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Abstract

Answer summarization is an important problem in the study of Question and Answering.
In this paper, we deal with the general questions with “Yes/No” answers in English. We
design 1) a model to score the relevance of the answers and the questions, and 2) a feature
function combining the relevance and opinion scores to classify each answer to be “Yes”,
“No” or “Neutral”. We combine the opinion features together with two weighting scores
to solve this problem and conduct experiments on a real word dataset. Given an input
question, the system firstly detects if it can be simply answered by “Yes/No” or not,
and then outputs the resulting voting numbers of “Yes” answers and “No” answers to this
question. We also first proposed the accuracy, precision, and recall to the “Yes/No” answer
detection.

Keywords: Answer Summarization, Yes/No Questions

1. Introduction

Search engines and community question answering(CQA) sites have been very popular
recently, and are used by a large amount of users every day to find out the answers to
a variety of questions. In the most common question-and-answering sites such as Yahoo!
Answers and WikiAnswers, a user posts a question and waits for other users to answer
it. Also, the user can search for all the answers to a certain question in the system and
get tremendous results. As there are too many search results and existing answers to a
question, answer summarization becomes a key problem in the task of answer retrieval(see
(Liu et al., 2008; Filho et al., 2006; Tang et al., 2010)).

During the past few years, document summarization, especially for the web documents,
has become a hot research area in natural language processing, web mining and informa-
tion retrieval (see (Shen et al., 2007; Haghighi and Vanderwende, 2009; Wan et al., 2007;
Svore et al., 2010)). Since document summarization already has some matured and sua-
bilityessful solutions, a natural approach on attacking the answer summarization problem
is to utilize the existing tools for solving the document summarization problem. However,
when applying document summarization into the community question answering datasets
to summarize the existing answers, the situation becomes different. Unlike news articles,
the answers to the same question might have different expressions, different keywords and
even various of opinions. The traditional methods in news summarization couldn’t work
in answer summarization. While there are lots of additional information in the CQA sites,
such as the grade of the user who provides the answer, and whether the answer is selected
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as the “Best Answer” or not, with which we can obtain the training data set more easily.
But overall, answer summarization is harder than multi-document summarization since the
summary cannot simply be a composition of the sentences with highest scores as in the
articles.

There is a large class of questions we call them yes/no geustions, which are seeking for
a clear “Yes” or “No” answer. Our study shows that this special type of questions is one
of the most common question type in CQA sites. In this paper we deal with a subproblem
of answer summarization, focusing on the yes/no questions. Most of the yes/no questions
can be simply answered by a “Yes” or “No”. So the purpose of summarization is clearly to
denote each answer as a “Yes” answer or a “No” answer. It is simpler than general answer
summarization which is aiming to give a clear and coherent answer. For instance, given a
certain yes/no question, the system will scan all its answers and output a summary like: 6
answers say “Yes” answers while 5 answers say “No” (some ambiguous answers are denoted
as “Neutral”). The main contributions of this paper are as follows:

1. We formulate the problem of detecting whether an answer to a general question is a
“Yes” answer, or a “No” answer, or a neutral one.

2. We propose a model to calculate the relevance for asymmetric documents. And we
also combined this model as one of the features to give a weight for each sentences in
the answers.

3. We propose three features, including the relevance feature, the sentiment-word score
feature and the position weight feature, for classifying the answers to general questions.
We then integrate these three features to obtain a novel feature function that classifies
the answers into three categories: “Yes”, “No” and “Neutral”.

4. In the experimental part, we are the first to implement a real yes/no question sum-
marization system, which reaches our first-proposed accuracy, precision, and recall.

Related Work. Answer summarization originates from multi-document summarization,
whose task is to create concise abstracts from several sources of information. This problem
initially comes from the need of generating a brief report of various news articles to save the
time for reading news; see e.g. (McKeown and Radev, 1995). Systems for multi-document
summarization include a topic detection and tracking system that generates cluster centroids
(Radev et al., 2000), and an extraction-based multi-document summarization system (yew
Lin and Hovy, 2002), etc.

Answer summarization can be regarded as a multi-document summarization problem,
in which the question corresponds to the topic of the documents and the existing answers
are treated as parallel multi-documents. A summarization is a brief report combining all
the factual information and the opinions contained in the answers.

The existing question-and-answering systems can be divided into two classes: the sys-
tems for answering factual questions (see (et al., 2002)) and those for extracting sentiment
answers (see (Yu and Hatzivassiloglou, 2003; Li et al., 2009)). The corresponding answer
summarization tasks for CQA sites also has two aspects: factual answer summarization and
sentiment /opinion answer summarization (Li et al., 2009). Our work in the present paper is
different from both of the aforementioned aspects. Firstly, “Yes/NO” answers can be a true
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fact. For example, if the question is “Is Obama the president of the U.S. now?”, a possible
answer could be “Yes” which is a factual answer. Correspondingly, if the question is “Is
Obama a qualified president of the U.S.7”, the answer “Yes, I think he is a good president.”
will be a sentiment one. Thus, our problem occupies an overlapping of both factual and sen-
timent answer summarization. In this sense, our solution comprises of both the sentiment
words detection and factual words detection, which makes ours different from previous work.

This paper is organized as follows: in section 2 we give a more detailed definition to the
yes/no questions and have a introduction to the model and the features. In section 3 we
discuss the details of the features and show how to calculate the feature function. Then the
experimental results are given in section 4.2. We conclude the whole paper in section 5.

2. Basic Framework

2-optional opinion seeking questions(we call them “yes/no question’s’ in this paper) are
those can be answered by a short but clear supportive answers or objections. For instance,
“Is a nutritionist a doctor?” is a yes/no question.

2.1. Introduction of the Basic Framework

The framework consists of 2 parts: a yes/no question detector and an opinion classification
model. The system takes a question with several answers as inputs. First, it will detect
whether the question is a yes/no question. If it is indeed a desired question, our system will
classify the answers using the score computed by our feature function.

We use patterns to match yes/no questions and the detector is decried in detail in
section 3.1. An opinion classification method can be characterized by the model and how its
parameters are estimated. With classic feature-based approaches, classification is performed
using a linear model computed over a specified feature space. Let ¢, a denotes a question
and an answer, and we suppose the answer consists of a list of sentences si,...,s,. We
extract the following features from each question-sentence pair (g, s),

1. rel(gq, s) € [0,1]: The relevance score of the sentence s to the given question g;
2. pos(s) € [0, 3]: The position score of the given sentence s;

3. yesno(s) € [—3,3]: This score to represent s is likely to be a positive or negative
sentence;

4. sen(s) € [—3,3]: The sentiment in the sentence, positive value represent a supportive
sentiment and vice versa;

5. sen’(s) € [~1,1]: An extended sentiment feature which is similar to sen(s) with a
higher coverage but lower precision.

Here we only give the meaning of the features but the detailed description is in the next
section. These features are combined by Eq.3.
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F(q,a) = Z rel(q, s;) - pos(s;) - (o - yesno(s;) + B - sen(s;) + v - sen’(s;)) (1)
1<i<k

The feature functions are learnt from unlabeled CQA dataset while the three parameters
a, 3,7 in Function(1) are by linear SVM using a labeled training set. Since in real dataset
some answers are ambiguous, we apply the following function as our final classifier.

L, if F(q, A) > &
ret(q,A) =4 0, if =6 < F(q, A) < ¢; (2)
-1, if F(q,A) < —6.

out(q) = (pos = [{A : ret(q, A) = 1}[,neg = [{A : ret(q, A) = —1}|) 3)

Finally, we outputs out(q) as the voting results to the question. We will explain each
feature of the model in detail in the next section.

3. Implementing the Feature Function Model

This section is organized in the order of the data flow in the system. We will first introduce
how we detect yes/no questions; and then explain the five functions in Eq. 1 in detail.
Training the parameters are introduced in the last subsection.

3.1. Detection of the General Questions

Detecting the yes/no questions is the first step of summarization. By annotating question
types for over 5,000 questions manually, we found that the following rule of detecting yes/no
questions in English is efficient, that is, the question should start with three types of words,

1. Be verbs: Sp. = { am, is, are, been, being, was, were }.
2. Modal verbs: S,,04e1 = {can, could, shall, should, will, would, may, might }.
3. Auxiliary verbs: Sy, = { do, did, does, have, had, has }.

Using simply the regular expression “[Spe|Smodet|Sauz]-*+ 7?7 to detect obtains a quite good
start point of the detection problem. It achieve a 80% precision with over 90% recall.
However, there are two kinds of trivial mistakes this method would make. The first kind
of error is alternative questions, as in community question answering(CQA) data there are
a lot of alternative questions, such as “Is he married or not?” and “Will the concern be
on May 23rd or June 1st?”. The answers of the alternative questions will not be simply a
“Yes” nor a “No” so we should drop these alternative questions.

Another type of error in the detecting process is the questions might start with “Do you
7. “Does anyone know ...” In CQA. One kind of most popular questions might be
“Can anybody tell me who is the president of the U.S.7” or “Does anyone know how much
Bill Gates earns a year?” Using proper regular expression can filter over 90% of this kind
of questions whose answer will not be “Yes” nor “No”. The system will accept questions
satisfy “[Spe|Smodet|Sauz] ¥+ 77 but drop the sentences match: “[Spe| [a-z]* [or] [a-z]*” and

know ...
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“la~z]* [anyone | anybody][a-z]*[tell | know][a-z]*”. Evaluating by another labeled 5000-

question test set, this method detects 487 yes/no questions in it. The precision and recall
are 91% and 87%, respectively.

3.2. Relevance Scores of the Question and Answer

Before going to extract the users’ sensitive from the sentences, a key step is to extract the
important sentences from an answer. Many signals can be used to extract key sentences
but the relevant score is one of the most significant features in sentence importance extrac-
tion. Especially in user generated content(UGC), the content is very noisy so that filtering
irrelevant answers is very important in our problem. Evaluating by a dataset contains 1000
questions and over 3000 answers, we found that over 43% of the sentences are irrelevant to
the questions they are answering. Specially for the answers have more than 5 sentences(we
call them long answers), over 64% of the sentences are irrelevant to their corresponding
questions. So filtering the irrelevant sentences in the answer and weighting the relevance of
the sentences to the questions are very important in opinion extractions.

We denote D = {w, ..., wn} as the finite dictionary contains all words in our dataset
and m = |D| is the size of the dictionary. The “bag-of-words” model is an assumption
widely used in natural language processing. In this assumption, a sentence or a document
is represented as an unordered collection of words, disregarding grammar and even word
order (Lewis, 1998). A sentence s is denoted as a vector s = (wy, ..., Wy, ), in which w; € Z
is the number of occurrences of the i-th word in the sentence.

We use the relevance score to measure the “topic distance” of two documents, as it is
used in other problems. Classic vector space models use weighted word counts(e.g. TF-IDF)
as well as the cosine similarity of their bag-of-words vectors as relevant function (Salton
and McGill, 1986). Such models perform well in lots of applications, but suffers from the
fact that only exact matches words are closely related to the similarity. Unfortunately, this
is a false assumption in most of the web QA data. Another fact that we can’t directly use
qa as the relevance score is that the two document sets(the question set and the answer set)
are not symmetric. For example, some words, like “what” and “how”, should have a higher
occurrent frequency in the questions than in the answers.

In our problem, we measure the similarity of a question and an answer by two parts: the
first part is a word-vector cosine similarity score which is the widely used TF-IDF relevant
score, while the second part is a more complicated model to measure the topic similarity of
them. Formally speaking, the relevance is defined as follows.

rel(q,a) = q @ a+ qMa® (4)

where ¢ = (t1,...,tm), t; € Z is the question vector and a = (eq, ..., ;) is the answer vector.
M is a matrix of size m x m and ¢ ) a is the TF-IDF relevant score defined as follows,

@ o= Zlgigm 1df(wl)tlez (5)
4 TS idf(w)t S idf(wy)e;

in which, |¢| = >, ti and |a| = >, € are the lengths of the question and the
answer, respectively. Intuitively speaking, the matrix M is a measurement of the topic
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distance of the two sentences (the question and the the answer); M; ; measures the “topic
distance” of two words w; and w;.

The first part is the cosine distance of the question and the answer. But as discussed
before, the question and the answer might fall into two different feature spaces, which
means the inner product can’t measure their relevance correctly. We use a matrix M in the
second term to measure the topic distance of the question space and the answer space. The
distance of ¢ and a is measured via the words in them. The matrix M can be explain as the
transformation matrix from the question space to the answer space. For each sentence ¢ in
the question, M : ¢ — a maps it to the feature space the answers, and the insight meaning of
M, ; is the relevance of w;(a word in the question) with w; (a word in the answer). Although
M can be learnt by neural network, we simply divide M two two simpler matrices, by letting
M = UTV. That is,

f(g,a) = Ug(Va)" (6)
rel(Q? a) =q @ a+ f(Q7 CL) (7>

in which, U and V are matrices of size k x m(k is a feasible parameter). U can be imagined
as the function to transform a word in the question to a set of topics: for a question
q, Ug maps it to a vector of size k to represent the topics this question related to. In
our experiments, we optimize the parameter k£ to obtain a reasonable trade-off between
performance and accuracy.

Training such model could take many forms. Providing a large dataset that contains
over millions of questions and even more user generated answers, we build the matrices
U and V in a typical ”learning to rank” way. Suppose we are given a set of questions
q1,-..,q¢+ and the corresponding answers to ¢; are {a;1,...,a;x;,? = 1...t}. The goal is to
give the ¢; and its answers a; 1, ...,a; ), a higher ranking than any other answers, that is,
f(@i,aip) > f(qi,ajp) for all i # j. For this purpose we trained the U, V by minimizing
the following function (see (Bai et al., 2009)),

Z < Z Z IIlEiX(O7 1-— f(Qi7 ai,m) + f(Qi7aj:l))> (8)

1<i£j<M M1<m<k; 1<I<k;

To minimize Eq.8, we train this iteratively: one picks a random question ¢ and one of
its answer at. (¢,a™) is a positive training data to the model; while for a~ which is not an
answer to ¢, (¢,a”) is a negative pair to the model. By randomly picking ¢,a™ and ¢—, we
make a gradient step by the following updates:

U« U+6V(at —a )¢’ ,if 1 —rel(g,a™) +rel(g,a™) >0 9)
V « V+46Uqg(a™ —a™)T ,if 1 —rel(q,a™) +rel(q,a™) >0 (10)
We begins on two random sparse matrices U and V which satisfy ||U||r = 1 and

||V||r = 1. Here ||U||r is the Frobenius norm of U,

IUllr =

k. m
D> | =\ /tr(UTU)

i=1 j=1
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Obviously, this iteration is to minimize the Eq.8, which is to maximize the gap between
f(g,a™) and f(q,a”). In our experiments we found that the iteration always converges
to a result we don’t expect. The reason is that the frequent words are involved in many
questions/answers and so they are enhanced in many iterations, so that they always have
a larger norm than other words. And the variety of negative examples (¢,a”) is very
important in the training process even for a small set of training data, so that we have to
prepare a lot of negative pairs (q,a”) for each q. The quantity of negative pairs make the
training process converges quite slowly. To reduce the cost of enumerating negative pairs,
we use a simpler but more direct method, in which we don’t need negative pairs at all, that
is,

Minize:  F(Q)= Y (Z > f(Qiaai,m)_f(inaj,l))7 (11)

1<i#j<M N 1<m<k; 1<I<k;
Subject to:  [|(UT);ll2 = ||(ur g, -r )2 = =1,
and  [[(V))jlla = l[(v1, - vr)l]2 =
Each iteration: U« U +§(Va™ — Uq)q? — &' (Vat — Ue)e?, (12)

V « V+6(Uq—Vah)(ah)T —§(Ug - Ve)el
(U7, = (U7) /H i1l (13)

VT, = (v7) /|| )1l

in which, Q is the question set and e = (1,...,1) is the unit vector of size m and ¢’ < §
are iteration parameters.

The idea of the iteration is simply enhancing the relationship of ¢ and a™ and in the
meanwhile punish all other words. In experiments, we compared Eq.9 and Eq.12 and
found that they have the same accuracy in the large enough training set, but Eq.12 takes
converge much more quickly. To overcome the second shortage of the training process of
Eq.9(the frequent words have a larger norm, and when doing the matching, they dominate
the results), we apply a simple normalization(in Eq.13) after every iteration such that each
column of the two matrices U and U has a unified £ norm.

Applying the improved iteration improves the training speed a lot. It improves the
speed by at least 10 times with no harm to the accuracy. For more experiment results,
please refer to section 4.2.

3.3. Yes/No Scores of the Question-and-Answer Pair

We design an answer dictionary that to some extent indicates whether the answer should
be Yes, No, or Neutral. The human-made dictionary consists of 19 English words such
as “Yes”, “No”, “Not” with corresponding scores which reflects the extent of positiveness
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or negativeness. We design the Yes/No keywords and their scores by extracting the most
popular keywords in the strong positive/negative answers in our labeled dataset. The score
is designed according to their popularity in strong positive/negative answers. For example:
yes: 3, yep: 2, no: —3, nope: —2, not: —2.

The labeled dataset we used to extract keywords only contains hundreds of questions.
It is quite small compared to the large CQA data which contains millions of data. In the
real user data, our human-made 19-word directory definitely have a low coverage, although
it is accurate. Some words appear frequently on web but never appears in our labeled data,
including but not only some typical typos (e.g. “noooo”, “wooooooow”) and abbreviations
(e.g. “of coz”). To extend the human-made directory to contains as much as web keywords,
we look into the concurrences of the words in the same paragraph. Supposing the directory
is Dyesno = {u1, ..., un},n = 19 and their associated scores are s(u;) € [—3, 3], we utilize the
following equation to calculate an approximate score to every word.

n

B co-ocr(w, u;)s(u;)
s(w) = Z Tog idf («0) , for all w & Dyesno (14)

in which, co-ocr(w, u;) is the number of the concurrences of w and u; in the same paragraph.

After all words are scored, we import the words in the top 100 and last 100 into the
dictionary as positive and negative words, respectively. Since the data is noisy, the impor-
tation is monitored by manual review and the irrelevant words aren’t imported. Since the
Eq.14 doesn’t guarantee any scope of s(w), we normalize the s(w)’s to [—2,2] by a linear
rescaling. Finally, we combine the 19-word directory together with the extended key words
as our final dictionary Djs,, = {U], -, Uy, }-

The Yes/No score yesno(a) is calculated directly by summing up the Yes/No scores of
all the words in the answer,

/
yesno(a) = E s(s)
ul € D! |a’
¢ € Pyeano

The value of Yes/No score indicates whether the sentence should be Yes, No, or Neutral.
Also this value will be multiplied by the relevance score of the sentence corresponding to its
question and the position score that reveals the importance of the sentence in the answer.

3.4. Sentiment Scores of the Question-and-Answer Pair

We investigate hundreds of question-and-answer pairs and notice that the sentiment words
are the key indicators for the polarity of answers, especially the words appearing in both
the questions and answers. In order to get the sentiment scores of a certain question to its
corresponding answer, we use an English sentiment words dictionary called AFINN, which
is generated by (Nielsen”, 2011). The dictionary contains 1032 English words with their
polarity scores. We want to compute the similarity score of the QA pair based on the
sentiment words. Generally, the sentences and answers are considered as a vector of the
TF-IDF scores of m sentiment words:

dj = (tfij-idfr,tfoy - idfa, ..., tfm,j - idfm).
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3.4.1. TF-IDF SCORE

The TF-IDF score (Term Frequency — Inverse Document Frequency) is a weight often used
in information retrieval and text mining. In our system, it is applied as a statistical measure
in constructing the sentiment term vector of a certain question-and-answer pair to evaluate
the importance of the words to the sentences. The TF-IDF weight increases proportionally
to the number of times a word appears in the sentence but is offset by the document
frequency of the word in the whole corpus. By multiplying the term frequency and the
inverse document frequency, we get the following formula for calculating the TF-IDF:

D
{d; : ti € d;}|

n’L 7j

——>— and 1idf; = log
>k Tk

tfij =

and,
| ng D)
TF-IDF; ; = tf;; - idf; = Y log .
ST Yy 14 {dj st € dj
A high weight in TF-IDF is reached by a high term frequency (in the given document)
and a low document frequency of the term in the whole collection of documents; the weights
hence tend to filter out too common terms.

3.4.2. SENTIMENT SCORES

We use the cosine measure, which is defined as the cosine value of the angle between two

sentence vectors, to calculate the sentiment similarity scores of the given question and

answer. The higher the sentiment similarity score is, the higher probability that the answer
will be a positive/Yes answer.

q-a

sen(q, a) PRI (15)

Here ¢ - a means the vector dot product of ¢ and a, and |g| denotes the length of the

vector q. Note that in the original definition of sentiment words, there are two types of

words: the positive sentiment words and the negative ones. But in Eq.15 we drop the types

of the sentiment words and the reason we can drop the types is we are not interested in the

sentiment of the answer but in if the answers agree on the question or not.

3.4.3. EXTENDED SENTIMENT WORD DICTIONARY

Notice that the English sentiment word dictionary AFINN is made by human and the
coverage is not sufficient for our application. Therefore, we design a method to extend
the sentiment word dictionary by the mutual information scores (MI scores) of any two
words. We use Eq.16 and Eq.17 to calculate all the sentiment scores in the word dictionary.
After that, we keep all the words with absolute score larger than some prescribed bound
to produce the extended sentiment word dictionary. The function sen’(q, a) is computed
similarly with sen(q, a) but using the extended sentiment word directory.

p(w1, wo)
MI(wy,ws) = log 2L W2) 16
(1:02) =108 )l 1o
and
sentiment _score(w;) = Z MI(w;, w;) - sentiment_score(w,) (17)

for all words wj
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3.5. Position Scores of the Sentence

Besides the above features, position is also an important feature in our system. In traditional
multi-article summarizations, position information is very important to detect the key points
in the articles (Radev et al., 2000; McKeown and Radev, 1995). The situation is the same
in answer summarization. The third important features used is the position score of each
sentence. We all know that in English the first and last sentences are more likely to be
conclusion sentences, while the middle sentences are less important. The appearances of
the words “Yes”, “No” in the first/last sentence is a very strong signal that this answer
is support the question or not and so they have huge power to determine the polarity of
the answer. In our model we use three different position weights as an additional feature
in the function. The three position weights, wfist, Wiast and wipiddie is learned with the
exhaustive search method given the training set.

The relevance score and the position score give a “confidence score” to the sentence,
while the other features give a score to tell whether this sentence is a supporting opinion
to the question or not. We use a simple linear function to combine the two factor together
as described in Eq.1. Some other models such as binary decision tree are also tried but the
best performances are achieved by feature function.

3.6. Learning the Parameters in the Feature Function Model

There are three parameters in the linear feature function model, namely «,8 and . The
SVM learning algorithm is used to train the parameters. The training dataset is a list
of labeled question-answer pairs; each pair is associated with a label +/— to indicate it
is a positive pair or a negative one. In our training process, each QA pair is converted
to a feature list using the definitions above. We utility a linear SVM to learn the three
parameters o, and -y to classify the positive and negative pairs.

4. Experiments

The experiments consist of two parts. The first part is to evaluate the relevance model in
section 3.2; the second part is the subjective/objective answers detection model. All the
experiments are conducted on a server with an Intel(R) Pentium(R) D CPU with 3.00 GHz
and 2.99 GHz, and 16 GB of RAM. We choose C++ as the programming language because
it has advantages in the processing speed.

4.1. Evaluations on the Asymmetric Relevance Model

We conducted experiments on real user community QA data. We sampled millions of docs
from our indexed QA pages and extract the QA content from the pages. All QA pages
are already parsed, the text of the questions, the best answers are all well annotated. The
extraction keeps only the text of the question and its corresponding best answer. All other
related information, like non-best answers, user information, time and locale are ignored.
We use the question and the corresponding best answer as positive examples (q, af{); and
the questions combined with answers from other pages are considered as negative examples,
which are denoted as (g, a;). Here we apply an assumption to the QA data, that is, the best
answers are highly relevant to the questions. The assumption is convincing since in most of
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RunningTime | 100 examples | 1K examples | 5K examples | 10K examples | 100K examples
Eq.9 2 secs/iter 52 secs/iter | bmins/iter | > 30mins/iter > bhr/iter
Eq.12 0.1secs/iter | 0.3secs/iter | 1.2 secs/iter 3secs/iter 3mins/iter

Table 1: Running time of the Relevance Model

the CQA sites, the best answer is selected by the asker. Regardless of some spams(they are
easily filtered by user comments), most of the best-answers are high-quality training data to
the relevance model. Our goal is to give (g, a;“) a higher score than (g, a, ) for each question
q. Denote the question set as Q, the accuracy in our evaluation is defined accordingly as

follows, acc = |{q € Q|F(q,a}) > F(q,a, ), for all a},a, }|/|Q].

q

Convergence

avgerage F(q)

s L
10 20

30 40 50

Number of iteration

60

Figure 1: Convergence of Different Size of Training Sets (red: size=100; green: size = 1K;
blue: size=10K)

Accuracy

# of features=100 —=—
# of features=1000
# of features=2000 —&—

10 20

30 40 50

Number of iteration

60

Figure 2: The impact of number of features

4.1.1. EXPERIMENT RESULTS

The running time of the original relevant model using iteration Eq.9 and the improved
model using Eq.12 are compared in Table 1. The experiment shows that the running speed

is improved by more than 100 times in large training datasets.
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Data Set | #Questions | #Answers | Yes | No | Neutral
Training 200 477 142 | 102 233
Testing 400 988 257 | 220 511

Table 2: Overview of the Date Set

Fig.1 shows the convergence speed of the relevant model. The x-axe is the number
of iterations, while the y-axe is the target function, which is defined as F(Q)/|Q|(slightly
different to Eq,11). In this experiment, we set the feature number to Q/5. The red line is
the case we only use 100 quesitons as training data. For this simple dataset, the function
converge very quickly. For a larger training set with 1000 questions, the model converge in
roughly 30 iterations(the green curve); In a large dataset with 10k questions, which is almost
in the same scale as our real dataset, the model converge in roughly 300 iterations(blue
curve). For small cases, the model converges very quickly because the bag-of-words vectors
are sparse. That is, for a small enough dataset, It is very likely that each question has a
“special” word that never occurs in other questions. These “special”’words will become a
significant feature to the question because using this word it can easily identify the question.
But in the real dataset, this situation is not true. So in a large enough dataset(e.g. the
one we used to generate the blue curve) it converges much slower than small sets. We also
consider the impact of the number of features. And Fig.2 shows that for reasonable setting
of features, this model converges to a very good accuracy.

4.2. Subjective Answer Detection

In order to test the performance of our learning model, given a certain question, we ask
two human annotators to annotate all the existing answers and classify them into three
subjects: yes, no, and neutral. The two annotators are consistent on 78% of the answers
and we take this part as our training and testing data set. The accuracy, precision and
recall are given in the next subsections. In our application, we do not care too much about
the neutral answers, but the precision and recall of the “Yes” and “No” answers are more
important for us. Therefore we take all the three values as the evaluation criteria.

4.2.1. TESTING DATA SETS

To evaluate the results of our “Yes/No” answer summarization, we use 600 question-and-
answer pairs with 600 questions and 1465 corresponding answers crawled from several fa-
mous question-and-answering sites such as Yahoo! Answers and WikiAnswers. In Table 2,
an overview of the training and testing data is given.

4.2.2. EVALUATION RESULTS

We test our feature function model over 400 questions with 988 corresponding answers. The
baseline is a simplifed system using only F'(q,a) = (yesno(a)) and it only reaches a precision
of 51% and a recall of 55%. Adding sentiment words score F(g,a) = yesno(a) + sen’(q, a)
improves the model slightly. After adding the relevance feature, the extended dictionary
feature and the position weight feature, the accuracy, precision and recall increase by 6%,
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System Accuracy | Precision | Recall
Baseline 58% 51% 55%
+ sentiment 58% 52% 57%
+ sentiment, pos/rel weighting(complete model) 64% 56% 57%

Table 3: Detailed Results

Result \ Real | #Yes | #No | #Neutral
#Yes 148 31 102
#No 24 | 125 55

#Neutral | 85 | 64 354

Table 4: Detailed Results

5% and 2%, respectively. In the final system with the The overall accuracy is 64%, the
precision of the “Yes” and “No” answers is 56%, and the recall of the “Yes” and “No”
answers is 57%. The detailed results are shown in Table 4. The high precision proves that
our model is convincing, and the recall being 56% shows that we successfully hunt out a
large amount of the existing answers. Table 5 shows some examples of the outputs of our
summarization system.

4.2.3. ERROR CASE STUDY

There are still some mistakes that the feature function model can not fix. An example is
that, when the question is “Is Obama the president of the US?”, a positive answer might be
“I don’t think he is not.” The feature function model considers this answer to be negative as
there are both “not” and “don’t” in the answer. However, this example is a double negative
sentence and should be counted as a “Yes” answer. Dealing with such cases requires more
complex semantic analysis, and we need to parse the sentence to get a grammar tree.
Nonetheless, parsing and semantic analysis will bring in new errors and make this problem
even more complex. We will further study this method in the future.

Another error case is more complex. For example, the question is “Is someone married?”
while there is a definitely “Yes” answers appearing like “If he is not married, I’'ll buy you
a month of dinner.”. Human can understand this answer easily but the computer cannot
because it requires deeper understanding and further reasoning of languages. With the
development of natural language understanding and artificial intelligence, these problems
may be solved in the future.

5. Conclusion

We first proposed the answer summarization problem for the yes/no questions as well as a
model to classify the subjective/objective answers. Our model integrates answer-keywords,
QA-relevance, answer-opinion information. Empirical evaluation demonstrated the merits
of our approach.

In this paper we also introduced a novel relevant model for asymmetric documents, espe-
cially for question-answers relevance computation. We also improved the iteration function
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Question: can a vegetarian eat chicken flavored ramen noodles

Answers # 1
i believe it has chicken power which is chicken so i consider it not being vegetarian

Answers # 2
you can certainly eat the noodles alone but the chicken flavoring actually has chicken in it ...

Answers # 3
i m pretty sure they use chicken fat in that so no

Answers # 4
yes i do all the time it is not chicken at all just some artificial
extract someone put together and called it chicken

Summary: # of “Yes”: 2, # of “No”: 2, # of “Neutral”: 0

Question: is a nutritionist a doctor

Answers # 1
well no/nutritionists are not doctors/

Answers # 2
no a nutritionist is basically a dietician/they have medical knowledge but specify ...

Answers # 3
generally a nutritionist has a 4 year degree in nutrition/
a nutritionist can get a ph d but that is not the same as a medical doctor

Answers # 4
no you need to do a 2 or a 3 year course/
my dietician is better than most docs in diagnosing

Answers # 5
no/you do a science in nutrition degree/you cannot prescribe drugs/
you do not perform surgery/it takes 4 years

Answers # 6
a brain doc i think

Summary: # of “Yes”: 1, # of “No”: 3, # of “Neutral”: 2

Table 5: Examples of the Output of the System
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to the relevant model for the cases that only the positive training examples are guaranteed,
and the evaluation on real user generated contents(UGC) show that our iteration functions
improve the performance of the model significantly.

As the future work, we plan to add this “Yes/No” answer summarization process to the
summarization of all the answers to a certain question and embed it in a real QA system.
In this case, the summarization will consist of two parts: the first is the voting results of
“Yes” and “No” numbers, and the second part contains simple facts, opinions and other
summarized answers. Thus the system will give the user a clear overview of the existing
answers or search results to his/her question.
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