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Abstract

We propose an acceleration technique for boosting classification without any loss of classifi-
cation accuracy and apply it to a face detection task. In classification task, much effort has
been spent on improving the classification accuracy and the computational cost of training.
In addition to them, the computational cost of classification itself can be critical in several
applications including face detection. In face detection, a celebrating work by Viola and
Jones (2001) developed a significantly fast face detector achieving a competitive accuracy
with all preceding face detectors. In their algorithm, the cascade structure of boosting
classifier plays an important role. In this paper, we propose an acceleration technique for
boosting classifier. The key idea of our proposal is the fact that one can determine the sign
of discriminant function before all weak learners are evaluated in general. An advantage
is that our algorithm has no loss in classification accuracy. Another advantage is that our
proposal is a unsupervised learning so that it can treat a covariate shift situation. We
also apply our proposal to each cascaded boosting classifier in Viola and Jones type face
detector. As a result, our proposal succeeds in reducing the classification cost by 20%.
Keywords: boosting, classification cost, truncation rule, face detection

1. Introduction

In the study of classification task, researchers have been mainly focused on classification
accuracy and/or computational cost of training. In addition to them, the computational cost
of classification (abbreviated as classification cost in the sequel) has attracted researchers’
interests in several application areas. One of such application is face detection with digital
cameras. The goal of this task is to specify where are human faces in a screen of digital
cameras. Throughout the paper, we assume that only 1 CPU is available (parallel computing
is not considered). One of widely used approach is preparing a face detector (classifier) and
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applying it to a subwindow of a certain size. This procedure is repeatedly done with varying
the location and the scale of subwindow exhaustively (illustrated in Fig. 1). As a result, the
face detector is applied enormously many times (say, a few millions) to scan only an image.
This task should be completed in a few tens of milliseconds for standard size images (say
600 x 400). If not, the user may feel very stressful because of the delay of screen refresh.
Thus, the classification cost is a critical issue in this application.

b N{I{u |

Figure 1: Scanning an image by shifting and scaling the subwindow. This image is chosen
from CMU Profile Face Images (Schneiderman and Kanade, 2000). The blue
subwindows detected some faces.

Motivated by this back ground, we propose an acceleration technique for boosting clas-
sifiers (Freund and Schapire, 1997; Mason et al., 2000; Friedman et al., 2000). Boosting is
one of the most successful classifiers in the last decade. Currently, most of face detectors
use boosting classifier. Given an input vector x, the boosting classifier predicts its label y
according to a weighted majority vote (i.e., linear combination) of some weak classifiers.
Taking this structure into account, we propose two new simple acceleration techniques. The
key idea is that one does not necessarily need to evaluate all weak classifiers to obtain the
exact classification result. Based on this idea, our first proposal (referred to as y-truncation
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rule) is to truncate the evaluation of weak classifiers up to the necessary minimum number.
When ~-truncation rule is applied, the number of weak classifier to be evaluated depends on
the order of weak classifiers and the input x. Therefore, our second proposal is to optimize
the order of weak classifiers such that evaluation of weak classifiers is truncated as early in
average (with respect to x) on an available data set as possible. We refer to this technique
as order structure learning (OSL).

An advantage is that our proposal (y-truncation rule combined with OSL) achieves the
acceleration without no loss of classification accuracy because the classification result is
exactly the same as the original boosting classifier. Another advantage is that our proposal
can treat a covariate shift situation (e.g., Shimodaira (2000)). The covariate shift indicates
that the input distribution of training data differs from that of test data. If additional
unlabeled data (i.e., only x) generated from the test distribution are available, then OSL
can be trained with this data set because OSL is an unsupervised learning. The performance
of our proposal is illustrated by some simulations.

We apply our proposal to an existing face detection system. The state-of-the-art face
detectors originated from a celebrating work by Viola and Jones (2001). Face detection
task is essentially involved with covariate shift situation. For example, there are usually
few faces in an image of digital cameras. Thus, when scanning an image by subwindow,
most subwindows are negative samples (non-face). In contrast, a face detector is usually
trained with a data set containing faces with larger proportions to detect a variety of
faces. Based on this fact, Viola and Jones (2001) proposed a fast face detection system as
follows. They prepare a sequence of boosting classifiers and make a decision tree of specific
structure (so-called cascade) with boosting classifiers as nodes. Each input (subwindow)
x is judged as face if and only if all nodes judge it as “face.” The key point is that the
more ascendant node is designed to be computationally simper and to have extremely high
detection rate. In other words, many definitely non-face subwindows are rejected early
with low computational cost. Their face detector is approximately 15 times faster than
preceding face detectors while keeping the detection rates comparable with them. As a
result, many current face detectors are variants of their method. We employ one of such
variants (Lienhart and Maydt, 2002a). Their algorithm is available at Lienhart and Maydt
(2002b). As a result of applying our proposal to each node (boosting classifier), we achieve
20% decrease in classification cost.

We should mention a preceding study. After this paper was accepted, we found that
Utsumi et al. (2010) proposed an acceleration technique for face recognition. It turned out
that their proposal contained the y-truncation rule. To our best knowledge, however, the
order structure learning is exactly original.

This paper is organized as follows. In Section 2, we propose a new acceleration tech-
nique for boosting classification. Section 3 illustrates the performance of our proposal by
simulations. In section 4, we apply our proposal to a face detection system. Section 5
describes the conclusion and the future work.

2. Acceleration technique

We propose an acceleration technique for boosting classification by learning from a data
set.
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2.1. Setting

We introduce some notations to describe our setting. Let 2 C R? and # := {—1,1}.
Suppose that we are given a boosting classifier g(x) for a classification task in which one
has to predict a label y € # of a given input x € 2. The boosting classifier takes the
following form:

g(x) :=sign(F(z)), F(z):=afi(z) +ozfo(z)+-- arfi(), (1)

where o; € R4 and fj(x) is any types of weak classifier for each j. Note that each f;
also takes its value in {—1,1} and that sign(z) is defined as a function taking 1 if z > 0
and 0 otherwise. The function F(x) is called a discriminant function. The classification
result of boosting classifier is decided by the sign of discriminant function F'(x). Taking
into account that only 1 CPU is available, we postulate that weak classifiers in F'(z) is
sequentially evaluated in the order in Eq. 1. Thus, F' corresponds to not only a function
of & but also its representation as a list (ordered sequence) (aqfi,asfa, -+, fy). Let
us write a computational cost to evaluate F(x) as C(x; F). Assume that the test data
to be classified are subject to the distribution p(x). Note that p(x) is not necessarily the
same with the distribution of training data used for boosting. Our goal is to reduce the
average computational cost E,,)[C'(X; F')] as much as possible without loss of classification
accuracy when we are given F'(z) and a set of samples D := {x1,x9,- - ,x,} generated from
p(z). To our knowledge, this kind of problem is somewhat new to a field of machine learning.

2.2. y-truncation rule

In this section, we introduce the first acceleration technique. The idea is so simple. To
decide the sign of boosting discriminant function F'(z) = Z‘le a; fj(x), one needs not to
evaluate all weak classifiers {f;(z)} in general. To explain this, we introduce the following
notations for each integer M € {1,2,---,J}:

B M
Fu(z) = Y a;fi()
j=1

J

Fu(z) = Y ajfi(z)

j=M+1

Suppose a situation that we evaluated the first M weak classifiers at a fixed x. That is, we
have the value of F'js(x). If the condition

J
Truncate Condition: |F(x)| > max |Fas(2')| = Z a; (2)
e Piyyat)

holds, then it clearly holds that sign(Fj;(x)) = sign(F(z)). Therefore, we need not to
evaluate the remaining weak classifiers {far41(z), farse(x), -, fs(x)}. Besides, we need
not to calculate Z}]: 141 @ of the right-hand side of Eq. (2) in detection because this
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quantity can be calculated for every M in advance and kept in memory. Define the minimum
of integers satisfying the truncate condition as y(z, F), i.e.,

J
Y@, F) :=minq M € {1,2,--- ,J} | Fa(z) > Y o5 . (3)
j=M+1

We refer to y(z, F) as “minimum evaluation number” at z. For each z, we need to eval-
uate only the first vy(z, F') weak classifiers. Then, the classification result is obtained as
sign(F,y(x, F) (x)). We refer to this method as «-truncation rule. Clearly, y-truncation rule
causes exactly no loss in classification accuracy compared to g(z). Now, we define a compu-
tational cost C'(x, F') as the number of evaluated weak classifiers (ignoring a difference of the
computational cost among weak classifiers). Then, as for the usual boosting classification,
C(x, F') is always J so that the average computational cost E,)[C(z, F)] is also J while
Epy[v(z, F)] for y-truncation rule, which is smaller than J in general.

2.3. Order structure learning

In this section, we propose one more acceleration technique. In ~-truncation rule, the
minimum truncating number 7 (z, F') depends on z and the order of weak classifiers in F'.
Thus, our second proposal is to optimize the order of weak classifiers such that ~(z, F')
is minimum on the average with respect to p(z). To explain this, let us introduce some
notations. Let ¢ be a set of all permutations of {1,2,---,J}, i.e.,

Ho={k:{1,2,---,J} = {1,2,--- ,J}| k is one-to-one correspondence}.

For each k € 2, a discriminant function F' ordered by k is denoted by
J
FH(x) =) ony fip) (@)-
j=1

Our goal is to learn the order of weak classifiers as minimizing FE,,[y(w, F')]. Since p is
unknown, we consider its empirical estimates defined by

n

D(F) = =3 y(ai, F).

n-
=1

We refer to I' as “averaged minimum evaluation number.” Our second proposal is to learn
the order of weak classifiers as minimizing I, i.e.,

k := argmin T'(F*). (4)
kex

We refer to this algorithm as an order structure learning (OSL) in the sequel. If one wants
to optimize by the brute force search, the evaluation of I' should be done J! times. When
we use a PC, this can be done at most for J = 15. Thus, we propose an approximation
algorithm using transposition for search task. Let .# be a set of all transpositions:

7 = {k(]LjQ) |j17j2 € {1727 7']}}7
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where
2 J=n
k(ji,je) g v G=1J2
j otherwise
The composite map of two transpositions ki, ks € # is denoted by ki - ko. We further
define a set of all permutations which is realized by a composite of ¢ transpositions:

7(q) = {kl ko - --kq WE, ke € y}

Using these notations, the proposed algorithm is described in Algorithm 1. The number ¢

Algorithm 1: Approximating algorithm OSL(q)

Input: F(:g), g, D, initial order z € ¥
Output: k

1. Initialize kg := z.
2. Fort=1,2,---,

(a) Search k' := argming ) I'(F k-ki-1) exhaustively.
(b) Set k‘t = k/ . k’tfl.
(¢) If D(Fk=1) = D(F*t), then output k := k, and halt. Otherwise, back to (a).

should be chosen as large as possible unless OSL(q) does not finish in practical time. This
algorithm is a sort of hill-climbing optimization and the obtained solution can not be a
global minimum for some initial orders. We investigated the dependency on initial order
by some numerical experiments. As a result, the choice of initial order did not affect the
acceleration performance much but affected the convergence speed to some extent. Taking
this into account, we prepare two candidates of initial order z. One is an decreasing order
with respect to the weights {c;}. The other is just an order chosen by boosting. These
orders are somewhat effective and close to the optimal order in some cases because the
truncate condition is likely to hold. Starting from these initial order, OSL is expected to
converge with relatively fewer steps.

Finally, we emphasize that OSL is an unsupervised learning because OSL does not
require the label information in its training process. This allows OSL to treat covariate shift
situation. Suppose that the training data D7} := {(«},v)|i = 1,2,--- ,n} to construct a
boosting detector are generated from p’(x)p(y | ) and the test data in detection is generated
from p(z)p(y|z). Covariate shift indicates that p # p’. In this case, it is not guaranteed
that the above initial orders are close to optimal. Generally, it is much easier to collect
the unlabeled data (i.e., only z) than the labeled data (i.e., a pair of x and y), as is often
said in semi-supervised learning. Thus, it is possible that some unlabeled data Dy :=
{x1,22, - ,z,} generated from p(x) are available. Since OSL is unsupervised learning,
OSL can be trained with Dy. Therefore, OSL can optimize the order taking a target
distribution p(x) into account.
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3. Simulation

We illustrate the performance of our proposal by two simulations.

3.1. Simulation 1

To illustrate the performance of ~v-truncation rule and OSL, we did a simple simulation
according to the following procedure.

1. Construct a discriminant function F*(z) with 50 different weak classifiers (z € R?).
Its shape is shown in Fig. 2. In this F*(x), few weak classifiers (group 1) have large
coefficients, while the remaining weak classifiers (group 2) have small coefficients.
In the region R;, only group 1 classifiers are evaluated because v-truncation rule is
applied. In Ry, however, each output of group 1 classifiers cancels out one another.
Therefore, we need to evaluate group 2 weak classifiers. Thus, we can speed up the
classification in Ry more than Rs. (See also Fig. 3).

2. Let fi(z) and f2(z) be uniform distributions in R; and Rg. The marginal distribution
of x is defined as

f(x;p) == pfi(z) + (1 - p)fa(2),

where p € [0, 1] is the occurrence probability of x € R;.

3. The conditional distribution of y is defined as

fly|x):= 1eii(x2§(/§;'£i)n))) with 3’ :== (y +1)/2.

4. For each p =0.1,0.2,--- |1,

(a) Generate 2000 i.i.d. samples Dy, := {(z;,y;) |7 = 1,2,---,2000} from the joint
distribution f(z,y;p) = f(z; 8)f(y| ).

(b) Construct a discriminant function F' by AdaBoost with Dy..

(c¢) Learn the order structure by OSL(2) with the z-part of D,.

(d) Generate D} similarly to Dy and calculate the averaged minimum evaluation
number I' for the three orders, say, the weight decreasing order, the boosting
order and the order learned by OSL.

See the bottom of Section 2.3 for the definitions of weight decreasing order, and the boosting
order. If there is a weak classifier appears more than one time, then their weights are
summarized into that of first weak classifier in preparing these two orders.

The right panel of Fig. 3 shows the results. As p approaches to one, the classification
cost is reduced to a half. This is because as the data distribute in Ry with larger probability
as p gets larger. It is easy to see that only the y-truncation rule with initial orders (weight
decreasing order, boosting order) works well to some extent. However, OSL succeeds in
reducing the classification cost by 10% more when p is large.
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[RAE!

Figure 2: Plot of F*(x). The zero height (F(x) = 0) is just the center of z-axis.
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Figure 3: Simulation 1: the left panel shows a plot of the training data Dy, while the right
panel shows a plot of averaged minimum evaluation number I' against p, the
occurrence probability of region Rj.

3.2. Simulation 2

Next, we assume covariate shift situation. First, we construct a boosting classifier F'(z) in
the same way with the previous section with p = 0.5. Then, OSL is done with the following
procedure:
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1. Generate 2000 i.i.d. samples Dy := {z], xh, -, by} from a distribution

p(z) = gN(:L’;,ul, 0.31) + gN(x; p2,0.3I) 4+ (1 — p)N(z; s, 0.31),

where N (z;pu,Y) is a normal distribution with mean p and a covariance matrix X, I
denotes an identity matrix, u1 = (3,3)7, uo = (=3, -3)7 and puz = (3, -3)7.

2. Learn the order structure by OSL(2) with Dy.

3. Generate Dy; similarly to Dy and calculate the averaged minimum evaluation number
I" for the weight decreasing order, the boosting order and the OSL order.

X2
0
1
-
~—
S|
=
N

Voo
M
~
~

— OSL order
== weight decreasing order
Q] *+++ boosting order
N N

*=* notruncation

4 2 0 2 4 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Plot of average minimum evaluation number I' against p in simulation 2.

The data Dy are plotted in the left panel in Fig. 4. As seen in the right panel in Fig.
4, y-truncation rule with the weight decreasing order and the boosting order are improved
by OSL for any p. In covariate shift situation, it is not guaranteed that these initial order
is close to the optimal order in general. The reason is simple. Clearly, the optimal order
satisfying Eq. (4) depends on p(z) strongly. Even when p(x) varies, if we have unlabeled
data Dy, then OSL learns the nearly optimal order. However, both the weight decreasing
order and the boosting order are fixed when F'(x) is fixed. Thus, OSL is indispensable in
covariate shift situation.

4. Application to face detection

In this section, we apply our acceleration technique to an existing face detector. First, we
review one of current face detectors, which is a variant of Viola and Jones (2001). Second,
we propose a slight extension of our acceleration technique to apply it to this face detector.
Third, we observe by experiments how much is the face detector accelerated by our proposal.
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4.1. Conventional face detection

In this section, we briefly review the conventional face detector. Many current face de-
tectors originated from an celebrating work by Viola and Jones (2001). We refer to their
face detector as VJ face detector in short. VJ face detector consists of multiple classifiers
{g1(x),g2(x), -+, gn(x)} with a cascade structure illustrated in Figure 5. When an input

input—% gl(x) > g2(x) >0 06 06 ——> o5(x) » face

1 1 1
A\ v v

‘ non face ‘

Figure 5: Cascade structure of boosting classifiers. The solid arrow adjoined with each
classifier g;(x) indicates that g; judges = as “face”, while the dotted line indicates
that g; judges as “non face”.

subwindow is given, classifiers are evaluated sequentially. Only a positive result (judged as
face) of the previous classifiers triggers the next classifier. In other words, a negative result
(non face) of any classifier truncates the evaluation and the final judgement is negative.
Each classifier is trained by AdaBoost (Freund and Schapire, 1997) with decision stumps
as weak classifiers with Haar-like features (Papageorgiou et al., 1998).

Viola and Jones (2001) provided a fast algorithm to calculate Haar-like features. Their
most important contribution is the introduction of the cascade structure. In the cascade
structure, each boosting classifier is designed such that the former classifier is computation-
ally simpler and has higher detection rate. For this purpose, boosting algorithm is quite
suitable because it enables us to control the computational complexity easily by tuning the
iteration number. As described in Section 1, an image of digital cameras usually contain
only few faces so that a majority of subwindows are non faces. VJ face detector rejects such
non face subwindows quickly by the former classifiers (of low computational cost) without
many errors (high detection rate). As a result, VJ face detector is approximately 15 times
faster than previous face detectors while keeping the detection rates comparable with them.

In this paper, we employ a similar but different face detector by Lienhart and Maydt
(2002a) (referred to as a LM face detector). There are two reasons. One reason is that their
implementation is open at Lienhart and Maydt (2002b) so that it is somewhat widely used.
In addition, conventional face detectors involve many parameters to be tuned manually in
general. The details of such parameters are usually not described. Their code offers such
informations so that comparisons can be made. Another reason is that LM face detector
is an improved version of Viola and Jones (2001). The differences between them are the
following three points:

(i) features: In addition to Haar-like features used in VJ face detector, LM face detector
employs a rotated version of Haar-like features to achieve higher detection rate.
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(ii) boosting algorithms: In stead of AdaBoost, LM face detector employs Gentle Ad-
aBoost (Friedman et al., 2000), which is often more stable than AdaBoost.

(iii) weak classifiers: Instead of decision stump, LM face detector employs a decision tree.
As a result, Lienhart and Maydt (2002a) reported that they succeeded in reducing
the computational cost with a competitive classification accuracy.

By modifications (ii) and (iii), a discriminant function of LM face detector takes a form
similar to but different from that of AdaBoost. In case of AdaBoost, F'(z) in Eq. (1)
consists of a linear combination of (£1-valued) weak classifier f;j(x) and its linear coefficient
a;. In LM face detector, F'(x) consists of a sum of decision trees of depth 1 (without linear
coefficient). That is, F'(x) takes a form:

J
F(z):= ij(x),

where f;(x) takes not only —1,1 but possibly any two real values {¢;, u;} decided by CART
(Breiman et al., 1984). To apply to this discriminant function, y-truncation rule needs to
be modified slightly.

4.2. Extension of y-truncation rule

In this section, we extend ~-truncation rule. As described in the previous section, F'(x)
used in LM face detector consists of

J
F(x) = ij(x),where fj(x) takes {{;,u;}.
j=1

Thus, y-truncation condition in Eq. (2) should be modified as follows. Define the following
notations again:

M J
Fu(w) =Y fi(x), Ful@) = Y fi).
j=1 j=M+1

The truncate condition is written as F 7 () +minge o~ F/(2') > 0 or Fpy(z)+maxy e o F(z) <
0. Note that

J J
min Fy(z) = Z min{éj, u;}, max Fas(z) = Z max{{;,u;}.
=M1 j=M+1

Thus, truncate conditions should be

J
Fy(z) > — Z min{¢;, u;} (5)
J=M+1
B J
Fuy(z) < - Z max{{;,u;}. (6)

j=M+1

If Eq. (5) holds, then sign(F'(x)) is exactly positive, while sign(F(z)) is exactly negative if

Eq. (6) holds regardless of Fi/(z).
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Table 1: The evaluation number of weak classifiers in the whole process of face detection.
LM face detector indicates evaluating all weak classifiers in each stage.

LM face detector the boosting order OSL
total evaluation number 314,270,657 277,023,438 248,739,106

4.3. Experiments

In this section, we apply our acceleration technique to LM face detector Lienhart and Maydt
(2002b). LM face detector consists of 25 boosting classifiers in the cascade. A left panel of
Fig. 7 provides the information how many weak classifiers each boosting classifier consists
of. The initial size of subwindow is 40 x 40 and is enlarged by 11% up to the whole image
size. The subwindows moves by the pixels of expanding magnification from the initial size.

We applied the proposed acceleration technique to each stage (boosting classifier) in the
cascade. OSL was done by training data (948, 139 subwindows) that were chosen randomly
from a benchmark data set made by (Rowley et al., 1998). We chose 120 images (7, 190, 806
subwindows) from CMU Profile Face Images (Schneiderman and Kanade, 2000) as the test
data on which we evaluated the averaged minimum evaluation number I'. Some examples of
test data images are shown in Fig. 6. We remark that we cannot specify which training data
are used for constructing the boosting classifiers. This implies a covariate shift situation.
The results are shown in Fig. 7. The right panel in Fig. 7 shows that ~-truncation rule

Figure 6: Some examples of images in CMU Profile Face images.

with OSL order decreases the classification cost of each stage by around 20%. It is observed
that y-truncation rule with the boosting order performed poorly in many stages. Under
covariate shift situation, the boosting order does not perform enough so that OSL is quite
necessary, as was already confirmed in simulations. We did not use the weight decreasing
order because each weak classifier in LM face detector has no weight. It is also observed
that the latter stage has the larger acceleration. In general, our acceleration technique
improve the classification cost if the number of weak classifiers is large. In the cascade, the
latter classifier contains the more weak classifiers. To see the effectiveness of acceleration
in the whole, we need to count how many subwindows are received by each stage. It is
seen in Fig. 8 that a majority of subwindows are rejected in the early stages. Based on
this information, the evaluation number of weak classifier in total is summarized in Table 1.
The total classification cost is also reduced by around 20% compared to LM face detector.
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Figure 7: Results of experiments: the left panel shows the plot of I' for each stage (classifier
gi(x)) in the face detector cascade. The right panel shows the same plot of a
normalized average minimum evaluation number divided by the number of all
weak classifiers in each stage.
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Figure 8: Plot of how many subwindows are received by each stage (classifier g;(z) in the
cascade.
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5. Conclusion and future work

We have proposed a new acceleration technique for evaluating the boosting classifier. This
technique has no loss in classification accuracy. In application to the existing face detector,
we achieve 20% decrease in classification cost.

An interesting future work is admitting a small loss in classification accuracy. By this,
more acceleration would be possible. A more interesting future work is learning the order of
all weak classifiers beyond the cascade structure. The cascade structure works significantly
well but it is quite heuristic method. Another way is to construct a strong complicated
boosting classifier and to learn the order structure by our proposal. This way is more
adaptive to data and is expected to perform better with respect to the tradeoff between
classification cost and accuracy.
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