.01. re0 con-
tains 320 documents with 2887 dimensions from 4
classes, and re1 contains 490 documents with 3759
dimensions from 5 classes. tr41 is derived from
the TREC-5, TREC-6, and TREC-7 collections2.
It contains 210 documents with 7455 dimensions
from 7 classes.

We perform our comparative study by randomly split-
ting the data into training and test sets. The data is
randomly partitioned into a training set consisting of
two-thirds of the whole set and a test set consisting of
one-third of the whole set. To give better estimation
of accuracy, the splitting is repeated 30 times and the
resulting accuracies are averaged. We compare the
classification performance of Hard E-SVM, Hard M-
SVM, and LS-SVM. The soft margin SVM based on
the Euclidean distance, called Soft SVM and the least
squares SVM with regularization, called rLS-SVM are
also reported with both regularization parameters es-
timated through cross-validation. We also compare
the weight vector in LS-SVM with the normals to the
largest margin hyperplane in Hard E-SVM and Hard

1http://www.research.att.com/∼lewis
2http://trec.nist.gov



Table 1: Comparison of classification accuracy (%) and standard deviation (in parenthesis) of different algorithms.

Datasets
ALL LEUKEMIA ALLAML3 re0 re1 tr41

Soft SVMa 96.98 97.69 95.97 85.77 94.34 96.25
(1.74) (2.58) (4.60) (2.68) (1.56) (2.43)

Hard E-SVMa 96.98 97.46 95.50 85.59 94.42 96.05
(1.74) (2.73) (4.93) (2.83) (1.50) (2.45)

Hard M-SVMa 97.33 97.00 93.83 85.31 94.28 96.19
(1.27) (3.15) (5.13) (2.87) (1.65) (2.44)

LS-SVMb 97.33 97.00 93.83 85.26 94.28 96.19
(1.27) (3.15) (5.13) (2.93) (1.65) (2.44)

rLS-SVMb 97.53 97.00 94.53 85.59 94.53 96.22
(1.18) (3.15) (5.04) (2.83) (1.54) (2.38)

Corr1c 0.933 0.956 0.970 0.968 0.956 0.997
Corr2c 1.000 1.000 1.000 0.998 1.000 1.000

aSoft SVM, Hard E-SVM, and Hard M-SVM refer to soft margin SVM based on the Euclidean distance measure,
hard margin SVM based on the Euclidean distance measure, and hard margin SVM based on the Mahalanobis distance
measure, respectively.

bLS-SVM and rLS-SVM refer to least squares SVM with and without regularization, respectively.
cCorr1 refers to the average correlation between the normal vectors of Hard E-SVM and LS-SVM, while Corr2 refers

to the average correlation between the normal vectors of Hard M-SVM and LS-SVM.

M-SVM. Let wE
i , wM

i , and wLS
i denote the normal

vectors of Hard E-SVM and Hard M-SVM, and the
weight vector of LS-SVM, respectively, when the i-
th class, Xi, and the rest of classes, X̂i, are assigned
to the positive and negative classes, respectively. For
comparison, we define

Corr1 =
1
k

k∑

i=1

wE
i · wLS

i

||wE
i ||2||wLS

i ||2
, (17)

Corr2 =
1
k

k∑

i=1

wM
i · wLS

i

||wM
i ||2||wLS

i ||2
. (18)

That is, Corr1 denotes the average correlation between
the normals of Hard E-SVM and the weight vectors of
LS-SVM, while Corr2 denotes the average correlation
between the normals of Hard M-SVM and the weight
vectors of LS-SVM.

We can observe from Table 1 that LS-SVM and Hard
M-SVM achieve the same classification performance
in all cases except re0. We checked all datasets and
found that the training data points are linearly inde-
pendent in all cases except re0. However, the accu-
racy difference between LS-SVM and Hard M-SVM is
small in re0. The empirical resuts confirm the theo-
retical analysis presented in Sections 2 and 3. This
is further confirmed by the values of Corr2, since a
value of 1 implies that the normals of the hard margin
SVM are equivalent to the weight vectors of LS-SVM.
Overall, Hard E-SVM is comparable to Hard M-SVM.
Note that the values of Corr1 are about 0.96 in aver-
age, which implies that the normals of Hard E-SVM

is close to that of Hard M-SVM, as discussed in Sec-
tion 3. Soft SVM and rLS-SVM do not perform sig-
nificantly better than Hard E-SVM and LS-SVM with
no regularization. Overall, Soft SVM and rLS-SVM
are comparable.

5 Conclusions

We examine in this paper the intrinsic relationship be-
tween SVM and LS-SVM. Our main result shows that
when the data points are linearly independent, LS-
SVM is equivalent to Hard M-SVM. We further study
the asymptotics of SVM when the data dimensional-
ity tends to infinity with a fixed sample size. Using
recently developed theory on the asymptotics of the
distribution of the eigenvalues of the covariance ma-
trix, we show that the equivalence result between LS-
SVM and hard margin SVM holds for the traditional
Euclidean distance measure. These equivalence results
can be further extended to the multi-class case, when
one-against-rest approach is applied. Experimental re-
sults on a collection of high-dimensional datasets con-
firm the claimed theoretical results. Results also show
that for high-dimensional data, soft margin SVM is
comparable to the hard margin SVM based on either
the Euclidean or the Mahalanobis distance measure.
Our theoretical and empirical results give further in-
sights into the nature of these two algorithms as well
as their relationship.

The presented analysis can be directly extended to the
feature space when the kernel trick is applied. We



have done preliminary studies on low-dimensional data
using Gaussian kernels. Unlike the high-dimensional
case, the regularization in Soft SVM and rLS-SVM
are effective and may significantly improve the clas-
sification performance of Hard E-SVM and LS-SVM.
Overall, Soft SVM and rLS-SVM are comparable, as
has been observed in previous studies. We plan to
explore this further in the future.
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