Importance Sampling for General Hybrid Bayesian Networks

Changhe Yuan
Department of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762
cyuan@cse.msstate.edu

Abstract

Some real problems are more naturally mod-
eled by hybrid Bayesian networks that consist
of mixtures of continuous and discrete variables
with their interactions described by equations
and continuous probability distributions. How-
ever, inference in such general hybrid models is
hard. Therefore, existing approaches either only
deal with special instances, such as Conditional
Linear Gaussians (CLGs), or approximate a gen-
eral model with a restricted version and then per-
form inference on the simpler model. However,
results thus obtained highly depend on the qual-
ity of the approximations. This paper describes
an importance sampling-based algorithm that di-
rectly deals with hybrid Bayesian networks con-
structed in the most general settings and guar-
antees to converge to the correct answers given
enough time.

1 Introduction

This paper addresses inference in general hybrid Bayesian
networks that contain mixtures of discrete and continu-
ous variables and mixtures of deterministic and proba-
bilistic relations. Since the general case is difficult, ex-
isting research often focuses on special instances, such
as Conditional Linear Gaussians (CLGs) or Augmented
CLGs [5, 10, 11, 12, 18]. Recent research focused on
developing methodologies for more general non-Gaussian
models. One approach uses Mixture of Truncated Expo-
nentials (MTE) to approximate arbitrary probability distri-
butions [2, 14]. Another approach approximates arbitrary
hybrid models using CLGs [20]. Although the inference
step can be done exactly for these approaches, they may
encounter numerical instability when trying to improve the
quality of the approximate models for better inference in
large models.! Other approaches for inference in hybrid
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Bayesian networks include dynamic discretization [9] and
Jjunction tree algorithm with sample potentials [8].

Importance sampling-based algorithms, such as likelihood
weighting (LW) [3, 19], AIS-BN [1], Dynamic IS [15], and
EPIS-BN [25], have proven effective in solving discrete
models. Monte Carlo sampling puts minimum restriction
on the representation of the models, which makes it a nat-
ural choice for inference in general hybrid Bayesian net-
works. Add-ons to spreadsheet programs, such as Excel,
apply Monte Carlo sampling in solving spreadsheet mod-
els. Still, Excel offers complete modeling freedom and al-
lows users to specify any interaction among its cells (these
can be viewed as variables). Another group of modeling
tools that offer a complete modeling freedom are visual
spreadsheets, with Analytica [16] being a prominent exam-
ple. However, the main shortcoming of both spreadsheets
and visual spreadsheets is that they only allow forward
sampling and have no capability to deal with evidential
reasoning. Evidential reasoning is hard, mainly because
the a-priori probability of observed variables in extremely
low. Importance sampling has proven its worth precisely in
cases with extremely unlikely evidence.

In this paper we propose an importance sampling-based al-
gorithm to deal with evidential reasoning in general hybrid
Bayesian networks. More specifically, we extend the EPIS-
BN algorithm proposed by Yuan and Druzdzel [25] to the
most general setting. Although the extension seems nat-
ural, several nontrivial difficulties unique to hybrid mod-
els need to be overcome for the new algorithm to work.
Firstly, we propose a technique called delayed importance
function generation that applies Hybrid Loopy Belief Prop-
agation (HLBP) [24] to calculate an importance function.
This technique allows the use of arbitrary conditional re-
lations and makes the general representation in Section 2
possible. Secondly, we propose another technique called
soft arc reversal to draw importance samples when a deter-
ministic variable has been observed. This technique makes
importance sampling a viable approach for hybrid models.

The remainder of this paper is structured as follows. In
Section 2, we discuss a general representation of hybrid



Bayesian networks. In Section 3, we discuss the HEPIS-
BN algorithm. Finally, we present results of an empirical
evaluation of the algorithm in Section 4.

2 General Representation of Hybrid
Bayesian Networks

In order not to limit the modeling power of a Bayesian
network-based tool, we should make the representation of
hybrid Bayesian networks as general as possible. The rep-
resentation should not only allow mixtures of discrete and
continuous variables, but also allow arbitrary orderings be-
tween them, including discrete variables with continuous
parents. The representation should also allow linear or non-
linear deterministic equations and arbitrary probability dis-
tributions. In our work, we use a representation defined as
follows.

A hybrid Bayesian network contains a mixture of discrete
and continuous nodes and can be factorized as a product
of hybrid conditional probability tables (HCPTs), one for
each variable conditional on its parents. An HCPT is de-
fined as follows.

Definition 1. For every node X, its parents PA(X) are di-
vided into two disjoint sets: discrete parents DPA(X) and
continuous parents CPA(X). Then, its hybrid conditional
probability table (HCPT) P(X|PA(X)) is a table indexed
by its discrete parents DPA(X ) and with each entry repre-
senting one of the following conditional relations:

1. If X is a discrete variable with only discrete parents,
a discrete probability distribution;

2. If X is a discrete variable with continuous par-
ents, a discrete probability distribution dependent on
CPA(X);

3. If X is a continuous and deterministic variable, a de-
terministic equation dependent on CPA(X).

4. If X is a continuous and stochastic variable, a deter-
ministic equation dependent on CPA(X) plus a noise
term having an arbitrary continuous probability dis-
tribution with parameters dependent on CPA(X) as
well;

Let us use several concrete examples to illustrate the power
of this representation. First, Item 1 reduces to a conditional
probability table (CPT) as in discrete Bayesian networks.

Item 2 models the conditional relation of a discrete node
with both discrete and continuous parents. It does not re-
strict the representation to any specific form but only spec-
ifies the property that it should have. For example, one al-
lowable representation is the softmax function [13]. Let A
be a discrete node with possible values aq, as, ..., G, and

let X;, Xo, ..., Xj be its continuous parents. We have
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In case A has discrete parents, we define a different soft-
max function for every configuration of the discrete par-
ents. Once the parents are instantiated, the conditional re-
lation becomes a concrete discrete distribution. Note that
the representation allows any other form with the property.
Another example would be different discrete distributions
for different ranges of an arbitrary function of the continu-
ous parents.

P(A = ai\xl,xg, ..

Item 3 models the deterministic relation between a contin-
uous variable and its parents. For each instantiation of its
discrete parents, we specify a different linear or nonlinear
deterministic equation.

Item 4 is a generalization of Item 3. The conditional re-
lation contains two parts, a deterministic equation plus a
noise term. As an example, suppose a continuous variable
Y has continuous parents X; and X5. We can specify the
conditional relation as follows:

Y:f(X17X2)+N(g(X13X2)7h(X17X2))3 2

where f, g, h are arbitrary functions, and N (u, o) is a ran-
dom noise from the normal distribution with mean g and
standard deviation o.

Following a popular convention, we use discrete variables
only as indices. We can easily relax this assumption and
allow discrete variables to behave as numerical variables.
There is only one entry in a node’s HCPT if it has no dis-
crete parents. Also, the equation part in Representation 4
only shifts the location of the noise term. To simplify our
discussion, we later treat the conditional relation a distribu-
tion as a whole.

3 Importance Sampling for General Hybrid
Bayesian Networks

In this section, we propose the HEPIS-BN algorithm. We
first review the main idea of EPIS-BN, the basis of our new
algorithm. Then we discuss how to apply the Hybrid Loopy
Belief Propagation (HLBP) [24] algorithm using delayed
importance function generation to calculate the importance
function. Finally we discuss how to deal with evidence in
the HEPIS-BN algorithm.

3.1 The EPIS-BN Algorithm: A Review

The EPIS-BN algorithm is an importance sampling-based
algorithm for Bayesian networks proposed by Yuan and



Druzdzel in [23, 25]. The importance function of EPIS-BN
is defined as:
p(X\E) = [[ P(Xi|PA(X,). E) , 3)

i=1

where each P(X;|PA(X;), E) is an importance conditional
probability table (1ICPT) [1]. The following theorem shows
that we can calculate the ICPTs exactly in polytrees [25].

Theorem 1. Let X; be a variable in a polytree, and
E be the set of evidence variables. The exact ICPT
P(X;|PA(X;), E) for X; is

a(PA(X;)) P(Xi|PA(X:))A(X5) 4

where o(PA(X;)) is a normalizing constant dependent on
PA(X;), and MN(X;) is the message to X; sent from its de-
scendants.

Based on the observation that LBP provides surprisingly
good results for many networks with loops [17], Yuan and
Druzdzel [25] propose to use a small number of LBP to es-
timate the importance functions for loopy networks in the
EPIS-BN algorithm. Experimental results in [25] show
that subsequent importance sampling provides an insur-
ance against those cases in which LBP does not converge
to the right posterior . The resulting algorithm, EPIS-
BN, achieves a considerable improvement over the previ-
ous state-of-the-art algorithm, AIS-BN [1].

In order to generalize the EPIS-BN algorithm to deal with
hybrid Bayesian networks, we need to perform belief prop-
agation in hybrid models. We use the Hybrid Loopy Be-
lief Propagation (HLBP) algorithm [24] for this purpose.
Since no closed-form solutions exist for the LBP messages
in general hybrid models, HLBP represents the messages
using mixture of Gaussians (MoGs) and formulates their
calculation as Monte Carlo integration problems. Readers
who are interested in HLBP can refer to [24] for more de-
tails.

3.2 Delayed Importance Function Generation

We now discuss how to apply HLBP to calculate an impor-
tance function. Similarly to EPIS-BN, we are interested in
making use of the A messages estimated by HLBP to cal-
culate the ICPTs. Since variables are all discrete in discrete
Bayesian networks, we can multiply the A\ messages with
CPTs to get all the ICPTs. It is much more complex in hy-
brid Bayesian networks. We discuss the following several
scenarios separately.

Discrete variable with only discrete parents: This sce-
nario reduces to the same case as in discrete Bayesian net-
works.

Discrete variable with continuous parents: In this case,
we have a discrete A message. However, the conditional re-
lation is not determined before the continuous parents are

instantiated. To deal with the problem, we propose a tech-
nique called delayed importance function generation. The
main idea is to delay combining the A\ message with the
conditional relation until the continuous parents are all in-
stantiated. Importance sampling instantiates the nodes in
their topological order. Therefore parent nodes are always
instantiated before their children. Once the parents of a
discrete variable are determined, the conditional relation
becomes a discrete probability distribution which can be
multiplied by the incoming lambda messages to produce
the importance function.

Continuous variable with only discrete parents: All the
conditional relations in this case are continuous probability
distributions with fixed parameters. We can approximate
the conditional distributions with MoGs [22] and multi-
ply with the A\ message to produce new MoGs using either
Gibbs sampling [21] or importance sampling [24] to get the
ICPT.

Continuous variable with continuous parents: Again,
the conditional relation is not determined before the contin-
uous parents are instantiated. We also delay computing the
importance function until we have values for the parents.
Once the parents are instantiated, we can approximate the
conditional distribution by an MoG and then multiply by
the A\ messages to get the importance function.

There is one situation under which the A messages are use-
less. As soon as the parents of a deterministic node are
instantiated, the node itself is also determined. We simply
evaluate the deterministic relation to get its value. There-
fore, the importance function and the original distribution
are the same for this node. Its A messages can be simply
discarded.

3.3 The Algorithm

Now, let us discuss the HEPIS-BN algorithm, which essen-
tially boils down to drawing a single sample from the im-
portance function. The importance function that we have
now is expressed as a set of ICPTs for some variables and
a set of HCPTs and A(z) messages for the others.

The algorithm works as follows. We first order all the nodes
in their topological order and initialize the weight of the
current sample to be 1.0. Then we sample for each node X
in the ordering according to the following several scenarios.

Stochastic variable with no evidence: If X’s ICPT is al-
ready computed, we find the correct importance function
I(x) in ICPT using its parents’ values and draw a sample.
Otherwise, we can find the correct conditional probability
distribution P(z|u), evaluate its parameters using the con-
tinuous parents, and multiply it with the A\ message to get
the importance function I(x). We then sample from I(x)



and update the weight as follows:

&)

Deterministic variable with no evidence: We can sim-
ply evaluate the deterministic relation and get value for X.
There is no need to adjust the weight.

Stochastic variable with evidence: We simply take the
evidence e as though it is the sample and adjust the weight
as follows:

w=wx P(e|u) . 6)

Deterministic variable with evidence: This case needs
special care. Note that traditional sampling methods in-
stantiate a network in its topological order. However, when
a deterministic node is observed, the values of the parents
together with the evidence may conflict with the evidence.
The difficulty was often ignored for discrete Bayesian net-
works because not many states are possible and we can still
get valid samples. However, it is extremely unlikely to hit
a sample that satisfies a deterministic equation in hybrid
Bayesian networks. To address the problem, we propose a
technique that we call soft arc reversal: we draw samples
for all the parents except one and solve the remaining par-
ent based on other parents’ values. The name is due to the
fact that the technique is similar to performing a physical
arc reversal on the network.

We explain it using a concrete example.

Example:

P(Cl|A, B)
C=A+2xB

Figure 1: A simple hybrid Bayesian network.

Suppose we have a small hybrid Bayesian network with
three continuous variables A, B, and C' as in Figure 1. C'
is a deterministic node dependent on A and B. We also
assume that C'is observed to be 4.0. A conventional sam-
pling algorithm would sample A and B first and accept
the evidence of C as the sample. However, such a sample
would almost certainly have zero probability, because it is
extremely unlikely to get values for A and B that satisfy
the deterministic equation P(C|A, B). Note that once we
get the value for either A or B, the value of the other vari-
able is already determined. For example, suppose we get

Algorithm: HEPIS-BN

Input: Hybrid Bayesian network B, a set of evidence vari-
ables E, and a set of non-evidence variables X

Output: The marginal distributions of non-evidence vari-
ables.

1. Order the nodes in the topological order of the net-
work.

2. Perform hybrid loopy belief propagation (HLBP) for
several steps.

3. Precompute the ICPTs for all the nodes with only dis-
crete parents using messages by HLBP.

4. Draw a desirable number of samples for the network
according to Section.

5. Estimate the posterior marginal probability distribu-
tions for unobserved variables using the weighted

samples.

Figure 2: The HEPIS-BN algorithm.

sample 2.0 for A. Then B can only take value 1.0. There-
fore, instead of sampling for B, we should solve for it and
take 1.0 as the sample.

We need to consider several issues when deciding which of
the parents to choose to be the new child. First, since we
want to use the values of the other parents to solve for the
chosen one, we need an equation solver. In our implemen-
tation, we use the Newton’s method for solving nonlinear
set of equations [6]. However, not all equations are solv-
able by this equation solver or any equation solver for that
matter. We may want to choose the parent that is easiest
to solve. This can be tested using a preprocessing step. In
more difficult cases, we have to resort to modeler’s help
and ask for specifying which parent to solve or even spec-
ify the inverse functions manually. When there are multiple
choices, one useful heuristic is to choose the parent with the
largest variance. There are also circumstances under which
we need to resort to upper level soft arc reversal if all the
parents are deterministic as well.

In the end, we get an independent weighted sample for the
network. What remains is to repeat the process until we get
enough samples. We outline the HEPIS-BN algorithm in
Figure 2.

4 Experimental Results

We tested the HEPIS-BN algorithm on three commonly
used hybrid Bayesian networks: emission network, aug-
mented emission network, and augmented crop net-
work [10, 12] shown in Figure 3. For the emission net-
works, we use the same parameterizations as in [12]. For



the augmented crop network, we added a deterministic
node TotalPrice to the original crop network and parameter-
ized it as in Table 1 to demonstrate the capability of soft arc
reversal. We also transformed the emission network into a
dynamic model to test the algorithms on a large model.

To evaluate how well HEPIS-BN performs, we discretized
the ranges of continuous variables to 50 intervals and then
calculated the Hellinger’s distance [7] between the results
of HEPIS-BN and the exact solutions obtained by a mas-
sive amount of computation (likelihood weighting (LW)
with 100M samples) as the error for HEPIS-BN. We tried
to compare our algorithm against another accessible algo-
rithm to us, the Gibbs sampling implemented in BUGS [4],
but encountered convergence difficulties similar to those
reported in [12], so we compared our algorithm mainly
against LW. Also, HEPIS-BN achieves a precision much
better than HLBP. We omit the results for clarity. All the
results are the average of 50 runs of the experiments.

Burning
Regime
% Sensor f

‘/' Dust ™, Light
. Sensor Penetrability @

(a) (b)

7 Metal
\ Sensor

Figure 3: (a) Emission network (without dashed nodes) and
augmented emission network (with dashed nodes) (b) aug-
mented crop network.

Variable Distribution
Subsidize (S) 0.3,0.7)
Crop (C) NG, 1
Price (P) S 10-N(C, 1)

=S 20-N(C, 1)
TaxRate (T) N(0.5,0.1)
TotalPrice (TP) P*(1+T)
Buy (B) (a:%, 1-a)

Table 1: Parameterizations of the augmented crop network.

We observe that typically only a few steps of HLBP are
necessary for HEPIS-BN to achieve a good performance,
so we set the propagation length to 4. Since we only use
HLBP to calculate an importance function, we need not
strive for good results from HLBP. We only use 250 sam-
ples to estimate HLBP messages and two components for
each MoG.

4.1 Results on the Emission Network

Some existing approaches only produce mean and variance
as the solutions for the posterior probability distributions.
However, we would like to note that mean and variance
alone provide only limited information about the actual
posterior probability distributions. Figure 4 shows the pos-
terior probability distribution of node DustEmission when
observing CO2Emission to be —1.6, Penetrability to be 0.5,
and WasteType to be 1. We also plot in the same figure the
corresponding normal approximation with mean 3.77 and
variance 1.74. We see that the normal approximation does
not reflect the true posterior. While the actual posterior
distribution has a multimodal shape, the normal approxi-
mation does not tell us where the mass really is. On the
contrary, LW and HEPIS-BN with 4K samples were both
able to correctly estimate the shape of the posterior prob-
ability distribution, with HEPIS-BN demonstrating better
performance than LW.

LW Estimation
= = HEPIS Estimation
—— Exact Posterior
Normal Approximation

o
©
.

Probability
o
(2}

=}
~
L
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T T T T Lo e
0.76 1.72 2.68 3.64 4.6 5.56 6.52 7.48 8.44
Posterior Distribution of DustEmission

Figure 4: The posterior probability distributions estimated
by LW, HEPIS-BN, normal approximation of DustEmis-
sion when observing CO2Emission to be —1.6, Penetrabil-
ity to be 0.5 and WasteType to be 1 in emission network.

We compared the convergence rates and plotted the error
curves of both algorithms with 40K samples in Figure 5(a).
We also plotted the results of LW on emission network with
no evidence (the ideal case for importance sampling). Al-
though results thus obtained are not strict lower bounds,
they can at least serve as an indication of the limiting pre-
cision of importance sampling on the network. We observe
that HEPIS had a precision even better than the ideal case.
However, since HEPIS-BN is more complicated than LW,
it requires more running time, roughly twice as much as
LW on the emission network in our implementation.

We also used a more unlikely evidence with CO2Emission
at —0.1, Penetrability at 0.5 and WasteType at 1 to test
the robustness of LW and HEPIS-BN. It is more unlikely
because when we set Penetrability to 0.5 and WasteType
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Figure 5: Convergence curve comparison of LW and
HEPIS-BN on emission network with evidence (a)
CO2Emission= —1.6, Penetrability = 0.5 and WasteType
= 1 (b) CO2Emission = —0.1, Penetrability = 0.5 and
WasteType = 1, together with Ideal case (LW on emission
with no evidence).

to 1, the posterior probability distribution of CO2Emission
has a mean of —1.55. The error curves are shown in Fig-
ure 5(b). We can see that LW clearly performed worse,
but HEPIS-BN seemed quite robust to the likelihood of the
evidence. To get a more clear understanding, we gradu-
ally changed the observed value of CO2Emission and ran
both algorithms on these cases. The results are plotted in
Figure 6. We observe that LW kept deteriorating in face
of unlikely evidence, while HEPIS-BN’s performance was
fairly stable as expected.
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Figure 6: The influence of the observed value of
CO2Emission on the precision of LW and HEPIS-BN af-
ter observing Penetrability to 0.5 and WasteType to 1 in
emission network.

The emission network is only a small network. We antici-
pate that the advantage of HEPIS-BN will be more evident
in real models, which are typically much more complex.
To test the hypothesis, we transformed the emission net-
work into a dynamic model with three slices and a total of
27 variables, and observed CO2Emission at —0.1 and Pen-
etrability at 0.5 in the first and third slice of the model. The
results of the algorithms are shown in Figure 7. While LW
showed a much worse precision, the precision of HEPIS-

BN was still close the that of the ideal case. Therefore,
although HEPIS-BN typically requires more running time
per sample, it will outperform LW on complex models. We
are currently building a much more complex network mod-
elling the university budget planning problem to test the
algorithm.
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Figure 7: Error curves of LW and HEPIS-BN on the dy-
namic emission network.

4.2 Results on Other Networks

We also plotted the convergence results on the augmented
emission network with evidence of CO2Sensor and Dust-
Sensor being true in Figure 8(a). We used the same evi-
dence as in [12]. Again, we observe that HEPIS-BN per-
forms better than LW.

W
-~ HEPIS
- Ideal case| 008

s 5 s 7
Number of Samples (4000%) Number of Samples (4000°)

(a) (b)

Figure 8: Error curves LW and HEPIS-BN (a) augmented
emission network when CO2Sensor and DustSensor are
observed to be true (b) crop network when totalprice is ob-
served to be 18.0.

We discussed how to deal with deterministic nodes with ev-
idence in importance sampling. To verity that the proposed
technique works properly, we revised the crop network and
added a nonlinear deterministic node TotalPrice to it (as in
Figure 8(b)) and let TotalPrice to observed at 18.0. Note
that the classic LW does not work in such case. We had
to enhance it with the soft arc reversal technique in Sec-
tion 3.2. We ran the same experiment as in last subsection,



and plotted out the error curves in Figure 8(b). We again
observed that HEPIS-BN performed better than LW on this
network and its precision was comparable to the ideal case.

5 Conclusion

In this paper, we propose the HEPIS-BN algorithm, an im-
portance sampling algorithm for general hybrid Bayesian
networks that applies HLBP to calculate importance func-
tion. We also propose two novel techniques, delayed im-
portance function generation and soft arc reversal, to deal
with difficulties that are unique to hybrid models. We tested
the algorithm on three benchmark hybrid models, and we
observed that HEPIS-BN not only yields a much better ac-
curacy than LW, but also was more stable in face of un-
likely evidence, which make HEPIS-BN a promising ap-
proach for addressing inference tasks in much larger hybrid
models.

There are two major advantages of our approach. First,
it allows the maximum freedom in the representation of
the hybrid Bayesian networks. It allows linear or non-
linear equations and arbitrary probability distributions and
accommodates naturally the situation where discrete vari-
ables have continuous parents. Second, the algorithm di-
rectly deals with a hybrid model and guarantees to converge
to the correct posterior probability distributions.
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