JMLR: Workshop and Conference Proceedings 20 (2011) 19-31 Asian Conference on Machine Learning

Continuous Rapid Action Value Estimates

Adrien Couétoux and Mario Milone and Matyas Brendel and Hassen Dogh-
men and Michele Sebag TAO, INRIA-CNRS-LRI, Univ. Paris-Sud, F-91405 Or-
say and Olivier Teytaud TAO, INRIA-CNRS-LRI, Univ. Paris-Sud, F-91405 Orsay OASE
Lab, National University of Tainan, Taiwan

Editor: Chun-Nan Hsu and Wee Sun Lee

Abstract

In the last decade, Monte-Carlo Tree Search (MCTS) has revolutionized the domain of
large-scale Markov Decision Process problems. MCTS most often uses the Upper Confi-
dence Tree algorithm to handle the exploration versus exploitation trade-off, while a few
heuristics are used to guide the exploration in large search spaces. Among these heuris-
tics is Rapid Action Value Estimate (RAVE). This paper is concerned with extending the
RAVE heuristics to continuous action and state spaces. The approach is experimentally
validated on two artificial benchmark problems: the treasure hunt game, and a real-world
energy management problem.

Keywords: Rapid Action-Value Estimates, continuous domains, reinforcement learning

1. Introduction

After Sutton and Barto (1998) reinforcement learning problems are most generally formal-
ized using the Markov Decision Process (MDP) setting. An MDP is characterized by its
state space S, action space A, the environment dynamics described from the probability PZ,
of going to state s’ upon executing action a in state s, and the associated reward function
RY,.

SSPioneered in the context of computer-Go (Gelly and Silver, 2007), Monte-Carlo Tree
Search (MCTS) algorithms have been used to successfully tackle large-scale MDPs (section
2). In particular MCTS accommodates large-scale generative settings, where the transition
function is known through a simulator as opposed to being available in closed form. MCTS
most often combines the Upper Confidence Tree (UCT) algorithm first introduced by Kocsis
and Szepesvari (2006) and a few generic heuristics. UCT addresses the exploration versus
exploitation trade-off in each state of the tree search space through extending the Upper
Confidence Bound algorithm proposed by Auer et al. (2002) in the Multi-Armed Bandit
setting. Notably, the MCTS/UCT has revolutionized quite a few large-scale RL problems,
ranging from computer-Go (Gelly and Silver, 2007) to expensive optimization (Rolet et al.,
2009; De Mesmay et al., 2009) and planning (Nakhost and Miiller, 2009).

The main two heuristics combined with UCT aim at guiding the exploration strat-
egy, through limiting the number of considered actions with Progressive Widening (PW)
(Coulom, 2007; Couetoux et al., 2011; Wang et al., 2008), and selecting the most promis-
ing actions with Rapid Action Value Estimate (RAVE). For the sake of self-containedness,
section 2 introduces Monte-Carlo Tree Search and the PW and RAVE heuristics.

© 2011 A. Couétoux, M. Milone, M. Brendel, H. Doghmen, M.S. & O. Teytaud.

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

While RAVE is acknowledged to be a key factor of MCTS efficiency, to our best knowl-
edge it has been limited until now to discrete action and state spaces. Motivated by appli-
cations in management and robotics, this paper focuses on extending RAVE to continuous
action and state spaces using a Gaussian convolution-based smoothing (section 3). The
proposed approach is experimentally validated on two problems, the artificial treasure hunt
benchmark, and a real-world energy management problem (section 4). The paper concludes
with a discussion and some perspectives for further research.

2. Monte-Carlo Tree Search

This section assumes the reader’s familiarity with the Reinforcement Learning framework,
referring to (Sutton and Barto, 1998) for the standard notations. In the following, Q™ (s, a)
denotes the value function i.e. the expected reward gathered when executing action a in
state s and following policy 7 for all subsequent actions until arriving at a terminal state:

sp+1terminal state

Q7 (s,a) = E; Z PsahhSthleZSthl | so = s,a0 = a,ap, = 7(sp)
h=0

Monte-Carlo Tree Search proceeds by estimating the value function through averaging
the empirical cumulated reward along tree-walks, where each tree-walk starts in the initial
node and follows the Upper Confidence Tree algorithm (section 2.1) until arriving in a
terminal node.

Sections 2.2 and 2.3 thereafter respectively introduce the UCT algorithm and the PW
and RAVE heuristics.

2.1. Upper Confidence Tree

In the baseline Monte-Carlo Tree Search, the action executed in each state is uniformly
selected in the action space. Such a uniform sampling however does not enforce a good
exploration wersus exploitation trade-off; it is poorly effective when dealing with a large
action space and/or a long time horizon.

Upper Confidence Tree (Algorithm 1), one of the best MCTS variants, does enforce
an optimal exploration versus exploitation trade-off through the famed Upper Confidence
Bound (UCB) (Auer et al., 2002). Formally, UCB was devised for the multi-armed bandit
setting. When considering a set of k arms (action nodes), letting n; and p; respectively
denote the number of times the i-th arm has been visited and the empirical average reward
then collected, UCB selects the arm ¢* such that

log S2%_ nj
i* = argmax ui—l—CHM,i:l...kz (1)
n;

where C' is a problem-dependent parameter. Accordingly, the UCT-based policy noted
myoT selects in each node s the action a* defined as follows:

mycr(s) = argmax {Q%CT(S,G) = Qucr(s,a) +C 1;)5(;:(:)), ac A} (2)

20

CoNTINUOUS RAVE

with n(s) the total number of times state s has been visited, n(s,a) the number of times
action a has been selected in state s, and Quor(s,a) the empirical cumulative reward
averaged over all times action a has been selected in state s. According to Eq. (1), every
possible action must be selected once in each state, which is hardly tractable when the
number of arms is large in front of the time horizon; likewise, Eq. (1) cannot be used for
a continuous arm space. To address this limitation, the number of arms to be considered

in each node tree is restricted (PW heuristics), and the choice of arms is controlled too
(RAVE).

2.2. Progressive Widening

First introduced by Coulom (2007), the Progressive Widening (PW) heuristics limits the
number of considered actions in state s depending on the number n(s) of times s has been
visited. Progressive widening has also been used by Couetoux et al. (2011) for continuous
action spaces.

Specifically, the number pw(n(s)) of actions allowed by PW in state s is set to the integer
part of n(s)%, with p = 2 or 4; the interested reader is referred to Wang et al. (2008) for a

theoretical analysis of PW. Upon incrementing pw(n(s)), RAVE is used to select the next
action to be considered.

Algorithm 1 The UCT algorithm, where pw(.) is the progressive widening function (section
2.2)). Action a;(s) is uniformly drawn in A at the time pw(n(s)) is incremented.

UCT algorithm.

Input: a MDP, a state S, a time budget.
Output: an action a.

while time budget permits do

s=S8.// starting a simulation, aka tree-walk
while s is not a terminal state do
For all legal actions a = a1(s), ..., Gpu(n(s))(5)

Compute QF oy (s,a) // (Eq. 2)
Select action a with maximal Qg (s, a)
Let s’ be the state reached from s when choosing action a.
s=¢
end while
while s is not a terminal state do
Select action a uniformly in A // random episode
Let s’ be the state reached from s when choosing action a.
s=¢
end while
For all state action pair (s, a) visited during the tree-walk,
Increment n(s,a)
Update the average reward: Quer(s,a) < Quor(s,a)+ W[R(S) -
QUCT(Sa a)]a
where R(s) is the cumulated reward from state s to the terminal state
end while
Return the action a which was simulated most often from S.

21

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

2.3. Rapid Action Value Estimation

First pioneered in the context of computer-Go (Gelly and Silver, 2007), Rapid Action Value
Estimation (RAVE) aims at a more robust assessment of actions, through sharing the
rewards gathered along different subtrees of the game tree. Formally, let Qrave(s,a)
denote the empirical reward averaged over all tree-walks where action a has been selected
after visiting state s, and let m(s,a) be the number of such tree-walks. A variant of the
UCT-policy (Eq. (2)) is defined as follows:

1
TrAVE(S) = argmax {Q%AVE(S,G) = Qprave(s,a) + ' m,a € A} (3)

with m(s) being the sum of m(s, a) over all actions a.

Although taking more tree-walks into account contributes to a faster convergence of the
action value estimate, QravE(s,a) is a biased estimate of Q(s,a), and should therefore be
replaced by the true estimate Q(s,a) whenever n(s,a) permits to do so with reasonable
confidence. It thus comes naturally to consider a dynamic weighted average of Qrav p(s,a)
and Q(s,a), defining

mur(s) = argmax {Q?R(s,a),a € A} (4)
with
?JBR(& a) = ﬁ(sv a)Q%AVE(Sv a) + (1 - B(Sv a))Q?;CT(& a)
B(s,a) = /=tr (5)

3n(s,a)+k

where the equivalence parameter k represents the (domain-dependent) number of
tree-walks required for the unbiased Qucr(s,a) to provide as reliable an estimate as

Qrave(s,a).

3. Continuous Rapid Action Value based Estimation

This section presents the proposed extension of RAVE to the case of continuous action spaces
(section 3.1) and continuous space states (section 3.2). These extensions are discussed in
section 3.3.

3.1. Continuous action spaces

While the presented discrete RAVE approach supports the fast estimation of action values,
its reliability decreases as the number of actions which can be taken into account increases
everything else being equal. Indeed in a continuous action space A, the number of times a
given action is tried is 0 in expectation, which renders RAVE useless.

It thus comes naturally to consider a smooth estimate of action values, e.g. using
Gaussian convolution. Formally, given a training set D = {(z;,%:),i = 1...n,2; € R%,y; €
R}, a Gaussian estimate of the value y associated to some z € R? is defined as

o 1 = —Ld(z,x;)?
_ P sLq)
Yo @) = S o i)’ Zl ‘ Y
i=1¢ 7 i=

22

CoNTINUOUS RAVE

where ¢ is a smoothing parameter weighting the relative importance of the nearest neighbors
of x and d(z, z’) stands for the chosen distance on the space. In the remainder of this paper,
only the Euclidean distance on R? will be considered. In applications, prior knowledge about
the application domain is provided through the choice of the distance.

Along this line, let x5 = s.aq ... s;.q; ... denote a tree walk starting in s and let R(z;)
denote the associated cumulative empirical reward. QravEe,q(s,a) is defined as:

1 ~ log N, de:a)”
QRAVE,(I(S7 a) = T Z e g Nay iom X R(HZ’S) (6)

—log Nq ——%— :
Z . Agction Ts, A 1M Tg
Ts, A IN Ts

where gction 18 @ problem dependent parameter (proportional to the square dimension of
the action space for the sake of homogeneity); N, denotes the overall number of actions
involved in all zs, and the log N, term is meant to peak the Gaussian convolution as the
available empirical evidence increases. Counter n(s,a) is likewise estimated using Gaussian
convolutions and (s, a) is computed from n(s,a) (Eq. (5)).

Both Qrave and QravE,. consider all tree-walks visiting state s and the cumulative
reward gathered thereafter. The difference is that Qray g only considers those tree-walks
which have executed action a, whereasQ)rav g, considers them all with a weight which
decreases exponentially depending on the distance between the executed actions and the
considered action a. As QravE,q is even more biased than Qray g (since it takes all actions
into account, though weighted), one considers also the dynamic combination of Qray g and
QRrAVE,q as in Eq. (5)). One defines:

Q%Ra(‘g?a) = 5(37 a’) Q%AVE,a(Sﬂ a) + (1 - 6(37 a))Q%CT(& CL)

and Ty, (s) selects the action maximizing Qf R, (8:0).

Note that QravE,q(s,a) is computed for a finite subset of A only, due to the progressive
widening effects: only a finite number of actions is considered in each state node. The
associated continuous rapid action value estimate is updated after each tree-walk.

3.2. Continuous state spaces

As already said, QravEe,. and Qravr alike are strongly biased as they take into account
every tree-walk conditionally to their visiting s and executing a or some similar action
thereafter, although this action might be executed in a state s’ very different from s.

In the case of continuous state spaces, it thus comes naturally to weight the contribu-
tion related to some state-action pair (s;,a;) depending on the distance between s and s;.
Formally, let us define Qrav g, s(s,a) =

d(s,s1)? | d(a,a)?

1 E e_ log Na,s{ Astate Aaction } X R(xs)

d(s,si)2 d(a,a.,L-)2
10gNa,S{ Qstate + Ts, $i-ai iN Ts

Xaction

sz, Si.a; 1N Tg e

(7)

Asin Eq. 6, constant agqe i problem-dependent and proportional to the square dimension

of state space, and N, s is used to peak the Gaussian convolution as the available evidence
to estimate QQrav E,q,s inCreases.

23

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

3.3. Discussion

The proposed Continuous RAVE (cRAVE) heuristics involves two additional problem de-
pendent parameters agetion, and Qgpace, respectively involved in Egs. (6) and (7). Note that
QRAVE,a,s can be viewed as a generalization of Q rav g q(by taking cgpace = 00), which itself
generalizes QravE (Qaction = 00).

Continuous RAVE can encapsulate prior knowledge on the action and space states,
through using some informed dissimilarity function on the state and/or action spaces.

4. Experimental Validation

This section reports on the empirical validation of the Continuous RAVE heuristics, con-
sidering an artificial benchmark (section 4.2) and a real-world problem (section 4.3). The
goals of experiments and experimental setting are first described.

4.1. Goals of experiment and experimental setting

The primary goal of experiments is to assess the efficiency of the action and (state, ac-
tion) cRAVE heuristics, comparatively to the MCTS/UCT baseline. Both heuristics are
plugged in the same MCTS/UCT algorithm with double progressive widening and default
parameters (Couetoux et al., 2011). After a few preliminary experiments, the value of the
problem-dependent parameters ogetion and Quate are set to daetion and 10 3dgqre where
daction and dgiqte respectively correspond to the dimension of the action and state spaces.
The chosen distance in both action and state spaces is the Euclidean distance.

The equivalence parameter k£ (Eq. (5)) is set to 50.

In both problems the policy value is compared to the baseline approach for the same
computational budget (number of tree-walks used to select an action, Alg. 2). Each value,
averaged over independent runs, is reported together with the standard deviation.

The second goal of experiments is to study the sensitivity of the cRAVE heuristics with
respect to the time horizon and size of the state space.

4.2. The TreasureHunt benchmark

The artificial treasure hunt problem involves a squared arena of size D (Fig. 1(a), left). The
state space is S = [0, D]?. The goal of the agent, initially located in the lower left corner,
is to reach the treasure in the upper right corner. The agent speed is fixed; its direction a
varies in A = [0,27]. In each time step, the agent gets an instant reward of -1; reaching
the treasure location gets an instant reward of 1,000. Two options are considered: with
deterministic and probabilistic transition probabilities; with and without hole (the square
hole with size h is located in the center of the arena). Transition probabilities P¢, are
defined as follows: upon selecting action (direction) a in state s € IR?, the agent arrives in
state s’ = s + (cosa, sina) + (U[—€/2,¢/2],U[—¢€/2,€/2]), where Ula,b] denotes a random
variable uniformly drawn in [a,] (e = 0 in the deterministic case; Fig. 1(a), right). Being
in the hole yields an instant reward of -500.

A tree-walk stops when the agent reaches the treasure, or falls in the hole, or after
traveling a distance 10D. In the deterministic setting, the optimal reward thus is 1,000
minus the shortest path between the starting location and the treasure (conditionally to

24

CoNTINUOUS RAVE

Treasure
h 1
Range of arrival state s’
Hole
Possible directions - S~ ~
D) o ~ e
SQ D
tart € Expected arrival state s
(a) Treasure hunt problem: the agent (b) Probabilistic transition model: the
must reach the treasure while arrival state s’ is perturbed by a 2D
avoiding the hole. uniform noise.

Figure 1: The treasure hunt benchmark problem involves two options: the presence of a
hole in the middle of the arena (left) and a probabilistic transition setting (right).

avoiding the hole). Note that the optimal strategy in the probabilistic transition setting is
not straightforward.

The motivations for the treasure hunt problem is to study the scalability of the cRAVE
heuristics with respect to the size of the arena. It is worth mentioning that quite a few
planning problems (path planning) can be formulated as treasure hunt problems in high
dimensional spaces involving many holes (see e.g. Tuffin (1996)).

Figure 2(a) (top) displays the comparative results obtained by cRAVEgction states
cRAVEgction and UCT in the deterministic transition setting with no hole. In this most sim-
ple setting, there is no significant difference although cRAVE tion,state significantly improves
on UCT for small time budgets. Interestingly, cCRAVEction,state does not much improve on
cRAVEgction. This is explained as the optimal trajectory is the straight line from the initial
state to the treasure location: the optimal action does not depend on the current state in
this simple problem. The advantage of cCRAVEqction, state Will become significant in more
complex settings when the optimal decision depends on the current state.

Figure 2(b) (medium and bottom) reports on the results in the probabilistic setting

(respectively e = .5 and 1), where the optimal action 7(s) now depends on s.
In the probabilistic cases, both cCRAVEction,state and cRAVEction clearly improve on UCT.
Unexpectedly, cCRAVEion outperforms cRAVE tion state, all the more so as the noise is
moderate. The proposed interpretation for this finding goes as follows: on the one hand,
the estimate variance is lower when the state is not taken into account; on the other hand,
the optimal decision only slightly depends on state s; overall, cRAVE,ton thus enforces a
faster convergence of the estimate while its bias remains moderate. This interpretation is
confirmed as the gap between cRAVE tion state and cRAVE o, decreases with the noise
amplitude e.

The results obtained for the treasure hunt with a hole are reported in Figs. 3(a),
3(b) and 3(c). Clearly, the optimal move here depends on the current state, even in the

25

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

Deterministic treasure hunt

1000

B
3
=
o i
c
<
o
=
UCT +—+—
Rave Actions ---x--+
Rave Actions+States :--*---
-200 L L
10 100 1000 10000
Number of episodes
(a) Deterministic case, no trap.
Stochastic treasure hunt
1000
800 q
600 1
B
©
8
S 400 q
c
©
o
=
200 q
0 i
UCT +—+—
Rave Actions ---x--+
Rave Actions+States :--%---
-200 L L
10 100 1000 10000
Number of episodes
(b) Stochastic case with € = 0.5, no trap.
Stochastic Treasure hunt
1000 T
B
@
g i
e
c
<1 i
53
=

°r ucT ——i
Rave Actions ---x--+
) Rave Actions+States +--*---!

-100 L
10 100 1000 10000

Number of episodes

(¢) Stochastic case with € = 1, no trap.

Figure 2: Treasure hunt with 15 x 15 arena, without hole (top: deterministic transitions;
middle and bottom: probabilistic transitions with respectively ¢ = .5 and 1).

26

CoNTINUOUS RAVE

Determinist treasure hunt with trap

1000 TR
u]
5]
=
:]
:
E
5
=
CT —+—i |
Rave Actions =
Rave Actions+States g
00 ‘ ‘ ‘
10 100 1000 10000 10000(
Number of episodes
(a) Deterministic case, with trap.
Stochastic treasure hunt with trap
1000 r
800 B
600 B
400 - 1
.
3
2 200 - 4
E
5
3
0 4
-200 | -
-400 - 4
I UCT +——1
= Rave Actions +----+
Rave Actions+States :--%---
00 ‘ ‘ ‘
10 100 1000 10000 10000(

Number of episodes

(b) Stochastic with e = 0.5, with trap.

Stochastic treasure hunt with trap
1000 -

600

400 -

200

Mean reward

-400 | 4
e UCT —+—
Rave Actions =---+

Rave Actions+States %

600 . \
10 100 1000 10000 10000¢
Number of episodes

(¢) Stochastic with € = 1., with trap.

Figure 3: Treasure hunt with 5 x 5 arena, with hole (top: deterministic transitions; middle
and bottom: probabilistic transitions with respectively e = .5 and 1).

27

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

deterministic transition setting. As expected, cCRAVE,ction,state significantly improves on
cRAVEgction in all deterministic and probabilistic transition settings with the hole, although
the gap decreases with the noise amplitude increasing. Further, both cRAVE,¢t0n and
cRAVE, . tion,state improve on the baseline UCT.

4.3. Energy Management Problem

This real-world problem describes a power plant involving S stocks of energy (e.g. hydro-
electric stocks); the time horizon is T'. In each time step, the possible action is to produce a
(continuous) quantity of electricity using any of the S stocks. The instant reward depends
on the instant energy demand, a random variable. If the produced energy is less than
the demand, the instant reward is negative (as the only management option is to buy
extra energy and incur some pollution from the thermal power stations). The transition
model boils down to decrementing the stock from the produced energy'. Historically this
real-world problem is the applicative motivation of Massé (1946)’s and Bellman (1957)’s
seminal works on decomposition by dynamic programming.

Overall, the energy demand is supplied with i) the energy produced from the hydro-
electric stocks; ii) if needed, the energy produced from the thermal power stations. In the
latter case, an additional super-linear cost is incurred.

An optimal strategy must thus enforce a nearly constant thermal power production.
The actual optimal strategy must however account for extra constraints and upper-bounds
on the instant energy production, and the uncertainties on inflows. More precisely, there are
random inflows for each stock, at each time step, where each inflow is a real random variable;
all inflows are independent and identically distributed, following a uniform distribution over
[0,1]. The demand is fixed and known in advance; it depends on the time steps, to account
for the seasonality of the consumption.

MCTS was investigated to find an optimal energy management policy within this setting,
motivated by the fact that the underlying model of the power plants is non-linear and non-
deterministic?.

The experimental setting considers S = 6 stocks and 1" = 12 time horizon. The problem-
dependent constants aetion, and augeqre are set to 10 (by consistency with the former treasure
hunt problem, considering the range and dimension of action and state spaces, and to enforce
the discrimination between different states and actions).

Figure 4 comparatively displays the results obtained by UCT, RAVE cRAVE,.to, and
cRAVE,ction,state On this problem. Interestingly, UCT is dominated by all other variants,
including the RAVE variant devised to deal with discrete action spaces. Furthermore,
cRAVE . tion,state significantly outperforms cRAVE on; this finding was expected as two
pairs (s,a) and (s',a’) can only be considered similar if similar actions a and a’ are applied
on similar stock positions s and s’. For instance, the decision of using a minimal amount
of water in order to use it later on, makes sense if and only if the stock positions are low,
which is described through the current state. Overall, the merits of the cRAVE heuristics
are fully empirically demonstrated on this simplified energy management problem.

1. Benchmark data have been gathered by the Iomca project http://www.lri.fr/~teytaud/iomca.html;
these are available on demand to the last author.
2. The linear deterministic case and the associated approaches are beyond the scope of the present paper.

28

http://www.lri.fr/~teytaud/iomca.html

ConNTINUOUS RAVE

uct

30000 -
discrete RAVE

CRAVEqgiion

CRAVE e

CRAVE cionstate '

-35000

-40000

-45000

Reward

-50000

-55000

1ogl0 (Number of iterations)

Figure 4: Comparative performances of UCT, cRAVE,ction and cRAVE ciion, state On the
energy management problem, versus the computational budget (number of sim-
ulations). The upper the better.

5. Conclusion

The contribution proposed in this paper concerns the extension of the Rapid Action Value
Estimate heuristics, originally proposed to prevent misleading exploration in large action

29

COUETOUX MILONE BRENDEL DOGHMEN TEYTAUD

spaces. RAVE has been extended to continuous action spaces (CRAVE,ction, Eq. 6) using a
Gaussian convolution; this approach was itself extended to the case of a continuous action
and state spaces (CRAVEction, state; Eq. 7). While these extensions can be easily plugged on
the top of an UCT/RAVE algorithm, they only involve two additional hyper-parameters.
The experimental validation of the approach on an artificial and a real-world problems
fully demonstrates its potentialities, and its robustness w.r.t. some changes to the hyper-
parameters.

A primary perspective for further work is to apply cRAVE in discrete domains where
some distance/dissimilarity function can be defined using expert priors, e.g. classical game
test beds like Go (Lee et al., 2009), Hex (Arneson et al., 2009) or Havannah (Teytaud and
Teytaud, 2009).

A longer-term perspective concerns the coupling of cCRAVE . tion,state With the progressive
widening (PW) heuristics. As already mentioned, PW introduces a new action in each state
node from time to time, when the number of times this state has been visited reaches a
given threshold. An interesting possibility would be to use Qrav e, and QravE,q,s as value
expectation, and select the continuous action a* maximizing e.g. QrAvE.qs(S,a) over the
whole action space A.

Acknowledgements

This work was partially supported by the Pascal Network of Excellence. This work has
been supported by French National Resear ch Agency (ANR) through COSINUS program
(project EXPLO-RA nANR-08-COSI-004). It was also supported by the FP7 program
under the Mash project (grant 247022). The last author is grateful to National Science
Council (Taiwan) for grant NSC97-2221-E-024-011-MY2 and NSC 99-2923-E-024-003-MY 3.

References

Broderick Arneson, Ryan Hayward, and Philip Henderson. Mohex wins hex tournament.
ICGA journal, pages 114-116, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2/3):235-256, 2002.

R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

Adrien Couetoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas
Bonnard. Continuous Upper Confidence Trees. In LION’11: Proceedings of the 5th
International Conference on Learning and Intelligent OptimizatioN, page TBA, Italie,
January 2011. URL http://hal.archives-ouvertes.fr/hal-00542673/en/.

Rémi Coulom. Computing elo ratings of move patterns in the game of go. In Computer
Games Workshop, Amsterdam, The Netherlands, 2007.

F. De Mesmay, A. Rimmel, Y. Voronenko, and M. Piischel. Bandit-based optimization on
graphs with application to library performance tuning. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 729-736. ACM, 2009.

30

http://hal.archives-ouvertes.fr/hal-00542673/en/

CoNTINUOUS RAVE

Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In
ICML °07: Proceedings of the 24th international conference on Machine learning, pages
273-280, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-793-3. doi: http:
//doi.acm.org/10.1145/1273496.1273531.

L Kocsis and Cs Szepesvari. Bandit based Monte-Carlo planning. In 15th Furopean Con-
ference on Machine Learning (ECML), pages 282293, 2006.

Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock, Arpad Rim-
mel, Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. The
Computational Intelligence of MoGo Revealed in Taiwan’s Computer Go Tournaments.
IEEFE Transactions on Computational Intelligence and Al in games, 2009. URL http:
//hal.inria.fr/inria-00369786/en/.

P. Massé. Les Réserves et la Régulation de I’Avenir dans la vie Economique. Herman, 1946.

Hootan Nakhost and Martin Miiller. Monte-carlo exploration for deterministic planning.
In Craig Boutilier, editor, IJCAI, pages 1766—-1771, 2009.

Philippe Rolet, Michele Sebag, and Olivier Teytaud. Optimal robust expensive optimization
is tractable. In Gecco 2009, page 8 pages, Montréal Canada, 2009. ACM. URL http:
//hal.inria.fr/inria-00374910/en/.

R.S. Sutton and A. G. Barto. Reinforcement learning. MIT Press, 1998.

Fabien Teytaud and Olivier Teytaud. Creating an Upper-Confidence-Tree program
for Havannah. In ACG 12, Pamplona Spain, 2009. URL http://hal.inria.fr/
inria-00380539/en/.

B. Tuffin. On the use of low discrepancy sequences in monte-carlo methods. Tech-
nical Report Technical Report 1060, I.R.I.S.A., 1996. URL citeseer.ist.psu.edu/
tuffin96use.html.

Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for infinitely many-armed bandits. In
Advances in Neural Information Processing Systems, volume 21, 2008.

31

http://hal.inria.fr/inria-00369786/en/
http://hal.inria.fr/inria-00369786/en/
http://hal.inria.fr/inria-00374910/en/
http://hal.inria.fr/inria-00374910/en/
http://hal.inria.fr/inria-00380539/en/
http://hal.inria.fr/inria-00380539/en/
citeseer.ist.psu.edu/tuffin96use.html
citeseer.ist.psu.edu/tuffin96use.html

	Introduction
	Monte-Carlo Tree Search
	Upper Confidence Tree
	Progressive Widening
	Rapid Action Value Estimation

	Continuous Rapid Action Value based Estimation
	Continuous action spaces
	Continuous state spaces
	Discussion

	Experimental Validation
	Goals of experiment and experimental setting
	The TreasureHunt benchmark
	Energy Management Problem

	Conclusion

