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Abstract

We propose a novel extension of the 1-norm
support vector machine (SVM) for simul-
taneous feature selection and classification.
The new algorithm penalizes the empirical
hinge loss by the adaptively weighted 1-norm
penalty in which the weights are computed by
the 2-norm SVM. Hence the new algorithm is
called the hybrid SVM. Simulation and real
data examples show that the hybrid SVM not
only often improves upon the 1-norm SVM in
terms of classification accuracy but also en-
joys better feature selection performance.

1 Introduction

We consider the feature selection problem in the sup-
port vector machine (SVM) for binary classification.
The standard 2-norm SVM (Vapnik 1996) is a widely
used classification tool, due to its elegant margin in-
terpretation and highly competitive performance in
practice. However, the 2-norm SVM classifier can-
not automatically select input features. It is now
well known that feature selection is crucial for achiev-
ing good classification accuracy if the underlying true
model is sparse (Hastie et al. 2001, Friedman et al.
2004). Moreover, in many scientific problems parsimo-
nious models are often preferred, hence feature selec-
tion is necessary. Friedman et al. (2004) advocated
the bet-on-sparsity principle in statistical modeling;
namely, procedures that do well in sparse problems
should be favored. Fan and Li (2006) gave a compre-
hensive overview of the importance of feature selection
in knowledge discovery.

One way to approach the feature selection problem in
classification is to combine a separate feature selec-
tion step with the SVM methodology. For example,
one could use univariate ranking (Golub et al. 1999)
and recursive feature elimination (Guyon et al. 2002)

to select a subset of variables and then fit a 2-norm
SVM by using the selected subset variables. However,
these type of procedures depend on the external fea-
ture selection methods. As indicated by the statisti-
cal theory developed by Fan and Li (2001, 2006), one
could achieve superior performance by doing feature
selection and prediction simultaneously. A lot of em-
pirical evidence supports this viewpoint, see Tibshi-
rani (1996), Hastie et al. (2001), Zhu et al. (2003)
and Friedman et al. (2004). In the past few years,
the 1-norm minimization method for variable selec-
tion has attracted a lot of attention. Breiman (1995)
invented the non-negative garrote idea which was re-
visited again recently by Yuan and Lin (2005). Tibshi-
rani (1996) proposed the lasso, a penalized least square
method using the 1-norm penalty, for variable selec-
tion in linear and generalized linear models. Bradley
et al. (1998), Song et al. (2002) and Zhu et al. (2003)
considered the 1-norm SVM to accomplish the goal of
automatic feature selection in the SVM classifier. The
1-norm SVM penalizes the empirical hinge loss using
the lasso (1-norm) penalty. Due to its singularity at
the origin (Tibshirani 1996, Fan and Li 2001), the 1-
norm penalty is able to shrink some of the coefficients
to exact zero. Thus the 1-norm SVM automatically
discards irrelevant features by estimating their coeffi-
cients by zero. When there are many noise variables,
the 1-norm SVM has significant advantages over the
2-norm SVM, for the latter does not select significant
variables (Zhu et al. 2003).

In this paper we attempt to further improve upon the
1-norm SVM. As shown in Section 3, the 1-norm SVM
often tends to include some noise features in the fi-
nal model when the underlying model is truly sparse.
This phenomenon is closely related to the lack of or-
acle property of the lasso, as conjectured by Fan and
Li (2001) and proven by Zou (2006). Zou (2006) fur-
ther showed that a modified lasso using the weighted
1-norm penalty could perform as well as if the under-
lying sparse model were given in advance. Motivated
by these empirical and theoretical findings, we propose



a novel extension of the 1-norm SVM by adopting the
adaptively weighted 1-norm penalty in the SVM. We
construct the adaptive weights using the 2-norm SVM.
Thus the new algorithm is called the hybrid SVM. Sim-
ulation and real data examples show that the hybrid
SVM often outperforms the 1-norm SVM in terms of
sparsity and classification accuracy.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the hybrid SVM methodology. We
conduct Monte Carlo simulation to compare the hybrid
SVM with the 1-norm and 2-norm SVMs in Section 3.
In Section 4 we demonstrate the utility of the hybrid
SVM using three benchmark data sets. Section 5 con-
tains some discussion.

2 Methodology

In this section we first briefly discuss the unified rep-
resentation of the 2-norm and 1-norm SVMs. We then
introduce the weighted 1-norm penalty and the hybrid
support vector machine.

2.1 Review of the 2-norm and 1-norm SVMs

Let x denote the feature vector. The class labels, y, are
coded as {1,—1}. A classification rule § is a mapping
from x to {1, —1} such that a label §(x) is assigned to
the datum at z. Under the 0-1 loss, the misclassifica-
tion error of ¢ is R(d) = P(y # d(x)). The smallest
classification error is the Bayes error achieved by the
Bayes rule arg max,c1,—1} p(y = c|z).

The standard 2-norm SVM finds a hyperplane (z7 3+
Bo) that creates the biggest margin between the train-
ing points for class 1 and -1 (Vapnik 1996, Hastie et
al. 2001)
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where &; are slack variables, and B is a pre-specified
positive number that controls the overlap between the
two classes. The 2-norm SVM has an equivalent loss +
penalty formulation (Vapnik 1996, Hastie et al. 2001)

(8, Bo) = arg min > [1—wi(@f 8+ Bo)], + MBI,
0=
(1)

where the subscript ”+” means the positive part (z4 =
max(z,0)). The loss function (1 — ¢)4 is called the
hinge loss or SVM loss. Lin (2002) showed that due to
the unique property of the hinge loss, the SVM directly
approximates the Bayes rule without estimating the
conditional class probability.

The 1-norm SVM replaces the 2-norm penalty in (1)
with the 1-norm penalty
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Note that the 1-norm penalty is not differentiable at
zero. This important singularity property ensures that
the 1-norm SVM is able to delete many noise features
by estimating their coefficients by zero. The 2-norm
penalty is differentiable everywhere, thus the 2-norm
SVM will use all the input features in classification.
When there are many noise variables, the 2-norm SVM
suffers severe damage caused by the noise features.
Thus the 1-norm SVM is considered a better choice
than the 2-norm SVM if the underlying model has a
sparse presentation. For more detailed discussion on
the advantages of the 1-norm penalty over the 2-norm
penalty, the readers are referred to Friedman et al.
(2004).

2.2 The hybrid SVM

We are ready to present the technical details of the
hybrid support vector machine. Given the n training
samples { (x5, ;) 1", let B(£3) denote the coefficients
in the 2-norm SVM. We define a weight vector as fol-
lows
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where « is a positive constant. Then the weighted 1-
norm penalty is

P
1Blwr =Y w;lB;]. (4)

j=1

With such definitions, we propose penalizing the em-
pirical hinge loss by the weighted 1-norm penalty

(8, o) = arg %%nz [1—yi(z] B+ Bo)] . + ABlw-
POi=1

(5)
The fitted classifier is f(z) = By + 273, and the clas-

sification rule is sign(f(z)).

Note that the weighted 1-norm penalty is a data-
driven quantity. It is worth noting that if the weights
are data-independent, then the weighted 1-norm can-
not fix the drawback of the ordinary 1-norm penalty
(Zou 2006). The rationale behind the weighted 1-
norm penalty is to adaptively penalize each compo-
nents such that the coefficients of irrelevant variables
are shrunken to zero, while reducing the shrinkage bias
for the large coefficients of significant variables. Rig-
orous justification of the usage of the weighted 1-norm
penalty is provided in Zou (2006).



2.3 Computation and tuning

The hybrid SVM can be efficiently solved by standard
linear programming (LP) software. To derive the LP
formulation of the hybrid SVM, we introduce a set of
slack variables

p
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Jj=1 4
i=1,2,...,n,

and we write 3; = 6J+ — (; where ﬂj and 3; de-
note the positive and negative parts of 3;, respectively.
Then it is not hard to show that the hybrid SVM is
equivalent to

argmin » &+ A [B(L2);1 (B - B;7)  (6)
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If v = 0, (6) reduces to the 1-norm SVM. Zhu et al.
(2003) proposed an efficient algorithm to efficiently
solve the 1-norm SVM solution path. Similar algo-
rithm can be used to solve (6) for all A.

In the hybrid SVM there are two obvious tuning pa-
rameters: A and . In principle, there is another tun-
ing parameter, because different regularization param-
eter in the 2-norm SVM will give different 3 (¢2), hence
different weights for the hybrid SVM. To save compu-
tations, we propose the following strategy for select-
ing the tuning parameters. We first find the best 2-
norm SVM classifier based on the training data, then
the weights are computed based on the 2-norm SVM
classifier. The next step is to apply cross-validation
(or validation if an independent validation data set
is available) to choose the optimal pair of (A,7). In
all the numerical examples we choose v from the set
{1,2,4}.

3 Simulation

In this section we conduct simulation experiments to
compare the hybrid SVM with the 2-norm and the 1-
norm SVMs. We first introduce some notation used in
the simulation. We use ”C” and ”IC” to denote the
median number of correctly and incorrectly selected
input features, respectively. The term ”PPS” stands
for the probability of perfect selection (selecting the
true model).

3.1 Sparse models: p<n

Model 1:Orange data model. In the first simula-
tion example, we considered the ”orange data” model
in Zhu et al. (2003). We generated 50 observations
in each of two classes. The first class ("+”) has two
independent standard normal inputs z1,z5. The sec-
ond class (”-”) also has two standard normal indepen-
dence inputs, but conditioned on 4.5 < 2% + z3 < 8.
To make the classification more difficult, we also in-
cluded ¢ independent standard normal inputs in the
model. let I(-) be the indicator function. The Bayes
rule assigns label 1 — 2I(4.5 < 23 + 23 < 8) to da-
tum (z1,x2,...,T244), thus being independent of the
dimension. The Bayes error is 0.0435.

Figure 1: Orange data. The solid black circles are the
Bayes decision boundary.

In the original input space, a linear classifier is not
sufficient for separating the two classes. We used the
enlarged dictionary D = {\/ixj7 \/ixjmk, x?j, k =
1,2...,2 + ¢} to build the SVM classifiers. We also
collected an independent validation data set of size 100
for selecting the tuning parameter(s) in each SVM. A
test set of 20000 observations was used to evaluate the
test error of each SVM. We let ¢ be 2, 4, 6, 8. For each
q, the simulation was repeated 500 times.

Table 1 compares the classification accuracy of three
SVMs in model 1. Numbers in parentheses are the
standard errors. Several observations can be made
from Table 1. Both the hybrid SVM and the 1-norm
SVM dominates the 2-norm SVM by a good mar-
gin. When the number of noise features, g, increases,
the classification error of the 2-norm SVM increases



quickly. In contrast, the errors of the hybrid and 1-
norm SVMs are much more robust with respect to the
value of q. We also see that the hybrid SVM is signif-
icantly more accurate than the 1-norm SVM.

q| p 2-norm 1-norm hybrid

2| 14 | 9.97(0.09)% 8.00(0.04)% 7.27(0.04)%
4|27 | 12.87(0.11)% 8.21(0.04)%  7.45(0.04)%
6| 44 | 16.17(0.14)% 8.42(0.01)% 7.63(0.05)%
8 | 65 | 19.21(0.15)% 8.52(0.06)%  7.65(0.05)%

Table 1: Orange data model: p < n, note p is the size
of the enlarged dictionary. Compare the misclassifi-
cation errors of the hybrid SVM, 2-norm and 1-norm
SVMs.

Table 2 summarizes the feature selection results by the
1-norm and hybrid SVMs. It indicates that the 1-norm
tends to select a few noise features into its final model,
but the hybrid SVM has greater tendency to discard
all the noise features. The perfect variable selection
means that all the true features are selected and all
the noise features are eliminated. When ¢ exceeds 12,
there are about 100 predictors in the enlarged dictio-
nary. It is very difficult for the 1-norm SVM to exactly
identify the ground truth. However, the hybrid SVM
consistently have pretty high probabilities of perfect
selection.

q| p 1-norm hybrid

C IC PPS Cc IC PPS
2|14 2 3 021 2 0 0.72
4127 2 3 0.19 2 0 0.72
6 | 44 2 4 0.11 2 0 0.69
8 | 65 2 5 012 2 0 071

Table 2: Orange data model, p < n. Compare the
variable selection results of the hybrid SVM and the
1-norm SVM.

Orange data example clearly shows the benefits of us-
ing the weighted 1-norm penalty in the SVM classi-
fication. We now consider more sparse models with
various correlation structure among predictors.

Model 2. We simulated a training data set con-
sisting of 100 observations from the model y ~
Bernoulli{p(z” 3 + Bo)}, where p(u) = exp(u)/(1 +
exp(u)). We let g = (3,0,0,0,0,3,0,0,0,0,0,3) and
Bo = 0. The components of x are standard normals,
where the correlation between z; and z; is p. We
considered both p = 0.5 and p = 0. Note that the
Bayes rule is to assign datum (z1,...,z12) to class
2I(x1 + 26 + x12) — 1.

Model 3. We simulated a training data set con-
sisting of 100 observations from the model y ~

Bernoulli{p(z”8 + By)}, where p(u) = exp(u)/(1 +
exp(u)). We let 8 = (3,2,0,0,0,0,0,0,0) and 5y = 1.
The components of x are standard normal, where the
correlation between z; and x; is p/"=7I. We considered
both p = 0.5 and p = 0. Note that the Bayes rule is to

assign datum (z1, . .

., Zg) to class 21 (3z1+2x2+1)—1.

p=0.5 p=0
Model 2 Error % Error %
2-norm 10.84(0.07) 13.85(0.07)
1-norm 9.99(0.08) 12.85(0.08)
hybrid 9.32(0.08) 11.69(0.06)
Bayes 7.38 10.19
p=0.5 p=0
Model 3 Error % Error %
2-norm 14.36(0.07) 16.54(0.07)
1-norm 13.21(0.07) 15.29(0.07)
hybrid 12.77(0.06) 14.82(0.06)
Bayes 11.89 13.75

Table 3: Simulation model 2 and model 3. Compare
classification performance.

p=0.5 p=0
Model 2 C 1IC PPS C IC PPS
1-norm 3 2 0.15 3 2 0.25
hybrid 3 0 0.62 3 0 074

p=0.5 p=0
Model 3 C IC PPS C IC PPS
1-norm 2 0 0.54 2 2 0.31
hybrid 2 0 077 2 0 074

Table 4: Simulation model 2 and model 3. Compare
feature selection performance.

In both models we collected an independent validation
data set of size 100 for selecting the tuning parame-
ter(s) in each SVM. A test set of 20000 observations
was used to evaluate the test error of each SVM. The
simulation was repeated 500 times. Tables 3 and 4
present the simulation results of model 2 and model 3.
In terms of classification accuracy, the 1-norm SVM
and the hybrid SVM dominate the 2-norm SVM, and
the hybrid SVM significantly outperforms the 1-norm
SVM. We observe again that the hybrid SVM has
greater tendency to discard all the noise features than
the 1-norm SVM. The hybrid SVM consistently has
much higher probabilities of perfect selection than the
1-norm SVM.

3.2 Sparse models: p >n

In this section we present more simulation experiments
to compare the performance of the hybrid SVM and



the 1-norm and 2-norm SVMs in the high-dimensional
setting.

Model 4. We used the orange data model again with
q = 12,16 and 20. The corresponding number of pre-
dictors is 119,189 and 275.

q P 2-norm 1-norm hybrid

12 | 119 | 24.30(0.14)% 8.65(0.05)%  7.66(0.05)%
16 | 189 | 27.81(0.14)% 8.61(0.05)%  7.74(0.06)%
20 | 275 | 30.40(0.13)%  8.68(0.06)% 7.78(0.07)%

Table 5: Orange data model, p > n. Compare the
misclassification errors of the hybrid SVM, 2-norm and
1-norm SVMs.

q P 1-norm hybrid

C IC PPS C IC PPS
12 | 119 2 5 0.064 2 0 0.668
16 | 189 2 4 0.036 2 0 0.652
20 | 275 2 6 0.016 2 0 0.566

Table 6: Orange data model p > n. Compare the
variable selection results of the hybrid SVM and the
1-norm SVM.

Table 5 and Table 6 summarize the simulation results
of model 4. We see that the 2-norm SVM suffers from
the high-dimensionality, while the 1-norm SVM and
the hybrid SVM overcome the curse-of-dimensionality
by automatically deleting most of the noise variables.
It is also worth emphasizing that even when p greatly
exceeds n, the hybrid SVM is still capable of selecting
the true model with a high probability. It is also worth
mentioning here that the hybrid SVM achieves the re-
markable performance only using 50 observations per
class. This example clearly demonstrates the advan-
tages of the hybrid SVM over the 1-norm and 2-norm
SVMs.

Model 5. We simulated a training data set con-
sisting of 100 observations from the model y ~
Bernoulli{p(zZ 8+ )} with 8 = (3,2,0,0,0,0,0,0,0)
and By = 1. The components of x are standard normal,
where the correlation between x; and x; is 0.5l
We then included 300 independent normal variables
as noise features in the predictor set. Thus p = 309
and n = 100. We repeated the simulation 500 times.

From Table 7 we see that the performance of the 2-
norm SVM is severely damaged by the added noise
variables, while the 1-norm and hybrid SVMs are much
more robust against the noise features. The hybrid
SVM does better than the 1-norm SVM in identifying
the true model.

Model 5| Error % C IC PPS
9norm | 34.21(0.13)

l-norm | 14.79(0.10) 2 2 0.33
hybrid | 14.69(0.13) 2 0  0.50
Bayes 11.89

Table 7: Results of simulation model 5.

3.3 A dense model

We have seen that in sparse models, the hybrid and
l-norm SVMs dominate the 2-norm SVM in terms of
classification accuracy. To have a more complete pic-
ture, we need to compare the three SVMs in the case
where the true model is dense.

Model 6. We used the same setup in model 3, except
that we let 8 = (3,3,3,3,3,3,3,3) and 8y = 0. The
components of x are independent standard normal. All
eight input features contribute equally in this model.

hybrid
9.42(0.08)%

1-norm
9.44(0.07)%

2-norm
8.75(0.05)%

Bayes
6.36%

Table 8: Simulation model 4. Compare the misclassi-
fication errors of the hybrid SVM, 2-norm and 1-norm
SVMs.

As can be seen from Table 8, the 2-norm SVM per-
forms the best in this model. This example shows the
value of quadratic regularization. On the other hand,
the 1-norm SVM and the hybrid SVM only lose a little
classification accuracy, and they have tremendous ad-
vantages over the 2-norm SVM in the sparse setting.
Our simulation shows that in classification problems,
the bet on sparsity principle is a good rule to follow.

4 Real Data Examples

The simulation study has demonstrated the promising
advantages of the hybrid SVM. We now examine the
performance of the hybrid SVM on several real data
examples. We considered three benchmark data sets
obtained from UCI Machine Learning Repository
(Newman & Merz 1998). Note that there are a
large number of predictors in these benchmark data
sets. Spam data contains a training set and a test
set. The test set has 1536 observations and test
indicators can be downloaded from http://www-
stat.stanford.edu/ " tibs/ElemStatLearn/ . For
ionosphere and WDBC data, we randomly selected
2/3 data for training and the other 1/3 data as the
test set. For each SVM, fitting and tuning were done
only on the training set, and the classification error
was computed using the test set. We repeated the



randomization ten times.

2-norm 1-norm hybrid

Error % Error % Error %
spam | 7.31(0.66)  7.37(0.66)  7.08(0.65)
ionosphere | 13.81(0.83) 13.47(0.80) 12.16(0.72)
WDBC | 3.26(0.31)  3.37(0.25)  3.29(0.22)

Table 9: Three benchmark data sets: compare classi-
fication performance.

# of l-norm  hybrid
predictors NSV NSV
spam 57 55 41
ionosphere 34 11 8
WDBC 30 11 8

Table 10: Three benchmark data sets: compare fea-
ture selection performance. "NSV” is the number of
selected variables.

Table 9 compares the three SVMs. In terms of classifi-
cation error, the hybrid SVM seems to perform slightly
better than the 2-norm and 1-norm SVMs.

As can be seen from Table 10, the feature selection
results are very interesting. In spam data the 1-norm
SVM seems to offer little improvement over the 2-norm
SVM. The hybrid SVM is able to delete 16 variables,
and at the same time, has a smaller classification error
than both the 2-norm and 1-norm SVMs. In WDBC and
ionosphere data both the hybrid SVM and the 1-
norm SVM greatly reduce the number of used features.
The hybrid SVM still uses less features and produces
a more accurate classifier than the 1-norm SVM.

5 Discussion

We have proposed the hybrid SVM for simultaneous
classification and feature selection. The hybrid SVM
is a two stage algorithm. At the first stage, we use the
coefficients of a 2-norm SVM classifier to construct
the weights in the weighted 1-norm penalty. Then we
solve the weighted 1-norm SVM. The 1-norm SVM
performs better than the 2-norm SVM when there are
many noise features. By using the adaptively weighted
1-norm penalty, the hybrid SVM often more efficiently
eliminates the noise features while reducing the shrink-
age bias on the significant variables. As a result, the
hybrid SVM classifier is often more accurate than the
1-norm SVM. When the underlying model is sparse,
the hybrid SVM can identify the exact subset model
with a much higher probability than the 1-norm SVM.
Thus we regard the hybrid SVM as an improved 1-
norm SVM.

In this paper we have used the inverse power func-
tion to construct the weights in the weighted 1-norm
penalty. As pointed out in Zou (2006), one could com-
pute the weights by using many other functions. For
example, let f(t) be a positive continuous function on
(0,00) such that lim;_o4 ft(,f) = oo for some s > 0,
then we can construct the weights by w; = f(|3(£a),])-
The choice of the weighting function is not critical for
large samples. For finite or small samples, we have
suggested using cross-validation to choose the weight-
ing function. This strategy worked quite well in our

experiments.
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