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Abstract
In this paper, we address the problem of non-parametric density estimation on a set of strings Σ∗.
We introduce a probabilistic model – called quadratic weighted automaton, or QWA – and we
present some methods which can be used in a density estimation task. A spectral analysis method
leads to an effective regularization and a consistent estimate of the parameters. We provide a set
of theoretical results on the convergence of this method. Experiments show that the combination
of this method with likelihood maximization may be an interesting alternative to the well-known
Baum-Welch algorithm.
Keywords: grammatical inference, non-parametric density estimation.

1. Introduction

The framework of this paper is non-parametric density estimation of an unknown distribution over
a set of strings built from a finite alphabet Σ. This problem is usually solved by minimizing the
Kullback-Leibler divergence between a parameterized distribution pθ and the target p. The most
used models for this task are Hidden Markov Models (HMMs) or equivalently Probabilistic Au-
tomata (PAs). From a training sample S, this problem classically boils down to optimizing a func-
tional depending on the parameters θ of the model

θ∗ = arg min
θ
kl(pS ||pθ)

where pS is the empirical distribution built from S, pθ is the distribution parameterized by θ, and
kl(pS ||pθ) is the Kullback-Leibler divergence of pθ with respect to pS . Solving this problem is
known to be NP-hard for a given HMM structure.

The models being used in this task (HMMs, weighted automata...) generally encompass the
class of Probabilistic Deterministic Finite Automata (PDFAs). As any finite-support distribution p
can be modeled by a PDFA, in particular, every empirical distribution pS built from a finite sample
S, the minimum of the functional is reached, and one has pθ∗ = pS . Thus, one needs a regularization
before the minimization step. Classically, this regularization is achieved by giving a bound on the
number of states – or the number of parameters – of the model.

We introduce in this paper a class of probabilistic models, the quadratic weighted automata
(or QWAs), a subclass of weighted automata (WAs), which are a generalization of probabilistic
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automata. Consistent methods have been proposed for the estimation of WAs parameters, such
as DEES (Denis et al. (2006)) or Spectral methods (Bailly and Denis (2011),Hsu et al. (2009b)).
However, a major drawback of using WAs as probabilistic models is that the nonnegativity of a
series computed by a WA is undecidable. In other words, the series computed by a WA produced by
these algorithms may return negative values for some strings (a problem known as NPP - negative
probability problem). As there exists no syntactical property to bound the absolute sum of such
models, this prevents the existence of methods of likelihood maximization, thus the use of WAs in
a density estimation task.

Attempts have been made to solve this problem, for instance with NOOMs (norm observable
operator models Zhao and Jaeger (2010)). It is possible to ensure that such models compute a
distribution, and one can approach a local maximum of the likelihood of a sample using a gradient
ascent algorithm, but this method suffers from the same drawbacks as the Baum-Welch algorithm:
one can only reach a local maximum of the likelihood.

We show in this paper that QWAs can be used to obtain a probabilistic model computing an
actual distribution – avoiding the NPP – for which it is possible to perform likelihood maximization,
and for which the (consistent) spectral method of regularization and parameter estimation known
for WAs apply. An additional benefit is given by the possibility of combining these methods: the
estimated parameters can be used as a starting point for the likelihood maximization process (instead
of randomly chosen parameters). This advantage is illustrated by the experiments described at the
end of this paper.

We introduce in section 2 some preliminary definitions and properties used in the rest of the
paper. In section 3, we address the expressiveness of QWAs, that is the relations between the
different classes of distributions modeled by QWAs and other models. We present the spectral
algorithm in section 4. In section 5, we address some statistical properties and inequalities deduced
from the theoretical variance of pS . We provide in section 6 some results about consistency. The `1
convergence of the series is treated in section 7. In section 8, we shortly describe how to perform a
gradient ascent on the log-likelihood of the training sample, with an O(|S|) computational cost for
each iteration. Some experimental results are exposed in section 9. We conclude in Section 10, and
discuss about some outlooks of this work.

2. Preliminaries

2.1. Tools

Let Σ∗ be the set of strings on the finite alphabet Σ. The empty string is denoted by ε, and the length
of a string u is denoted by |u|. For any integer k, we denote by Σk the set {u ∈ Σ∗ | |u| = k} and
by Σ≤k the set {u ∈ Σ∗ | |u| ≤ k}.

Given an alphabet Σ, one considers the set RΣ∗ of all the mappings from Σ∗ into R (called
series). This set is an R-vector space. For any series r and any string u ∈ Σ∗, we denote by u̇r
the series defined by u̇r(w) = r(uw). The residual space of r is the vector space spanned by
{u̇r}u∈Σ∗ . Its elements are called residuals of r.

A weighted automaton (WA) A with d states is defined by an initial vector A.I ∈ Rd, a terminal
vector A.T ∈ Rd, and a set of d × d real-valued matrices A.Mx, one for each symbol x ∈ Σ. The
value of the series rA for a string w = w1 . . . wn is defined by

rA(w1 . . . wn) = A.IT ·A.Mw1 . . . A.Mwn ·A.T
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QWA: SPECTRAL ALGORITHM

For any WA A, one denotes by A.M the matrix A.M =
∑

x∈ΣA.Mx.
A probabilistic automaton (PA) A is a WA where parameters are non-negative,

∑
1≤i≤dA.I =

1, and ∀1 ≤ i ≤ d,
∑

1≤j≤dA.Mij +A.T i = 1. HMMs and PAs model the same distributions.
A probabilistic deterministic automaton (PDA, or PDFA) A is a PA verifying that there exists at

most one i s.t. A.I 6= 0, and ∀x ∈ Σ, ∀1 ≤ i ≤ d there exists at most one j such that (A.Mx)ij 6= 0.
A series r is rational if it satisfies one of the two following equivalent conditions:
• the dimension of the residual space of r is finite
• r can be computed by a weighted automaton

The rank of a rational series r (resp. a WA A) is the dimension of its residual space (resp. the
residual space of series rA computed by A). If r has rank d, there exists a d-state WA computing
r. If a WA A has d states, its rank is ≤ d. A is said to be minimal if its rank equals its number of
states. One denotes by |A| the WA obtained by taking the absolute values of all parameters of A.

One defines rA(Σn) =
∑
|w|=n rA(w). One has rA(Σn) = A.IT · A.Mn · A.T . If the sum∑

n∈N rA(Σn) is convergent, its limit is denoted by rA(Σ∗). It can be efficiently computed in
polynomial time using linear algebra properties.

Let r be a rational series. The spectral radius of r is denoted by ρ(r). It is defined by ρ(r) =
infρ(∃Cs.t.∀k, r(Σ>k) < Cρk). The spectral radius of a WA A, denoted by ρ(A), is defines by
ρ(A) = ρ(rA). One has r(Σ∗) < ∞ ⇔ ρ(r) < 1. The spectral radius of a rational series is
computable in polynomial time.

2.2. Sum and Product

Given two rational series rA (d states) and rB (d′ states), the sum rA + rB and the product rA.rB
are also rational series. The sum is computed by the WA A+B with d+ d′ states defined by:

(A+B).I =

(
A.I
B.I

)
, (A+B).T =

(
A.T
B.T

)
, (A+B).Mx =

(
A.Mx 0

0 B.Mx

)
The product is computed by the WA A⊗B with dd′ states defined by:

(A⊗B).I = A.I ⊗B.I, (A⊗B).T = A.T ⊗B.T , (A⊗B).Mx = A.Mx ⊗B.Mx

Where ⊗ denotes the Kronecker product between two matrices.
One considers the Hilbert space RΣ∗ composed of the rational series r such that

∑
w∈Σ∗ r(w)2 <

∞ equipped with the inner product < ·, · > defined by < r, s >=
∑

w∈Σ∗ r(w)s(w).

Definition 1 A Quadratic Weighted Automaton is a WA of the form A ⊗ A, where A is a WA: it
computes the series r2

A.

Let v = (v1, . . . , vn) ∈ Rn, one denotes diag(v) the n× n matrix defined by diag(v)ii = vi,
diag(v)ij = 0 for i 6= j.

Let us recall some properties of matrix norms. First, an induced norm ‖‖p for matrices is a
norm related to the corresponding vector norm: ‖M‖p = max‖v‖p=1 ‖Mv‖p. Any induced norm
is consistent (i.e. sub-multiplicative). One has the following properties: ‖M‖∞ = ‖MT ‖1 =
maxi

∑
j |Mij |, ‖M‖2 = (ρ(MTM))1/2 where ρ(MTM) is the spectral radius of MTM . The

Frobenius norm, denoted ‖‖F , is given by ‖M‖F = (
∑

i,jM
2
ij)

1/2. Given an n ×m matrix M of
rank r, one has the inequalities:
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‖M‖2 ≤ ‖M‖F ≤
√
r‖M‖2,

1√
m
‖M‖1 ≤ ‖M‖2 ≤

√
n‖M‖1

One has, for any matrix norm ‖‖, the property: ρ(M) = limn→∞ ‖Mn‖1/n (called Gelfand’s
formula). In particular, for any consistent norm ‖‖, one has ρ(M) ≤ ‖M‖.

2.3. Linear representation of a rational series

Let r be a rational series of rank d. Let E be the residual space of r, and B = {w1, . . . wd} a
basis of E in the space RΣ∗ . The vector space E is stable by the operator ẋ for x ∈ Σ∗: one has
ẋ(u̇r) = u̇xr. The WA defined by

• I = coordinates of r in the basis B
•MT

x = matrix of ẋ in the basis B
• T = (w1(ε), . . . , wd(ε))

computes the series r. This WA is called the linear representation of r in the basis B.
Let V = {v1, . . . } be a set of strings (suffixes). Let W be the matrix defined by Wij = wj(vi).

One supposes that V is such that W has rank d. Let t ∈ E, and let tB its representation in the basis
B. The vector tV = WtB is the vector (t(v1), . . . ) corresponding to the valuation of t for the set
V . Let W+ be a pseudo-inverse of W , i.e. satisfying W+W = Id where Id is the identity matrix
of rank d. Then W+tV represents t in the basis B. In particular, I = W+rV .

Let Wx be the matrix defined by Wxij = wj(xvi). By linearity of the operator ẋ, the vector
WxtB is the vector (ẋt(v1), . . . ). Thus, one has MT

x = W+Wx.
Let U be a set of strings (prefixes) such that {u̇r|u ∈ U} spans E. Let rU be the vector

(r(u1), . . . ). For each 1 ≤ i ≤ d, let w◦i ∈ RU be such that wi =
∑

uw
◦
i (u)u̇r. One then has

wi(ε) = w◦i
T rU . Let W ◦ be the matrix defined by W ◦ij = w◦j (ui). One then has T = W ◦T rU .

Let X be the matrix defined by Xij = r(uivj). X is called Hankel matrix of r for the sets (U, V ).
Let Xx be the matrix defined by Xij = r(uixvj). One then has W = XTW ◦. One has ẋwi =∑

u∈U (w◦i )uu̇xr and thus Wx = XT
xW

◦. To sum up:

I = W+rV ,M
T
x = W+Wx = W+XT

xW
◦, T = W ◦T rU

is a linear representation of r in the basis B = {w1, . . . wd}.

2.4. Singular value decomposition

Let X be an m × n matrix, let U and V be two orthonormal matrices, and let Γ be an m × n
diagonal matrix such that X = UΓV T . The columns of U (resp V ) are called left singular vectors
(resp. right singular vectors). The diagonal entries of Γ are called singular values of X . One has
the property:

• left singular vectors are eigenvectors of XXT

• right singular vectors are eigenvectors of XTX
• singular values are square roots of eigenvalues of XTX or XXT

Let d be the rank of X . Then, there exists only d non-zero singular values. Let D be the d× d
diagonal matrix with non-zeros eigenvalues of XTX ordered by decreasing magnitude. Let W
be the matrix built from the d columns of V corresponding to non-zero eigenvalues. Let W ∗ be
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the matrix build from the d columns of U corresponding to non-zero eigenvalues. One then has
X = W ∗D1/2W T . As W and W ∗ are orthonormal, one can write:

W = XTW ∗D−1/2

2.5. Spectral Algorithm

Let us recall here some properties of the spectral algorithm. These methods are introduced in Hsu
et al. (2009a) and Bailly et al. (2009).

Proposition 2 Let r be a rational series of rank d. Let U = {u1, . . . } be a set of prefixes,
V {v1, . . . } a set of suffixes, and letX be the matrix defined byXij = r(uivj). LetXx be the matrix
defined by (Xx)ij = r(uixvj). One supposes that the rank of X is maximal, that is rank(X) = d.
Let ru = (r(u1), . . . ) and rv = (r(v1), . . . ). Let D1/2 be the d × d diagonal matrix composed of
the singular values of X ordered by decreasing magnitude. Let W be the matrix of the d first right
singular vectors, and W ∗ be the matrix of the d first left singular vectors. Then the WA defined by:

I = W Trv,M
T
x = W TXT

xW
∗D−1/2, T = (W ∗D−1/2)

T
ru

computes r.

Proof Straightforward from the former remarks: one uses W ◦ = W ∗D−1/2 and W+ = W T .

Given a unknown distribution p computed by a WA, and a sample S i.i.d. with respect to p, one
considers the empirical distribution pS . The first part of the spectral algorithm consists in computing
the number of significant non-zero singular values, providing a dimension d. One then builds the
matrices Xx, XS,x, WS , W ∗S , DS and the vectors pSv and pSv, and computes an estimate of the
target defined by:

I = W T
S pSv,M

T
x = W T

S X
T
S,xW

∗
SD
−1/2
S , T = (W ∗SD

−1/2
S )

T
pSu

3. QWA Expressiveness

Proposition 3 Let pPDFA (resp. pQWA) denote the distribution modelled by a PDFA (resp. a
QWA). Then pPDFA ( pQWA.

Proof One first shows that pPDFA ⊂ pQWA. Let A be a PDFA computing a positive series: for
any string w ∈ Σ∗, there exists at most one non-zero path, thus |A| computes the same series as A.
The automaton B obtained by taking the square root of all parameter of |A| satisfies r2

B = rA.
There exists a convergent rational series r which is not computable by a PDFA. Then r2 is not

computable by a PDFA: by the former argument, r would be computable by a PDFA.

One also has the properties pQWA " pHMM and pHMM " pQWA, but this will not be addressed
in this paper.
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4. Algorithm Principle

Let p be a probability distribution, S be a sample i.i.d. with respect to p, pS the empirical distribu-
tion. Let q = p1/2 and qS = p

1/2
S . The main idea is to apply the spectral algorithm to qS .

One starts from a finite submatrix X (built from a set of prefixes U and a set of suffixes V ) of
the Hankel matrix of q, defined by Xij = q(uivj) = u̇iq(vj). One supposes that U and V are such
that X has the same rank as q. Thus, an i.i.d. sample S with respect to q2 provides an estimate of
X , denoted XS = (pS(uivj))

1/2.
The first goal is to estimate the rank d of X: one performs a SVD on the matrix XS , and a

statistical test on the obtained singular values to select a correct dimension d.

Algorithm 1: Quadratic Spectral Algorithm
Data: A sample S = {si, 1 ≤ i ≤ |S|} i.i.d. according to a distribution q2, a dimension d, an

alphabet Σ, a set of prefixes U , a set of suffixes V .
Result: A Weighted Automaton A computing q
begin

Xi,j ←
√
pS(uivj)

for each x ∈ Σ do
Xx,i,j ←

√
pS(uixvj)

end
M = XTX
(λi, wi, w

∗
i )← eigenvalues of M , and corresponding eigenvectors and dual eigenvectors

W = [w1 . . . wd], W ∗ = [w∗1 . . . w
∗
d], D = diag(λi)1≤i≤d

qu = (qS(u1), . . . , qS(un)), qv = (qS(v1), . . . , qS(vm)), I = W Tqv, T = (qTuW
∗D−1/2)T

for each x ∈ Σ do
(Mx)← (W TXT

xW
∗D−1/2)T

end
return A = 〈Σ, {Mx}x∈Σ, I,T 〉

end

In a second part, we wish to estimate the model parameters from the singular vectors. Once
the dimension is fixed, one builds the matrices of singular vectors (left and right) WS , and W ∗S ,
and the eigenvalues DS . The matrix of the operator ẋ in the basis wS,1, . . . ,wS,d is close to
W T
S X

T
S,xW

∗
SD
−1/2
S .

Once the WAAS is computed by the algorithm 1, one considers the QWAQS = AS⊗AS , which
computes q2

S . If q2
S is convergent, one can normalize it in order to obtain a probability distribution.

In next sections, we address the convergence of q2
S towards q2.

4.1. Example
To illustrate the method, let us consider the distribution p computed by the following WA:

I =

 9/67
18/67
9/67

Ma =

 0.25 0 0
0 0.4 0
0 0 0.64

T =

 1
1
1


Let us consider a sample S of size 1000, i.i.d with respect to p (see table 1). The empirical distribu-
tion pS is:
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ε a a2 a3 a4 a5 a6 a7 a8

p 0.5373 0.2270 0.1064 0.0545 0.0299 0.0173 0.0104 0.0064 0.0040

pS 0.553 0.223 0.106 0.056 0.022 0.022 0.011 0.004 0.002

pA2 0.5374 0.2167 0.1030 0.0544 0.0306 0.0177 0.0105 0.0062 0.0037

rA1 0.5530 0.2226 0.1083 0.0553 0.0303 0.0200 0.0189 0.0259 0.0434

r2
A2

0.5451 0.2198 0.1045 0.0552 0.0310 0.0180 0.0106 0.0063 0.0038

Table 1: Values of pS , pA2 , rA1 and r2
A2

.

First, one applies the regular spectral algorithm to find a WA A1. One will consider the sets
U = {ε, a, aa} of prefixes and V = {ε, a, aa} of suffixes. The WA A1 computed from pS gives:

I =

 −2.439648e− 04
−8.318615e− 03
−6.055615e− 01

T =

 −0.039385
−0.418262
−0.907472

Ma =

 1.841546 −0.112868 −0.427651
−0.035153 0.14176 −0.919531
−0.003970 −0.027406 0.429745


Because of the negative entry in Mb, it is not possible to ensure that the series computed by A1 is
positive.

From the sample S, one can build the mapping qS = p
1/2
S . One considers the following sets

U = {ε, a} of prefixes and U = {ε, a} of suffixes. The same algorithm applied to qS provides an
estimate of q = p1/2. One obtains the WA A2:

I =

(
0.00991992
−0.88085277

)
T =

(
0.54554234
−0.83808327

)
Ma =

(
0.49736109 1.32375247
0.02290183 0.66584823

)
The sum of r2

A2
equals r2

A2
(Σ∗) = 1.01443774166, one can normalize the series to obtain a

probability distribution. The table 1 describes the values computed by the series rA1 , r2
A2

and its
normalization pA2 .

5. Concentration Inequalities

5.1. Hankel Matrix

Let p be a probability distribution over Σ∗. Let U = {u1, . . . } and V = {v1, . . . } be two finite sets
of strings. Let us consider the Hankel matrix X of q = p1/2 defined by Xij = q(uivj). Let S be
a sample of size N i.i.d. according to p. XS is defined as the empirical Hankel matrix built from
qS = p

1/2
S . In this section, we will bound the difference betweenX and XS .

Proposition 4 Let X be the Hankel matrix of q = p1/2 restricted to finite sets U and V of prefixes
and suffixes. Let m = max(|U |, |V |). Let XS the empirical estimator of X from a sample S of size
N i.i.d. with respect to p. Then, with probability at least 1− δ (δ > 0):

∆X = ‖X −XS‖F ≤
m+

√
m log( 1

δ )
√
N

First, one can bound the variance of XS as an estimate of X:

Lemma 5 Let p be a probability distribution over Σ∗. Let pS its empirical estimate from an i.i.d
sample S of size N with respect to p. Let q = p1/2 and qS = p

1/2
S . One has∑

u∈U,v∈V
E(qS(uv)− q(uv))2 ≤ |U ||V | 1

N
≤ m2

N
.
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Proof One has

E(qS(w)− q(w))2 = E(
q2S(w)− q2(w)

qS(w) + q(w)
)2 ≤ E(

q2S(w)− q2(w)

q(w)
)2 =

q2(w)(1− q2(w))

Nq2(w)
≤ 1

N

Proof [of proposition 4] This proof uses a construction similar to the proof of Proposition 19 in Hsu
et al. (2009a).

Let qU = (q(u1), . . . ) and qV = (q(v1), . . . ). One has:

Proposition 6 ‖qU − qSU‖F = O(

√
m log( 1

δ
)

√
N

) and ‖qV − qSV ‖F = O(

√
m log( 1

δ
)

√
N

).

Proof One uses the same arguments than before, with |U | = 1 or |V | = 1.

5.2. Singular Values

Let us first recall a known result: given an matrix A of rank d, and estimate of A denoted AS , one
can rewrite AS as the sum A + E where E models the error. One has the following result from
Stewart and Sun (1990).

Proposition 7 (Thm 4.11 in Stewart and Sun (1990)). Let A ∈ Rm×n with m ≥ n, and let AS =
A + E. If the singular values of A and AS are (λ1 ≥ . . . ≥ λn) and (λS,1 ≥ . . . ≥ λS,n)
respectively, then

|λS,i − λi| ≤ ‖E‖2, i = 1, . . . , n.

One then has:

Proposition 8 Let X be the Hankel matrix of q = p1/2 restricted to finite sets U and V of prefixes
and suffixes. Let m = max(|U |, |V |). Let XS the empirical estimator of X from a sample S
of size N i.i.d. with respect to p. Let λ1 ≥ · · · ≥ λd be the singular values of X , and λS1 ≥
· · · ≥ λSd the corresponding singular values of XS . Let D1/2 = diag(λ1, . . . , λd) and D1/2

S =
diag(λS1, . . . , λSd). Then, with probability at least 1− δ (δ > 0) one has:

∀1 ≤ ı ≤ d, |λi − λSi| ≤
m+

√
m log( 1

δ )
√
N

, ‖D1/2 −D1/2
S ‖F ≤ d

1/2
m+

√
m log( 1

δ )
√
N

Proof One applies the fact that ‖‖2 ≤ ‖‖F to proposition 4.
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5.3. Singular Vectors

One wishes to bound the norm of the singular vectors ‖Wk‖. To do so, one uses a result about
eigenvectors and PCA from Zwald and Blanchard (2006). Let A be a symmetric positive Hilbert-
Schmidt operator with positive eigenvalues λ1 > · · · > λd > 0. δk = 1

2(λk − λk+1). Let B be a
symmetric positive Hilbert-Schmidt operator such that ‖B‖F < δk/2. Let Wk (resp. WS,k ) be the
matrix of the r first eigenvectors of A (resp. A+B ). One has:

Lemma 9 (Theorem 3 in Zwald and Blanchard (2006)) ‖Wk −WS,k‖F ≤ 2‖B‖F
δk

From this, one can deduce:

Proposition 10 Let X be the rank d Hankel matrix of q = p1/2 restricted to finite sets U and V of
prefixes and suffixes. Let m = max(|U |, |V |).Let XS the empirical estimator of X from a sample
S of size N i.i.d. with respect to p. Let λ1 ≥ · · · ≥ λd be the singular values of X . Let W and WS

be the matrices defined by Wij = wj(vi) and WSij = wSj(vi), where the wj (resp. wSj ) are the
right singular vectors of X (resp. XS). Let W ∗ and W ∗S be the matrices defined the same way with
the left singular vectors of X (resp. XS). Then, with probability at least 1− δ (δ > 0) one has:

‖W −WS‖F = O(
m3/2

√
log( 1

δ )

λd
√
N

), ‖W ∗ −W ∗S‖F = O(
m3/2

√
log( 1

δ )

λd
√
N

)

Proof One applies the lemma 9. One has δd = λd/2 because X has rank d. On has that
‖XTX − XT

SXS‖F = O(‖X‖F∆X), and ‖X‖F ≤
√
m. By symmetry, one has the result for

W ∗.

6. Consistency

In this section and in the next section, one supposes that the distribution p is such that q = p1/2 is
rational of rank d. Let S be sample i.i.d with respect to p, |S| = N . Let U and V two finite sets of
strings such that the Hankel matrix of q has rank d. Let m = max(|U |, |V |). Let X be the Hankel
matrix of q, and XS be the Hankel matrix of qS = p

1/2
S .

6.1. Rank Estimation

Theorem 11 Let Λ be the set of singular values of XS . Let Λµ be the subset of singular values of

XS greater than µ. For a given confidence parameter δ, let d′ = |Λµ| for µ =
m+

√
m log( 1

δ
)

√
N

. With
probability greater than 1− δ, one has d ≥ d′.

Proof Straightforward from Proposition 4 and Proposition 7: with probability greater than 1 − δ,
the singular values in Λs match non-zeros singular values from the target Hankel matrix X .

Theorem 12 Let λd the smallest non-zero singular value ofX . Let Λ be the set of singular values of
XS . Let Λµ be the subset of singular values ofXS greater than µ. For a given confidence parameter
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δ, let d′ = |Λµ| for µ =
m+

√
m log( 1

δ
)

√
N

. Let us suppose that N > 4
λ2
d

(
m+

√
m log(1

δ )
)2

. Then,

with probability greater than 1− δ, one has d = d′.

Proof The condition N > 4
λ2
d
(m +

√
m log(1

δ ))2 implies that µ < λd
2 , thus the corresponding

singular value λS,d from XS satisfies λS,d > 2µ−‖X −XS‖2. This quantity is greater than µ with
probability at least 1− δ.

6.2. Parameters Estimation

One supposes here that the correct rank d has been found. Let < I, (Mx)x∈Σ, T > a linear repre-
sentation of q in the basis of the right singular vectors B = {w1, . . . wd} of X . Let IS ,(MSx)x∈Σ,
TS the linear representation outputted by the algorithm 1.

Proposition 13 One has the following properties: ‖I − IS‖F = O(
m3/2

√
d log( 1

δ
)

λd
√
N

), ‖T − TS‖F =

O(
m3/2

√
d log( 1

δ
)

λ2
d

√
N

), ‖Mx −MxS‖F = O(
m2d

√
log( 1

δ
)

λ2
d

√
N

).

Proof One uses the former inequalities. For the first inequality, one uses the bounds ‖W‖F ≤
√
d

and ‖qV ‖F ≤ 1. For the second and the third inequalities, one uses also ‖D−1/2 − D−1/2
S ‖F =

O( 1
λ2
d
‖D1/2 −D1/2

S ‖F ) and ‖D−1/2‖F ≤
√
d

λd
.

Proposition 14 Let I⊗2 = I ⊗ I , T⊗2 = T ⊗ T , M⊗2
x = Mx ⊗Mx. One has:

‖I⊗2 − I⊗2
S ‖F = O(‖I‖F ‖I − IS‖F ), ‖T⊗2 − T⊗2

S ‖F = O(‖T‖F ‖T − TS‖F )

‖M⊗2
x −M⊗2

x S‖F = O(‖Mx‖F ‖Mx −MxS‖F )

Proof One uses the properties (M + ∆M )⊗ (M + ∆M ) = M ⊗M + ∆M ⊗M +M ⊗∆M +
∆M ⊗∆M , and ‖A⊗B‖F = ‖A‖F ‖B‖F .

7. Convergence

7.1. Convergence of the series

We want to show that given a confidence parameter δ, there exists a sample size from which the WA
provided by the algorithm 1. computes a convergent series.

Proposition 15 Let A =< I, (Mx)x∈Σ, T > be the linear representation of q in a residual basis
B = {w1, . . . , wd}. Let A⊗2 = A ⊗ A =< I⊗2, (M⊗2

x )x ∈ Σ, T⊗2 >. Let M? =
∑

x∈ΣM
⊗2
x .

Then ρ(M?) < 1.
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Proof Let AJ =< J, (M⊗2
x )x ∈ Σ, T⊗2 > with J = (αij)1≤i,j≤d. AJ computes the series

rAJ (u) =
∑

i,j αijwi(u)wj(u). As ∀i, w2
i is convergent, one has ∀i, j, wiwj is convergent – by

Schwartz’s inequality. Suppose that J is a left eigenvector of M?, with eigenvalue λ. The series
computed with M?TJ as initial vector is u 7→ rAJ (Σu) = λrAJ (u). As rAJ is convergent, λ < 1.

It is clear that, by local differentiability of spectral radius, for a WA AS outputted by the algo-
rithm 1, one has |ρ(M?

S) − ρ(M?)| = O(∆X). Let ρ⊗ = ρ(M?)+1
2 . From now one supposes that

the sample size is large enough to ensure that ρ(M?
S) < ρ⊗.

7.2. Pointwise Convergence

Proposition 16 Let AS be the WA outputted by the algorithm 1, computing the series rAS . Let
w ∈ Σk, let δ be a confidence parameter. One has, with probability δ, |r2

AS
(w) − q2(w)| =

O(
k|Σ|m2d

√
log( 1

δ
)

λ2
d

√
N

)

Proof Let us recall that ρ(A ⊗ A) = ρ(A)2, and that an eigenvector vλ of A corresponds to
an eigenvector vλ2 = vλ ⊗ vλ of A ⊗ A. Let M = {Mx}x∈Σ. One defines the generalized
spectral radius ρ(M) = lim supk→∞(ρk(M))1/k where ρk(M) = sup{ρ(Mx1 . . .Mxk)}Mxi∈M.
One also defines ρ̂k(M) = sup{‖Mx1 . . .Mxk‖F }Mxi∈M and the joint spectral radius ρ̂(M) =

lim supk→∞(ρ̂k(M))1/k (see Theys (2005),Blondel et al. (2008)).
Let us suppose that there exists x1 . . . xk such that ρ(Mx1 . . .Mxk) = µk/2 > ρ

k/2
⊗ . Let vµ a

corresponding eigenvector, and u be any d-dimensional vector such that vTµ u = C ′ > 0. The WA <

v⊗2
µ ,M⊗2

x , u⊗2 > computes a positive series r for which there exists C such that r(Σnk) < Cρnk⊗ .
It also satisfies r((x1 . . . xk)

n) = C ′2µnk which is contradictory. Thus, ρ(M) ≤ ρ⊗ < 1. By the
property ρ(M) = ρ̂(M), one has that ‖I⊗2M⊗2

x1
. . .M⊗2

xk
‖F and ‖M⊗2

x1
. . .M⊗2

xk
T⊗2‖F tend to 0

as k →∞, thus are bounded by a real number L.
One has ‖I⊗2M⊗2

xk
. . .M⊗2

xj−1
(M⊗2

xj −Mxj
⊗2
S

)M⊗2
xj+1

. . .M⊗2
xk
T⊗2‖F = O(L2‖M⊗2

xj −Mxj
⊗2
S
‖F ).

Finally, |r2
AS

(x1 . . . xk)− q2(x1 . . . xk)| = O(
k|Σ|m2d

√
log( 1

δ
)

λ2
d

√
N

).

7.3. `1 Convergence

From the proposition 16 one has the property
∑

w<k |r2
AS

(w)− q2(w)| = O(
kl2|Σ|k+1m2d

√
log( 1

δ
)

λ2
d

√
N

).

The convergence of the tail comes from the exponential decreasing of a convergent rational series.

Proposition 17 Let q be a rational series, p = q2 a distribution, S a sample i.i.d. with respect to
p. Let AS be the WA outputted by the algorithm 1, computing the series rAS . Let δ be a confidence
parameter. Let ε > 0. There exists C such that

N > Cε−2−2
log(|Σ|)
log(ρ) (

log(1/ε)

log(ρ)
)
m4d2 log(1/δ)

λ2d

implies, with probability 1− δ,
∑

w |r2
AS

(w)− q2(w)| < ε
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Proof Let ρ = ρ(M?)+1
2 . Let us suppose N large enough to ensure that there exists K such that∑

|w|≥k |r2
AS

(w)| ≤ Kρk and
∑
|w|≥k |q2(w)| ≤ Kρk.

For a given ε, let k = log(4K/ε)
ρ : one the has

∑
w≥k |r2

AS
(w)|+

∑
w≥k |q2(w)| ≤ ε

2 and

∑
|w|<k |q2(w)− r2

S(w)| < K|Σ|
log(4K/ε)

log(ρ) log(4K/ε)
log(ρ) m2d

√
log( 1

δ
)

λ2
d

√
N

< K(4K/ε)
log(|Σ|)
log(ρ) log(4K/ε)

log(ρ) m2d

√
log( 1

δ
)

λ2
d

√
N

One can choose a convenient C such that the conclusion holds.

The previous bound indicates a convergence rate of O(ε
−2−2

log(|Σ|)
log(ρ) ). Under some certain as-

sumptions – not too restrictive – one can obtain a tighter bound: if the rank of q2 greater than d(d+1)
2 ,

then one has the following result:

Proposition 18 Let q > 0 be a rational series such that q2 is a probability distribution of rank
≥ d(d+1)

2 , S an i.i.d sample with respect to q2. Let AS be the WA outputted by the algorithm
1, computing the series rAS . There exists C such that, for any ε > 0, and for any confidence
parameter 0 < δ < 1, the condition

N > C
log4(1/ε)

ε2
m4d2 log(1/δ)

λ2d

implies that
∑

w∈Σ∗ |r2
AS

(x)− q2(x)| ≤ ε with probability 1− δ.

Proof [sketch] It follows the proof in Hsu et al. (2009b). In the original proof, one of the key
property used is the fact that

∑
x∈Σ |Mx| is pseudo-stochastic, i.e. ‖

∑
x∈Σ |Mx|‖∞ ≤ 1, coming

directly from the definition of an HMM. In the case of WAs, this is not true in general, but one can
prove an analogous property for absolutely convergent rational series.

8. Likelihood Maximization

We show here how to compute the gradient of the log-likelihood function. The computing of the
Hessian uses the same techniques. Let Aθ be a QWA, with parameters θ, and let S be a given
sample supposed to be i.i.d with respect to an unknown distribution q2. One supposes that the series

r2
Aθ

is convergent, but unnormalized, thus the probability of a string w is given by
r2
Aθ

(w)

r2
Aθ

(Σ∗)
. Without

any a priori distribution on the parameters θ, a good candidate for θ is arg maxθ(L(θ)), with

L(θ) =
∑
w∈S

[log(r2
Aθ

(w))− log(r2
Aθ

(Σ∗))]

In the general case, the mappings attached to each hidden state are not probability distributions,
and the resulting probability cannot be reduced to a convex combination of those mappings. Thus,
the convergence of an EM-type algorithm is not guaranteed.

We provide a set of algorithms which can be used to compute the gradient of L(θ). From there,
one can perform a local likelihood maximization. The rank, and the parameters provided by the
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spectral algorithm can be used as a starting point for this maximization. For any string w ∈ Σ∗, and
any WA parameters θ, let us denote qw(θ) the value of the series computed with θ for the string w.
Let us denote qΣ∗(θ) the sum of the series computed with parameters θ.

8.1. Computation of∇rw(θ) and ∇rΣ∗ (θ)

Algorithm 2: ∇rw(θ) Gradient Algorithm
Data: A WA with parameters θ = (I, (Mx)x∈Σ,T , a string w
Result: A WA with parameters∇rw(θ)
begin

Let f0 = I , let b|w|+1 = T

for i from 1 to |w| do
let f i = MT

wi · f i−1 ,b|w|−i+1 = Mw|w|−i+1
· b|w|−i+2

end
Let∇rw(θ).I = f |w|,∇rw(θ).T = b1, ∇rw(θ).Ma = 0d×d
for i from 1 to |w| do

let∇rw(θ).Mwi+ = f i−1b
T
i+1

end
return∇rw(θ)

end

Algorithm 3: ∇rΣ∗ (θ) Gradient Algorithm
Data: A WA with parameters θ = (I, (Mx)x∈Σ,T
Result: A WA with parameters∇rΣ∗ (θ)
begin

Let MΣ = (I −
∑

x∈ΣMx)−1, et∇rΣ∗ (θ).I = MΣT ,∇rΣ∗ (θ).T = MT
Σ I

for x ∈ Σ do
Let∇rΣ∗ (θ).Mx = MT

Σ IT
TMT

Σ

end
return∇rΣ∗ (θ)

end

Let MΣ = (Id −
∑
Mx)−1. Let θ = (θI ,θMx1

, . . .θT ). The ways to compute ∇rw(θ) and
∇rΣ∗ (θ) are detailed in algorithms 2 and 3. They mainly use the following properties:

rΣ∗(θ) = IT (Id−
∑
Mx)−1T = ITMΣT

rΣ∗(θ + dθI) = rΣ∗(θ) + dθTIMΣT

rΣ∗(θ + dθI) = rΣ∗(θ) + ITMΣdθI
rΣ∗(θ + dθMx) ∼ rΣ∗(θ) + ITMΣ · dθMx ·MΣT

Let us denote ∇I the gradient restricted to I , ∇T the gradient restricted to T etc. One can check
that :

∇IrΣ∗ (θ) = MΣT ,∇T rΣ∗ (θ) = MT
Σ I,∇MxrΣ∗ (θ) = MT

Σ IT
TMT

Σ
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8.2. Computation of∇r2
Σ∗

(θ)

Let r be a rational series computed with parameters θ. Let θ⊗θ = (θI ⊗θI ,θMx ⊗θMx , . . .θT ⊗
θT ) the parameters computing s = r2.

One has (θ + dθ)⊗ (θ + dθ) = θ ⊗ θ + dθ ⊗ θ + θ ⊗ dθ + dθ ⊗ dθ. One then has:

sΣ∗((θ + dθ)⊗ (θ + dθ)) = sΣ∗(θ ⊗ θ)
+∇sΣ∗ (θ ⊗ θ)T (dθ ⊗ θ + θ ⊗ dθ) (1)
+ . . .

The rows (1) corresponds to the first order term of the Taylor developement of r2
Σ∗(θ). Let v be a

vector of dimension n2, x and y of dimension n. One will denote v the matrix vij = vn(i−1)+j .
One can check that vT (x⊗ y) = xTvy. One then has:

∇r2
Σ∗ (θ) = θT [∇sΣ∗ (θ ⊗ θ) +∇sΣ∗ (θ ⊗ θ)

T
]

One can check that the complexity computation of the gradient algorithm is in O(|w|) – thus
the complete step is linear in the size of S.

8.3. Computation of∇L(θ)

One then uses the property∇log(r2
w(θ)) = 2

∇rw(θ)

rw(θ) to obtain

L(θ) =
∑
w∈S

(
∇log(r2

w(θ)) −∇log(r2
Σ∗ (θ))

)
=
∑
w∈S

(
2
∇rw(θ)

rw(θ)
−
∇r2

Σ∗ (θ)

r2
Σ∗(θ)

)

9. Experiments
The spectral algorithm provides a consistent estimate of the target parameters, but this estimate is
not designed to perform well from a maximum likelihood point of view (i.e. minimizing the ‖‖KL
towards the target). To overcome this, one performs a single tep of gradient ascent of the likelihood
after the spectral algorithm. In these experiments, the studied target distribution p is modeled by the
following PA, and is not computable by any QWA – the goal here is also to study how the spectral
algorithm behaves when the target is not computable by a QWA:

I =

(
0.3
0.3

)
M0 =

(
0.2 0
0 0.25

)
M1 =

(
0.3 0
0 0

)
T =

(
1
1

)
We compare the performances between the Baum-Welch algorithm, the spectral algorithm with
1 likelihood gradient ascent step, the spectral algorithm with complete likelihood maximization
process, and the QWA maximum likelihood alone (with random starting parameters).

The Spectral algorithm is performed with sets of prefixes and suffixes sets both equals to
{ε, 0, 1, 00, 01, 10, 11}. We consider 2-state QWAs. The Baum-Welch and the QWA maximum
likelihood methods are run for 400 iterations. We compare the performances for several sizes of
training sample: 2000, 5000, 10000 and 20000 sequences i.i.d. with respect to p. For each sample
size, 100 experiments have been carried out.

Our experiments show that, from a reasonable sample size (5000 examples), the combination
spectral algorithm +1 step likelihood gradient ascent performs better than Baum-Welch in density
estimation task (for the ‖‖KL towards the target). Moreover, the computational cost of this combi-
nation is far lower than a Baum-Welch run.
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sample 2000 5000 10000 20000
dimension 2 0% 11% 97% 100%

spectral +1 step LGA 47% 63% 64% 64%
Baum-Welch 32% 22% 17% 12%

spectral +complete LGA 10% 4% 8% 12%
random QWA LGA 11% 11% 11% 12%

spectral +1 step LGA (vs. Baum-Welch) 47% 65% 71% 72%

Figure 1: Compared performances (‖‖KL towards the target) of spectral algorithm + 1 step likeli-
hood gradient ascent (LGA), Baum-Welch algorithm, spectral algorithm with complete
likelihood maximization, and QWA likelihood maximization from random parameters.
The first row represents the cases where the 2 first states are considered statistically sig-
nificant. The last row focuses on the two methods: the spectral+ 1 step ML and Baum-
Welch (percentage of cases where the firsone provides better results than the second one).
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Figure 2: KL-divergence towards the target w.r.t. the number of iterations, for sample sizes of 5000,
10000 and 20000 examples. As a baseline, Baum-Wech has been trained on target param-
eters (BW target). For readability, Spectral+ML and random QWA ML are smoothed.

10. Conclusion and Further work

The set of methods employed in this paper offers an alternative to the Baum-Welch algorithm for
density estimation: it provides both structure identification and consistent parameter estimate, with
a low computational cost, and good performances.

To continue this work, one could try to apply this method to the field ofdistributions on trees,
with Weighted Tree Automata. Another outlook would be to study how these methods can be
used with distributions on substrings (i.e. parts of infinite strings). One could also try, as in Song
et al. (2010), to adapt these methods to continuous distributions, using the method of Hilbert space
embedding of distributions.
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