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Abstract

Usually, it is necessary for nonlinear online learning algorithms to store a set of misclassified
observed examples for computing kernel values. For large-scale problems, this is not only
time consuming but leads also to an out-of-memory problem. In the paper, a nonlinear
online classification algorithm is proposed with a probability margin to address the problem.
In particular, the discriminant function is defined by the Gaussian mixture model with the
statistical information of all the observed examples instead of data points. Then, the learnt
model is used to train a nonlinear online classification algorithm with confidence such that
the corresponding margin is defined by probability. When doing so, the internal memory is
significantly reduced while the classification performance is kept. Also, we prove mistake
bounds in terms of the generative model. Experiments carried out on one synthesis and
two real large-scale data sets validate the effectiveness of the proposed approach.

Keywords: Nonlinear online classification, probability margin, Probability product kernel,
Gaussian mixture models

1. Introduction

Linear online learning algorithm is a well-studied and popular classification algorithm, where
a theoretical analysis can be obtained. In real applications, however, problems are much
more complex and often are not linearly separable, such as face tracking and robot nav-
igation. Like offline nonlinear classification problems, generally nonlinear online learning
algorithms were introduced by using kernel functions proposed by Aizerman et al. (1964)
for addressing nonlinearly separable problems.

The common way for recently proposed nonlinear online learning algorithms is to store
a set of the observed examples which are misclassified on each round (Freund and Schapire,
1999; Li and Long, 2002; Gentile, 2001) or have a low prediction confidence by an online
algorithm (Dekel et al., 2006; Crammer et al., 2006; Orabona et al., 2008). After a nonlinear
transform, a linear online learning algorithm can be applied while at the expense of an
increase of the input dimensionality. A rapid growth of the set leads to the explosion of
internal memory. Also, from a computational point of view, computing the kernel values
can become prohibitively hard.

To address the problem, the most of the recent proposed nonlinear approaches used a
fixed budget of the set by forgetting the observed examples out of budget window size, such
as the algorithms (Kivinen et al., 2004; Cheng et al., 2006; Crammer et al., 2004) (where
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no mistake bound was derived) and the Forgetron (Dekel et al., 2006), Random Budget
Perceptron (RBP) (Cavallanti et al., 2007) (where a relative mistake bound was derived).
A different approach is the Projectron (Orabona et al., 2008), where the hypothesis is
projected onto the subspace spanned by the set and so the size of the internal memory is
bounded. Also, a relative mistake bound can be derived for the Projectron.

In the paper, we propose a new algorithm for nonlinear online classification which com-
bines the Gaussian mixture model and an online discriminative learning method, where the
margin is defined in terms of probability. Our algorithm takes advantage of statistical mod-
eling of a sequence of instances with the Gaussian mixture model that is linearly separable
in the probabilistic space. Compared to (Freund and Schapire, 1999; Dekel et al., 2006;
Crammer et al., 2006; Orabona et al., 2008), ours is much more efficient in terms of internal
memory, and also in terms of computational time. Also, we prove mistake bounds in terms
of the mixture model. Experiments carried out on one synthesis and two real large-scale
data sets validate the effectiveness of the proposed approach: the classification accuracies
provided by our algorithm is superior to the Forgetron and the Projectron on the same
problems, while saving significantly spatial and computational complexities.

The rest of the paper is organized as follows. The next section describes the proposed
Nonlinear Online Classification Algorithm with probability margin (abbreviated as NO-
CApm). Section 3 gives a theoretical analysis both on the internal memory and the mistake
bound. Section 4 gives the data used in the experiments, reports and discusses the results
provided by different algorithms. Finally, conclusions and discussion are given in Section 5.

2. The NOCApm algorithm

Online learning takes place in rounds. Assume that the initial hypothesis be zero, i.e.,
f0 = 0 and the one at round t be denoted by f(xt)

.
= ft. At each time, the algorithm

receives an instance xt ∈ RD in D-dimensional space and the corresponding label yt, and
the prediction result is computed by ŷt = sign(f(xt)). Usually, there are two ways for
updating the prediction hypothesis function. The first one is classification error driven, i.e.,
if the predicted label ŷt is different from the real one yt, the hypothesis is updated, e.g.,
perceptron-like algorithms in a linear case, ft+1 = ft + ytxt. Alternatively, the confidence,
the absolute of margin |ytf(xt)|, is used to decide whether the prediction hypothesis should
be updated or not. Usually, a convex loss is defined for the learning problem, e.g., the hinge
loss, where if ytf(xt) ≤ ρ, the prediction function is updated; and otherwise it is kept, i.e.,
ft+1 = ft.

The proposed nonlinear online classification algorithm falls in the margin error driven
category. Usually, the main difference among the online algorithms driven by margin error
is of the definition of an updating rule.

2.1. The Problem Setting

The common difficulty for nonlinear online learning algorithms is to store kernel functions
whose size grows with the learning process. This can lead to explosion of internal memory.
Moreover, kernel values should be recomputed on each round, which is time-consuming.
In the paper, the Gaussian mixture model learned from the statistical information of data
sequence is used for online learning instead of data points such that the size of memory
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can be significantly reduced. Therefore, computational complexity and memory explosion
problems can be avoided.

Assuming that for each class in online learning, data are represented by a distribution
of K-Gaussian mixture:

P (x|Θ) =
K∑
k=1

pk(x|θk)

=

K∑
k=1

πkN (x|µk,Σk)

where θk = {πk,µk,Σk} denotes the kth component with the prior πk, the mean vector µk
and the covariance matrix Σk (for the ease of computation, only the diagonal components are
computed and the non-diagonal components are set to zero), and Θ = {θk|k = 1, · · · ,K}.
We also give each component of Gaussian a label zk. Then, a conditional probability for an
incoming instance xt assigned to the class c is expressed in the form:

Pc(x|Θ) =

∑
zk=c

pk(x|θk)∑K
j=1 pj(x|θj)

where zk denotes the class label of θk.
In the analysis hereafter, without loss of generality, we focus on the case of binary

classification, i.e., each instance has label yt ∈ {−1, 1} and zt ∈ {−1, 1} for each component.
We can define the decision hyperplane as

P+(x|Θ)− P−(x|Θ) = 0. (1)

It is possible to find a maximum-margin separating hyperplane having the same distance
from the two classes. If we use the label as a sign indicator, (1) becomes

K∑
k=1

zkπkN (x|µk,Σk) = 0 (2)

by omitting
∑K

j=1 pj(x|θj) as it is the same for all the classes.
To link the probability distribution with the kernel theory, we first define the distribution

for a single instance xt as p(xt|θxt), θxt := {π = 1,µ = xt,Σ = α2I} , where I denotes
an identity matrix and α ∝ 0. Thus, the classification hypothesis can be represented by
probability product kernel (PPK) (Jebara et al., 2004) as:

f(xt) =

Kt∑
k=1

zkκ(θk,θxt). (3)

where

κ(θk,θxt) =

∫
RD

θkθxtdx

= pk(xt|θk). (4)
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Here, Kt is the number of mixture components in round t. Due to online properties, Kt

is adaptive and varies with rounds. Note that the definition aforementioned is actually a
Dirac function.

Theorem 1 (Reproducing property) The hypothesis f(x) is defined in a Hilbert space
H with the probability product kernel that satisfies the reproducing property

〈f,κ(θx, ·)〉H = f(x).

Proof Considering the hypothesis

f(·) =

Kt∑
k=1

zkκ(θk, ·) (5)

and a special case for an instance xt on the round t, θxt , using the definition of the PPK,
we have

κ(θk,θxt) = pk(xt|θk), k = 1, . . . ,Kt.

Therefore, we have

f(xt) =

Kt∑
k=1

zkpk(xt|θk)

= 〈f,κ(θxt , ·)〉H .

With the PPK-form definition of hypothesis, the mixture of Gaussian model is ready
for nonlinear online classification.

2.2. The Updating Rule

The way to evaluating the prediction of a hypothesis is via the hinge-loss function, which
is defined as

Lρ(f ; (x, y)) =

{
0 yf(x) ≥ ρ
ρ− yf(x) otherwise

(6)

where ρ is a margin parameter and can be predefined or adjusted during learning. The Gaus-
sians θk are hidden in f , i.e., Lρ(f ; (x, y)) = Lρ(f ; (x, y),Θ). Accordingly, the proposed
nonlinear online classification algorithm is with probability margin, i.e., the confidence of
prediction value based on the probability. Namely, if yf(x,Θ) ≤ ρ, the prediction suffers
from a margin error with the value ρ− yf(x,Θ), and otherwise there is no error occurred.
For brevity, we will omit Θ from f in the following. Hence, we can obtain the upper margin
f(x) = +ρ and the lower margin f(x) = −ρ, respectively (cf. Fig. 1).
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f(x) = ρ

f(x) = -ρ

f(x) = 0

Figure 1: Illustration of the hypothesis and the corresponding margins: The square denotes
examples belonging to the positive class and the circle to the negative one. The
solid line represents the hyperplane H, which has the same probabilities assigned
to the positive class or the negative one. Two dashed lines show the upper
margin ρ and the lower −ρ margin, respectively. Namely, for any instance x, if
f(x) = ρ, it has a probability 1

2 +ρ belonging to the positive class, and otherwise
if f(x) = −ρ, it has the probability 1

2 − ρ belonging to the negative class.

If a margin error is occurred, i.e., yf(x,Θ) ≤ ρ, like the marge-based Perceptron (Freund
and Schapire, 1999), the updating rule takes the form

ft+1 = ft + ytκ(θxt , ·). (7)

If there is no margin error occurred, two cases should be taken into account: if the Euclidean
distance of the instance xt to the nearest Gaussian (e.g., i-th component) is greater than
a threshold ε (which is prefixed), the update rule takes the same form as (7); otherwise,
the i-th component, i.e., θi in the mixture model is reestimated such that the prediction
function is updated as,

ft+1 = ft + ytκ(θ′i, ·)− ytκ(θi, ·) (8)

where θ′i is updated for the i-th component and the previous component was subtracted from
the prediction function. The process of reestimation of the mixture model is a sequential
update of means and covariance matrices as follows:

µ′k =
n

n+ 1
µk +

1

n+ 1
xt

Σ′k =
n

n+ 1
Σk +

1

n+ 1
xtx

T
t

where n is the number of update occurrence and is kept track of along with the Gaussian
parameters.

In summary, when the prediction function suffers from a loss, or the minimal Euclidean
distance from the new arrival example xt to the existing Gaussian components is greater
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than the predefined threshold ε (the distance is denoted by d(xt,θk)), a new kernel is
generated and added to the prediction for updating, where zKt+1 = yt, and θKt+1 = θxt .
Therefore, the final update rule takes the form:

ft+1 = ft + σtytκ(θxt , ·)
+ (1− σt)(ytκ(θ′i, ·)− ytκ(θi, ·)) (9)

where

σt =

{
1 if Lρ(ft; (xt, yt)) ≥ 0 ∨ ∀k, d(xt,θk) > ε

0 otherwise.

The number of Gaussian components Kt is automatically estimated according to the
distribution of data set adaptively. More Gaussian components lead to a higher classification
accuracy while more computational complexity. To balance both, the confidence parameter
ρ is adjusted on round t when a margin error occurred, and is decreased by a tuning
parameter τ (τ < 1) in the form

ρt+1 = τρt. (10)

After rounds of learning, the mixture distribution converges and new kernels have a less
and less impact on the prediction hypothesis. Therefore, the setting of τ makes the error
margin narrower with rounds, which provides a speed trade-off between model convergence
and learning rate.

The proposed Nonlinear Online Classification Algorithm with probability margin (NO-
CApm) is summarized in Algorithm 1.

3. Analysis

We first define the cumulative hinge loss in (6) as

Lcum,ρ0 [f, S] =

T∑
t=1

Lρt(ft, (xt, yt)) (11)

and for an arbitrary hypothesis g

Lcum,ρ[g, S] =
T∑
t=1

Lρ(g, (xt, yt)). (12)

3.1. Internal Memory

In the proposed online algorithm, the number of components (size of kernels) is increased
when satisfying the following two conditions: (a) the prediction suffers from a loss defined
in (6) (step 9 in Algorithm 1); and (b) the minimal distance d(xt,θk) > ε, k = 1, 2, ...,Kt

(step 15 in Algorithm 1).
In the first case, we can easily compute the size of kernels given the initial margin

parameter ρ0 and the minimal confidence ρmin. When the prediction suffers from a loss, ρt
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Algorithm 1 The NOCApm Algorithm

1: Input: ρ0 > 0, τ > 0 and ε > 0
2: Initialization: θ0 = ∅
3: for t = 1 to T do
4: Receive the instance xt
5: Make prediction ŷ = sign(f(xt))
6: Get label yt;
7: Compute loss, Lρt(f(xt), yt) = ρt − ytf(xt)
8: if Lρt 6= 0 then
9: ρt+1 ← τρt, Kt+1 ← Kt + 1

10: Add a new Gaussian θKt+1 to Θ
11: Update the hypothesis ft+1 by (7)
12: else
13: Compute the minimal distance to Θ, dmin

14: if dmin > ε then
15: Kt+1 ← Kt + 1
16: Add a new Gaussian θKt+1 to Θ
17: Update the hypothesis ft+1 by (7)
18: else
19: Reestimate the one of components, θi ∈ Θ
20: Obtain θ

′
i

21: Update the hypothesis ft+1 by (8)
22: end if
23: end if
24: end for

is reduced by ratio of τ (cf. (10)). Therefore, the total number of mixture components is
logτ (ρmin/ρ0).

In the second condition, the increasing number of kernels depends on the distribution of
data set. If the data distribute dispersedly in the feature space, the algorithm could have a
big size of kernels; otherwise, a small amount of kernels can be obtained in real applications
compared to the counterparts, e.g., (Dekel et al., 2006; Orabona et al., 2008), which can be
empirically proved in Section 4.

Finally, the total number of kernels Kmax is to combine the numbers in both the above
conditions.

3.2. Mistake Bounds

If the algorithm satisfies one of the above conditions, the prediction mistake occurs. There-
fore, we analyze the mistake bound in individual cases.

Theorem 2 Suppose f be generated by (7) in the example sequence S = {(x1, y1), · · · , (xT , yT )}.
Let X be upper bounded for κ(θx,θx) ≤ X2, and set the initial margin parameter to ρ0. As-
sume that there exists a prediction function g whose cumulative margin loss Lcum,ρ′(g, S) ≤
M on ρ′, and g satisfies ||g||H ≤ B. Then, the mistake bound for f is:
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Mρ0(f) ≤
B2 + 2M + 2ρ0

1−τ
2ρ′ −X2

. (13)

Proof By adding the error indicator parameter σt to (7), the updating rule is modified as

ft+1 = ft + σtytκ(θxt , ·)

.
Here, we purposely ignore the reestimation of the mixture model, which will be analyzed

in the following. The relative progress can be defined

∆t = ||g − ft||2 − ||g − ft+1||2

= 2σtyt
〈
g − ft,κ(θxt , ·)

〉
− σ2tκ(θxt ,θxt)

= 2σtyt(g(xt)− ft(xt))− σ2tκ(θxt ,θxt)

≥ 2σt(ρ
′ − Lρ′(g, (xt, yt)))− 2σt(ρt − Lρt(ft, (xt, yt)))

− σ2tX2. (14)

Therefore, the telescopic sum can be computed as:

T∑
t=1

∆t = ||g − f0||2 − ||g − fT ||2

≥ 2Lcum,ρ0(f, S)− 2Lcum,ρ′(g, S)

− 2ρ0(1− τMρ0 (f))

1− τ
+ (2ρ′ −X2)Mρ0(f).

Since ||g − f0||2 − ||g − fT ||2 is upper bounded by ||g||2 ≤ B2, we have

B2 ≥ 2Lcum,ρ0(f, S)− 2Lcum,ρ′(g, S)

− 2ρ0
1− τ

+ (2ρ′ −X2)Mρ0(f)

noticing that
1− τMρ0 (f)

1− τ
≤ 1

1− τ
.

Due to Lcum,ρ0(f, S) > 0 and Lcum,ρ′(g, S) ≤M , the mistake number is bounded by

Mρ0(f) ≤
B2 + 2M + 2ρ0

1−τ
2ρ′ −X2

.

In the proposed approach, the prediction function is updated at each round. If there is
no margin error occurred, (8) is used for the updating rule; if there exists a margin error,
a new component is added and so (7) is used for updating. For the latter, mistake bound
has been analyzed in Theorem 2. To consider both cases, we can derive the mistake bound
in the following.
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Theorem 3 Suppose f be generated by (9) in the example sequence S = {(x1, y1), · · · , (xT , yT )}.
Let κ(θx,θx) ≤ X2, κ(θi,θi) ≤ W 2 and set the initial margin parameter to ρ0. Assume
that there exists a prediction function g whose cumulative margin loss Lcum,ρ′(g, S) ≤M on
ρ′, and g satisfies ||g||H ≤ B. And NOCApm generates Kmax kernels. Then, the mistake
bound for f ,

Mρ0(f) ≤
B2 + 2M + 2ρ0

1−τ
2ρ′ −X2

+
2KmaxW (B +KmaxW + 2W )

2ρ′ −X2
.

Proof In round t, the updating rule is (9)

ft+1 = ft + σtytκ(θxt , ·)
+ (1− σt) (ytκ(θ′i, ·)− ytκ(θi, ·))︸ ︷︷ ︸

δt

.

Due to both the updating possibilities, the prediction functions in two successive rounds
should be taken into account. Therefore, the relative progress is changed to

∆t = ||g − ft||2 − ||g − ft+1||2

= 2 〈g − ft, (1− σt)δt + σtytκ(θxt , ·)〉
− ||(1− σt)δt + σtytκ(θxt , ·)||2

= 2σtyt(g(xt)− ft(xt)) + 2(1− σt) 〈g − ft, δt〉−
||(1− σt)δt + σtytκ(θxt , ·)||2

≥ 2σt(ρ
′ − Lρ′(g, (xt, yt)))− 2σt(ρt − Lρt(ft, (xt, yt)))

− 2(1− σt)||g|| · ||δt|| − 2(1− σt) 〈ft, δt〉
− (1− σt)||δt||2 − σt||κ(θxt , ·)||2.

The inner product between ft and δt can be upper bounded by

〈ft, δt〉 ≤

 Kt∑
j=1

κ(θj ,θi) +

Kt∑
j=1

κ(θj ,θ
′
i)


≤ 2KtW

2.

Therefore, the process in two successive rounds can be lower bounded by:

∆t ≥ 2σt(ρ
′ − Lρ′(g, (xt, yt)))− 2σt(ρt − Lρt(ft, (xt, yt)))

− 2(1− σt)||g|| · ||δt|| − 4(1− σt)KtW
2

− 2(1− σt)W 2 − σtX2

≥ 2σt(ρ
′ − Lρ′(g, (xt, yt)))− 2σt(ρt − Lρt(ft, (xt, yt)))

− 2(1− σt)(BW + 2KtW
2 +W 2)− σtX2.

Compared to the process (14) by only considering a margin loss, there are three additional
terms −(BW + 2KtW

2 +W 2) by considering both the cases for updating. The prediction
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Table 1: Average accuracies with standard deviation, the size of working set and the train-
ing times provided by the NOCApm, the Forgetron and the Projectron++ algo-
rithms for synthetic data set.

Algorithm Accuracy(%) #Set Training times(s)
NOCApm 98.95± 0.34 31.6± 8.6 1.901± 0.396
Forgetron 98.33± 0.13 167.4± 12.5 1.872± 0.068

Projectron++ 98.65± 0.10 20.7± 2.16 2.075± 0.088

mistakes occur at most Kmax times. Therefore, the telescopic sum by considering both the
updating conditions can be lower bounded by

T∑
t=1

∆t ≥ 2Lcum,ρ0(f, S)− 2Lcum,ρ′(g, S)

− 2ρ0
1− τ

+ (2ρ′ −X2)Mρ0(f)

− 2KmaxW (B +KmaxW + 2W )

with the upper bound

T∑
t=1

∆t = ||g − f0||2 − ||g − fT ||2 ≤ B2.

Therefore, we can derive the mistake bound,

Mρ0(f) ≤
B2 + 2M + 2ρ0

1−τ
2ρ′ −X2

+
2KmaxW (B +KmaxW + 2W )

2ρ′ −X2
.

The mistake bound in Theorem 3 has one additional term (the second term in the right-hand
side of the expression above) compared to the bound proposed in (Kivinen et al., 2004).
Here, KmaxW reflects the range of data distribution. NOCApm will control the quantity of
Kmax in low dimension sequence data, however, the algorithm is prone to being influenced
by the curse of dimensionality of data set with respect to the other online algorithms with
Budget, i.e., the Forgetron (Dekel et al., 2006) and the Projectron (Orabona et al., 2008).

4. Experiments

In this section, we compare the NOCApm to the recently proposed kernel-based online
algorithms: the Projectron (Orabona et al., 2008) and the Forgetron (Dekel et al., 2006).
We select the Projectron++ for the comparison as it obtained the best result reported
in (Orabona et al., 2008).

42



Nonlinear Online Classification Algorithm with Probability Margin

Table 2: Average accuracies with standard deviation, the size of working set and the train-
ing times provided by the NOCApm, the Forgetron and the Projectron++ algo-
rithms for Adult data set.

Algorithm Accuracy(%) #Set Training times(s)
NOCApm 80.78± 0.41 58.2± 4.30 11.40± 1.77
Forgetron 76.25± 0.23 2000 42.78± 0.85

Projectron++ 79.88± 0.13 740.2± 5.89 35.09± 2.32

The algorithms are tested on one synthetic data set described in (Orabona et al., 2008)
and two large-scale real benchmark machine learning data sets:

Adult 1: 1994 Census database, where there are 30, 162 training samples and 15, 060
test samples with 14 features, and the percentage of the positive samples is 24.78%. It is
a binary classification problem with the prediction task for determining whether a person
makes over $ 50K a year.

Vehicle 2: it contains 78,823 training samples and 19,705 test examples with 50 at-
tributes. It is a multiple classification problem with 3 classes.

4.1. Experimental setting

All the experiments were conducted over 5 different permutations of the training data sets.
In the following experiments, average accuracies, average size of the working set, average
training times are reported. All the experiments were conducted on a 3.0GHz CPU with
the MATLAB implementations.

For both the Projectron++ and the Forgetron, two parameters should be firstly defined,
i.e., budget size, B and kernel parameters. Here, we follow the same setting as (Orabona
et al., 2008), and so a Radial Basis Function (RBF) kernel is used with the best results
Gaussian width σ = 1.0 for the synthetic data set, σ =

√
2 for Adult dataset and σ = 2 for

Vehicle dataset. The budget size is set to B = 1000 for the synthetic data set, B = 2000
for Adult data set and B = 4000 for Vehicle data set.

The selection of parameters ρ0, τ and ε for NOCApm follows the rules: ρ0 is defined
on a probability margin, and unrelated to the scale of various data; τ is used to control
the degeneration of margin parameter ρ0, thus τ = 0.9 is enough; ε measures the distance
in feature space, which is affected by the scale of data. Based on these points above, the
parameters used in the following tables and figure are set as follows: in Table 1 ε = 1.0; in
Table 2 ε = 0.39; and in Table 3 and Fig. 2 ε = 0.35, respectively and ρ0 = 0.10, τ = 0.9 for
all the experimental results.
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Table 3: Average accuracies with standard deviation, the size of working set and the train-
ing times provided by the NOCApm, the Forgetron and the Projectron++ algo-
rithms for Vehicle data set.

Algorithm Accuracy(%) #Set Training times(s)
NOCApm 82.98± 0.22 383.87± 3.71 124.49± 3.34
Forgetron 75.24± 0.34 4000 565.36± 8.78

Projectron++ 80.01± 0.18 1494± 9.41 451.70± 7.25
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Figure 2: Average accuracies with respect to the size of the observed examples for Vehicle
data.

4.2. Experimental results

The average classification accuracies with standard deviation are reported in Table 1 for
synthesis data set, in Table 2 for Adult data set and in Table 3 for Vehicle data set,
respectively. Also, the corresponding size of the working set and the training times are
reported in the same tables with comparison to those provided by the Forgetron and the
Projectron++. On the analysis of Table 2 and Table 3, one can see that the NOCApm
obtains not only the best classification accuracies and also far less computational times in
both binary (i.e., Adult data set) and multiple (Vehicle data set) classification problems.

Besides, we show the average classification accuracies for Vehicle data set with respect to
the number of observed examples using the NOCApm, the Forgetron and the Projectron++
algorithms in Fig. 2. The proposed approach smoothly obtains the best classification accu-
racies with the increase of the size of observed examples.

5. Conclusion and Discussion

In the paper, we propose a kernel-based online classification algorithm which takes ad-
vantage of both generative models and discriminative approaches. In online learning, the

1. Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
2. Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets/multiclass.html.
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statistical modeling of data points with the Gaussian mixture model is adopted for the defi-
nition of hypothesis on each round in a kernel manner. Unlike the voted perceptron (Freund
and Schapire, 1999), it is not necessary to store all the misclassified observed examples for
computing kernel values. Unlike the fixed budget algorithms by forgetting the observed
examples out of budget window size, such as (Dekel et al., 2006; Cavallanti et al., 2007),
the information of the observed examples for the proposed algorithm is captured and stored
in the statistical modeling and thus it is not necessary to discard the observed examples
due to the memory problem. Additionally, the size of kernels can be controlled by the
parameters of the proposed approach. The mistake bounds are derived in terms of gener-
ative models. Experiments carried out on one synthesis and two real large-scale data sets
validate the effectiveness of the proposed approach, where the classification accuracies of
our algorithm is superior to the Forgetron and the Projectron on the same problems, while
saving significantly on spatial and computational complexities.

In the NOCApm algorithm, data are represented by the Gaussian mixture model. This
can suffer from the curse of dimensionality problem. The future development will apply a
dimensionality reduction technique for statistical modeling.
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