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Abstract

Outliers usually spread across regions of low density. However, due to the absence or
scarcity of outliers, designing a robust detector to sift outliers from a given dataset is still
very challenging. In this paper, we consider to identify relative outliers from the target
dataset with respect to another reference dataset of normal data. Particularly, we em-
ploy Maximum Mean Discrepancy (MMD) for matching the distribution between these
two datasets and present a novel learning framework to learn a relative outlier detector.
The learning task is formulated as a Mixed Integer Programming (MIP) problem, which
is computationally hard. To this end, we propose an effective procedure to find a largely
violated labeling vector for identifying relative outliers from abundant normal patterns,
and its convergence is also presented. Then, a set of largely violated labeling vectors are
combined by multiple kernel learning methods to robustly locate relative outliers. Com-
prehensive empirical studies on real-world datasets verify that our proposed relative outlier
detection outperforms existing methods.

Keywords: Relative novelty detection; Maximum Mean Discrepancy; Mixed Integer Pro-
gramming; Multiple Kernel Learning

1. Introduction

Outlier detection refers to some observations that appear to be inconsistent with most of the
set of data. These inconsistent observations are often regarded as novelties, outliers, anoma-
lies, exceptions, contaminants, aberrations or contaminant in different applications (Chan-
dola et al., 2009; Markou and Singh, 2003). Outlier detection has been extensively used in
a wide variety of applications, such as in bioinformatics, the outliers come from abnormal
patient conditions, instrumentation errors, and disease outbreaks in a specific area. Due to
its popularity, this line of research has attracted lots of attentions.

In practice, obtaining labeled data of diversified novel behaviors is often prohibitively
expensive. For example in the fault detection for aircraft engine, it is too costly to get
outlier instances. Due to lack of prior knowledge for various novel behaviors, traditional
outlier detection approaches fall into the category of unsupervised learning, such as the
well-known One-Class Support Vector Machine (OCSVM) (Schölkopf et al., 2000). But
this kind of methods fail to make use of the labeled data, especially large amount of normal
instances. Considering this, several works (Gao et al., 2006; Blanchard et al., 2010; Wu
and Ye, 2009) proposed semi-supervised and supervised algorithms for outlier detection.
Because of making use of labeled instances, this kind of semi-supervised/supervised outlier
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detection techniques often outperform the traditional unsupervised methods. However, the
novel instances are quite limited, and the novel behavior is often dynamic in nature, e.g.,
new types of novelties might arise, for which there is no available labeled outliers for training.
For instance, in the network intrusion detection, the nature of outliers keeps changing over
time as the intruders adapt their network attacks to evade the existing intrusion detection
solutions. Thus, the semi-supervised models, which learn from known kinds of outliers, do
not fit for the practical requirements, and also fail to detect unknown kinds of outliers.

Considering that abundant normal instances are often easy to get, Smola et al. (2009),
Kanamori et al. (2009) and Hido et al. (2008) proposed to use both the labeled normal
instances (source domain) and unlabeled set (target domain) to predict the outliers in the
target domain. This setting is more practical than the former unsupervised and semi-
supervised outlier detection. In order to avoid the density estimation of normal instances,
which is a well-known challenging problem in outlier detection, these models estimate the
density ratio instead of density. However, estimating density ratio is still difficult, especially
on high dimensional problems. As aforementioned, outliers are diversified and dynamic, and
these outliers can still easily contaminate the estimate of density ratio. To completely avoid
density or density-ratio estimation, learning a hyperplane classifier, such as OCSVM, which
explicitly separates the outliers from normal instances, is more preferred. But this kind of
methods usually does not consider the information of available normal instances.

Based on above considerations, this work examines a new learning paradigm for hy-
perplane based outlier detection that we only have examples of normal observations in
a source domain, and have no labeled examples in the target domain. So in the source
domain it provides knowledge for normal instances, and in the target domain it becomes
unsupervised learning. In what follows, we transfer the knowledge from the source domain
to the target domain by identifying normal instances and outliers from the target unla-
beled dataset with respect to the reference dataset. Specifically, we use Maximum Mean
Discrepancy (MMD) (Borgwardt et al., 2006) as the matching criterion so as to minimize
the distribution difference between the two domains. Then, the selected normal instances
and outliers from unlabeled target dataset are used for training the outlier detector. These
two processes are seamlessly combined together to form a Mixed Integer Programming
(MIP) problem. To this end, we present an efficient algorithm, namely Maximum Mean
Discrepancy based Relative Outlier Detection (MMD-ROD), to solve a convex relaxation
of this MIP problem. Comprehensive empirical studies on real-world datasets verify that
our proposed MMD-ROD outperforms existing relative outlier detection methods.

2. Preliminaries and Related Work

In this paper, the transpose of vector/matrix is denoted by the superscript ′. Im ∈ Rm×m is
the identity matrix, and 0m,1m ∈ Rm denote the zero vector and the vector of all ones, re-
spectively. The operator � denotes the element-wise product between two vectors/matrices.

We suppose that a set of normal instances {xsri }mi=1 in the source domain Dsr under a
reference distribution q(x) (q for short) and another set of unlabeled instances {xtai }ni=1 in
the target domain Dta under the target distribution p(x) (p for short) are given together
with their corresponding label vectors ysr = [ysr1 , . . . , y

sr
m ]′ and yta = [yta1 , . . . , y

ta
n ]′, where
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xsri ,x
ta
i ∈ X and ysri , y

ta
i ∈ {±1}. Without loss of generality, we assume the class label for

normal instances is 1 and the class label for outliers is −1. We further denote y = [ysr ′ yta
′
]′.

2.1. Maximum Mean Discrepancy

Many parametric criteria (e.g. Kullback-Leibler (KL) divergence) have been used to mea-
sure the distance between data distributions. However, tedious density estimation is usu-
ally required as a prelude to estimate these criteria. To avoid such a non-trivial task,
we first review an effective nonparametric criterion, namely Maximum Mean Discrepancy
(MMD) (Borgwardt et al., 2006), which is used to measure the difference between two
data distributions based on the distance between the means of samples from the source
domain Dsr and the target domain Dta in the Reproducing Kernel Hilbert Space (RKHS)
H, namely:

MMDk(Dsr, Dta) = sup
‖h‖H≤1

(
Eq[h(xsr)]− Ep[h(xta)]

)
(1)

= sup
‖h‖H≤1

〈
h,
(
Eq[φ(xsr)]− Ep[φ(xta)]

)〉
H

=
∥∥Eq[φ(xsr)]− Ep[φ(xta)]

∥∥
H (2)

where Eu[·] denotes the expectation operator under a distribution u, and h(x) is any function
in H. The second equality holds as h(x) = 〈h, φ(x)〉H by the property of RKHS (Schölkopf
and Smola, 2002), where φ(·) is a nonlinear feature mapping of a kernel k, i.e., k(xi,xj) =
φ(xi)

′φ(xj). Asymptotically, the empirical measure of MMD in (2) is well-estimated by:

MMDk(Dsr, Dta) =

∥∥∥∥∥ 1

m

m∑
i=1

ϕ(xsri )− 1

n

n∑
i=1

ϕ(xtai )

∥∥∥∥∥
H

. (3)

2.2. Relative Novelty Detection

To learn a decision function h(x) for detecting novel instances in the unlabeled dataset
relative to the reference dataset, referred to as relative outliers, Smola et al. (2009) proposed

to estimate a truncation of log density ratio p(x)
q(x) by introducing a transfer function Tnv(·)

on the target unlabeled data:

Tnv(ζ) =

 ∞, if ζ > 0
ζeρ, if ζ ∈ [−e−ρ, 0]
−1− ρ− log(−ζ), if ζ < −e−ρ

(4)

for the f -divergence (Nguyen et al., 2008) to measure the difference between p and q:

Dφ(p, q) = sup
h

(
Eq[h(xsr)]− Ep[Tnv(h(xta))]

)
(5)

where ρ is a threshold, and Tnv in (4) is the Fenchel-Legendre dual of a truncated log
function φ. Essentially, they alter the symmetric MMD in (1) for measuring discrimination
between the two datasets under an asymmetric setting. Moreover, the norm constraint
‖h‖H ≤ 1 in (1) is replaced by a regularizer Ω(‖h‖H) to control the complexity of h(x). By
replacing the expectation operator in (5) with the empirical mean from the samples, the
decision function h(x) is learned by minimizing the following structured functional:

min
h

1

n

n∑
i=1

Tnv(h(xtai ))− 1

m

m∑
i=1

h(xsri ) + Ω(‖h‖H). (6)
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This is referred to as Truncated Kullback Leibler (TKL) divergence. However, as discussed
in (Smola et al., 2009), the resultant problem (6) is solved by expensive non-convex opti-
mization methods. Moreover, the estimation of h is still heavily affected by diverse outliers.

3. Learning to Locate Relative Outliers

In this section, we introduce our proposed Relative Outlier Detection method using Max-
imum Mean Discrepancy criterion, namely MMD-ROD, which identifies normal instances
and outliers from the target domains using a given reference dataset of normal instances;
meanwhile, it learns a decision function f(x) for outlier detection using the chosen normal
instances and outliers. And an efficient algorithm is also presented for MMD-ROD.

In Section 3.1, we first present an effective method, namely Normal Instance Matching
(NIM), to identify normal instances from an unlabeled dataset such that the distribution
of these normal instances becomes closer to that of another reference dataset of normal
instances. In Section 3.2, we employ NIM as the criterion to learn a hyperplane classifier
for detecting outliers with respect to a reference dataset of normal instances. Details of
the algorithm to solve this learning problem are depicted in Section 3.3 and Section 3.4.
Section 3.5 gives the prediction function of the relative outlier detector on unseen data. We
study the complexity of the proposed method in Section 3.6.

3.1. Normal Instance Matching via Maximum Mean Discrepancy

Since we have little knowledge on the outliers, and even if we have some outliers in our
training process, we may encounter other kinds of outliers, which are difficult and costly to
collect. On the other hand, normal instances are abundant and easily annotated without
much human effort, and it is relatively cheap to collect them. Thus, the setting with a given
reference dataset of these normal instances fits to practice. In what follows, we use this
reference dataset as the source to identify normal instances and outliers from an unlabeled
data in the target domain. To this purpose, we have to define a criterion for matching
the distribution between the two domains. As mentioned in Section 2.2, Maximum Mean
Discrepancy (MMD) in an asymmetric setting has demonstrated promising results to detect
relative outliers (Smola et al., 2009). However, their approach involves complicated and non-
convex procedures to estimate the density ratio of the target domain to a source domain.
In addition, density ratio estimation can be highly affected by diverse outliers, especially
on high dimensional problems. Instead of estimating the density ratio, here we explicitly
locate the relative outliers by introducing a vector of control variables d = [d1, . . . , dn]′

where di ∈ {0, 1} to indicate normal instances by 1 and outliers by 0. Assuming there are
ν fraction of outliers, from (3), this vector d can be obtained by minimizing:

MMDk(Dsr, Dta;d) =
∥∥∥ 1

m

m∑
i=1

ϕ(xsri )− 1

n(1− ν)

n∑
i=1

ϕ(xtai )dj

∥∥∥
H
. (7)

Note, ν can be deemed as a hyperparameter as in OCSVM (Schölkopf et al., 2000) and
TKL (Smola et al., 2009), which can be determined by validation procedures using artificial
outliers (Abe et al., 2006). In addition, when the actual outliers are chosen (i.e., di = 0)
in the unlabeled dataset, these outliers will be absent during computing the mean in (7).
Thus, the estimation of (7) is more robust than the traditional density or density ratio
estimation, in which their estimates are fairly sensitive to diverse outliers. Furthermore,
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when this measure tends to zero, this indicates that the distribution of the chosen normal
instances (i.e., di = 1) from the target domain would match that of the normal instances
in the source domain. Hence, this process is called Normal Instance Matching (NIM).

Here, we define a column vector s with N = m+ n entries, in which the first m entries
are set as 1/m and the remaining entries are set as −1/(n(1− ν)), respectively, and we also
let d̃ = [1′m d′]′. Thus, the square of the MMD criterion in (7) can be rewritten as:

MMD2
k(D

sr, Dta;d) = trace((K� d̃d̃′)S) = d̃′(K� S)d̃, (8)

where S = ss′ ∈ RN×N , and K =

[
Ksr,sr Ksr,ta

Kta,sr Kta,ta

]
∈ RN×N , and Ksr,sr ∈ Rm×m,

Kta,ta ∈ Rn×n and Ksr,ta ∈ Rm×n are the kernel matrices defined for the source domain,
the target domain and the cross-domain from the source domain to the target domain,
respectively. And each entry inside these kernel matrices is equal to k(xi,xj) = ϕ(xi)

′ϕ(xj).

3.2. Proposed Formulation

As mentioned in Section 1, to achieve good generalization on unseen data, a hyperplane
based classifier f(x) = w′ϕ(x) that separates outliers from normal data is desirable. More-
over, as shown in (Nie et al., 2011), learning the label of unlabeled data and the hyperplane
classifier together can achieve better generalization performance. In this subsection, we
present the proposed formulation for learning f(x) to detect relative outliers from an unla-
beled dataset Dta using a reference dataset Dsr of normal instances as follows:

mind minw ηMMD2
k(D

sr, Dta;d) + Ω(‖w‖) + C`(D,y;w) (9)

where η > 0 and C > 0 are tradeoff parameters. Ω(·) is any increasing function for
regularization, and `(·) is any convex loss function (e.g., (square) hinge loss, logistic loss,
etc). Moreover, D is a labeled dataset from the both domains (i.e., D = Dsr∪Dta), and we
also let yi = 2di− 1 such that yi = 1 represents a normal instance and yi = −1 corresponds
to an outlier. In particular, the resultant problem in (9) combines the objective of MMD
and the structural risk minimization so as to learn f(x) and d simultaneously. Furthermore,
we can use any convex loss function in (9), for simplicity, we just present the case of square
hinge loss here:

min
d

min
w,ρ,ξi

ηMMD2
k(Dsr, Dta;d) +

1

2
‖w‖2 +

C

2

N∑
i=1

ξ2i − ρ : yiw
′ϕ(xi) ≥ ρ− ξi, (10)

where 2ρ/‖w‖ represents the margin separating the normal instances and outliers. By
replacing the inner minimization in (10) by its dual, and using (8) with yi = 2di − 1, we
have

miny∈Y maxα∈A
η

4
(y + 1N )′(K� S)(y + 1N )− 1

2
α′
(
K� yy′ +

1

C
IN

)
α. (11)

where α = [α1, · · · , αN ]′, αi is the dual variable for each inequality constraint in (10) and
A = {α|αi ≥ 0, α′1N = 1} is the feasible set of α and

Y = {y|ysri = 1, ytai ∈ {±1}, yta′1n = n(1− 2ν)} (12)

is the feasible set of y. For a small ν, most of ytai ’s are +1, and so the outliers are rare.
However, due to integer variables of y ∈ Y, (11) is a MIP problem, which is compu-

tationally hard to be solved. To make it more tractable, one can follow the transductive
learning strategy proposed in (Joachims, 1999) to learn f(x) and y iteratively, resulting
in local solutions. Alternatively, one can use a semidefinite relaxation used in (Xu et al.,
2005) for approximating yy′, leading to a Semi-Definite Programming (SDP) problem with
O(n2) optimization variables, which is computationally expensive even for small datasets.
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3.3. Convex Relaxation and Cutting Set Algorithm

To avoid local minima or expensive SDP problems in solving the MIP problem in (11), we
resort to the recently developed label generating technique (Li et al., 2009b,a; Yang and
Tsang, 2011), which demonstrates superior performance and scalability of learning the label
on large-scale unsupervised datasets (Li et al., 2009b). We first present a convex relaxation
for (11) based on the minimax theorem in (Kim and Boyd, 2008), we arrive at:

min
µ∈M

max
α∈A

η

4

∑
t:yt∈Y

µt(yt + 1N )′(K� S)(yt + 1N )− 1

2
α′
( ∑
t:yt∈Y

µtK� ytyt
′ +

1

C
IN

)
α. (13)

The details of the above derivation are similar to the mixed integer problems in (Li et al.,
2009b,a; Yang and Tsang, 2011), and so are omitted here. This optimization can be deemed
as a Multiple Kernel Learning (MKL) problem (Rakotomamonjy et al., 2008), and the target
kernel matrix is a combination of |Y| base kernel matrices {K � ytyt

′}, each of which is
constructed from a feasible label vector yt ∈ Y.

Due to exponential number of possible labelings yt ∈ Y, the set of base kernels is also
exponential in size and so (13) is computationally intractable to be solved by existing MKL
techniques. Fortunately, not all the base kernels in (13) are necessarily active at optimality.
Only using a subset C ⊂ Y of them can well approximate the original optimization problem.
Therefore, we can apply the cutting set method (Mutapcic and Boyd, 2009) to seek active
base kernels in (13) and solve the reduced problem. Similar strategies have also been
employed in infinite kernel learning (IKL) (Gehler and Nowozin, 2008), in which the kernel
is learned from an infinite set of general kernel parameters, and so, MKL (with the kernel∑

t:yt∈Y µtK� ytyt
′) can be deemed as a variant of IKL. As a result, our algorithm enjoys

the same convergence. The whole algorithm is depicted in Algorithm 1.

Algorithm 1: Cutting set algorithm for MMD-ROD

Initialize α = 1
N 1N . Find the most violated y and set C = {y}.

while not convergent do
Run MKL for the subset of kernel matrices selected in C and obtain α from (13).
Find the most violated y and set C = y

⋃
C.

end

3.4. Finding a Violated y

Notice that, similar to IKL, finding the most violated base kernel (indexed by the labeling
yt) in the proposed MKL is problem specific and the most challenging part in cutting set
algorithms. Here, we will discuss how to explore the most violated base kernel to satisfy
the constraint of relative novelty detection in (12).

Referring to (11), to find the most violated y, we have to solve the following problem:

max
y∈Y

y′
(
K�αα′ − η

2
K� S

)
y − η1′N (K� S)y. (14)

We first define G = K�αα′ − η
2 (K� S) and h = −η1′N (K� S), (14) is simplified as

max
y∈Y

y′Gy + hy. (15)
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We further partition G and h as G =

[
Gsr,sr Gsr,ta

Gta,sr Gta,ta

]
and h = [hsr hta], respectively,

where sr and ta indicate the set of indices of data in the source and target domains,
respectively. By ignoring some constant terms, then (15) is rewritten as:

max
yta∈Y2

yta
′
Gta,tay

ta + byta, (16)

where b = 2ysr ′Gsr,ta + hta and Y2 = {yta|ytai ∈ {±1}, yta′1n = n(1− 2ν).
However, this is a concave QP and so cannot be solved efficiently. As discussed in

(Gehler and Nowozin, 2008), while the use of the most violated constraint may lead to
faster convergence, the cutting plane/cutting set algorithm only requires the addition of a
violated constraint at each iteration. Note, the approximation method used in (Li et al.,
2009b) cannot be applied here as (16) has an additional linear term. Hence, we propose an
efficient method in the following for finding a good approximation of the most violated yta.

3.4.1. Successive Approximation Method

Since ytai ∈ {±1}, the constraint yta
′
yta = n is implicitly enforced. Thus, yta

′
(Gta,ta +

$In)yta = yta
′
Gta,tay

ta + $n. We let nν = n(1 − 2ν) and A = Gta,ta + $In where $ is
sufficiently large such that A � 0 is positive definite. Similar to spectral relaxation (Ng
et al., 2001), we relax the integer constraints on ytai ’s, then (16) is reformulated as follows,

max
yta

yta
′
Ayta + byta : yta

′
yta = n, 1′ny

ta = nν . (17)

For 1′n, we define its null space as S (ProjS = M = In− 1
n1n1

′
n), and its range space as S⊥

(ProjS⊥ = In−M = 1
n1n1

′
n), where M = M′ = M2. Both S and S⊥ are finite-dimensional

subspaces of an inner product space V ⊂ Rn. According to (Hogben, 2007), each yta ∈ V
can be written uniquely as

yta = y‖ + y⊥, (18)

where y‖ ∈ S and y⊥ = nν
n 1n ∈ S⊥ such that 1′ny⊥ = nν and 1′ny‖ = 0. In addition, we

have y‖
′y‖ = n−y⊥′y⊥ = n−n(1−2ν)2 = β2, where β =

√
n(1− (1− 2ν)2) and ν ∈ [0, 1).

Since (17) is still a non-convex QP problem, it is computationally hard to directly
obtain or even update the solution in the space V . Fortunately, we observed it is easier to
update the solution in the space S. Based on this notion, we present an iterative algorithm
to solve (17). The idea is precisely the method of successive approximations (Horst and
Tuy, 1996; Xu et al., 2009), which is an optimization tool to progressively solve a linearly
constrained eigenvalue decomposition problem, and our method is the first work to consider
the quadratic function with a linear term in the objective function.

For a fixed ytak , we update y‖ in space S using the first order Taylor approximation of
the original objective. After that, y‖ is mapped to the original space V , and then we get a

better ytak+1. Specifically, for a fixed ytak , the approximation of (17) is:

max
yta
k+1

ytak+1
′
(2Aytak + b′)− ytak

′
Aytak : ytak+1

′
ytak+1 = n, 1′ny

ta
k+1 = nν . (19)

From (18), we can further simplify (19) as

max
y‖

y‖
′(2Aytak + b′) : y‖

′y‖ = β2, 1′ny‖ = 0. (20)
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Lemma 1 In each step, suppose ytak+1 = y‖k+1
+y⊥. Then y‖k+1

= β
2MAytak +Mb′

‖2MAytak +Mb′‖ is the

solution of (20).

Proof When 1′ny‖ = 0, which is equivalent to My‖ = y‖. Therefore, (20) can be reduced

to max
y‖

y‖
′M(2Aytak + b′) : y‖

′y‖ = β2, and its solution is y‖ = β
2MAytak +Mb′

‖2MAytak +Mb′‖ .

Hence, ytak+1 can be updated. This process is repeated until convergence. The whole
algorithm is depicted in Algorithm 2.

Algorithm 2: Successive Approximation of y

Initialize M = In − 1
n1n1

′
n, y⊥ = nν

n 1n, β =
√
n(1− (1− 2ν)2), k = 1 and set yta1 to a

proper initial solution.
while not convergent do

y‖k+1
= β

2MAytak +Mb′

‖2MAytak +Mb′‖ , y
ta
k+1 = y‖k+1

+ y⊥;

k = k + 1;
end

3.4.2. Convergence Analysis

Here, we will study the convergence behavior for Algorithm 2. We first show that the
update procedures in Algorithm 2 converges in a finite iterations. Then we verify the
solution satisfying the optimal condition of (17).

Lemma 2 The objective (17) is bounded by nλmax +
√
n‖b‖, where λmax is the largest

eigenvalues of A.

Proof By the eigen-decomposition, we have yta
′
Ayta = yta

′
UΛU′yta =

∑n
i=1 λi|(U′yta)i|2,

where λi’ are the eigenvalues, and λmax is the largest one among them. Because A is
symmetric, U is an orthonormal matrix, i.e. U′U = In. Then, we have yta

′
Ayta ≤

λmax
∑n

i=1 |(U ′yta)i|2 = nλmax. Besides this, since yta
′
yta = n, we have byta ≤ b

√
nb
‖b‖ . So

the proof is completed.

Theorem 1 Given the projection matrix M and the update rule, Algorithm 2 converges.

Proof From (19), we know that

2ytak+1
′
Aytak + bytak+1 ≥ 2ytak

′
Aytak + bytak ⇒ ytak+1

′
Aytak ≥ ytak

′
Aytak +

bytak − bytak+1

2
.(21)

Furthermore, with the positive semidefinite property of A we have (ytak+1 − ytak )′A(ytak+1 −
ytak ) ≥ 0. So it is obvious that

ytak+1
′
Aytak+1 ≥ −ytak

′
Aytak + 2ytak+1

′
Aytak . (22)
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Combining the inequality in (21), we obtain

ytak+1
′
Aytak+1 ≥ −ytak

′
Aytak + 2ytak

′
Aytak + (bytak − bytak+1).

Based on above the deduction, we obtain

ytak+1
′
Aytak+1 + bytak+1 ≥ ytak

′
Aytak + bytak . (23)

Then we know that the algorithm is monotonically increasing. And from Lemma 2, the
objective of problem (17) is bounded, so Algorithm 2 can surely converge.

Thus, the intermediate solutions ytak+1 in Algorithm 2 can progressively improve until
Algorithm 2 terminates.

Theorem 2 Algorithm 2 converges to a critical point of (17).

Proof We know that M = M′ = M2, 1′M = 0′ and yta = y⊥ + Myta ⇔ 1′ny
ta = nν . If

we let yta = y⊥ + Myta, the constraint 1′ny
ta = nν can be ignored. Then (17) becomes

max
yta

(y⊥ + Myta)′A(y⊥ + Myta) + b(y⊥ + Myta) : yta
′
M′Myta = β2. (24)

By omitting the constant terms in (24), we have

max
yta

yta
′
MAMyta + 2yta

′
MAy⊥ + bMyta : yta

′
Myta = β2. (25)

The Lagrangian function of problem (25) is yta
′
M′AMyta + 2yta

′
MAy⊥ + bMyta −

λ(yta
′
Myta − β2), where λ is the Lagrangian multiplier. Then the KKT conditions of

(25) becomes

2MAMyta + 2MAy⊥ + Mb′ − 2λMyta = 0 (26)

‖Myta‖ = β

The update rule ytak+1 =
β(2MA(ytak )+Mb′)
‖2MA(ytak)+Mb′‖ + y⊥ in Algorithm 1 is a continuous map on

yta. With Brouwer fixed point theorem, we know that there must exist some yta such that
ytak+1 = ytak. Thus, after convergence, the fixed point yta must satisfy

yta =
β(2MAyta + Mb′)

‖2MAyta + Mb′‖
+ y⊥.

On the other hand, with condition ‖Myta‖ = β and considering yta = y⊥ + Myta,

we know that Myta = yta − y⊥ = β(2MAyta+Mb′)
‖2MAyta+Mb′‖ = 1

2λ(2MAyta + Mb′) when λ =
‖2MAyta+Mb′‖

2β . In addition, Myta = 1
2λ(2MA(Myta + y⊥) + Mb′). Then we obtain

2MAMyta + 2MAy⊥ + Mb′ − 2λMyta = 0, which completes the proof.

From this theorem, we know the final solution ytak+1 in Algorithm 2 will satisfy the
optimality condition of (17). Empirically, Algorithm 2 converges in a few iterations. Finally,
similar to spectral clustering (Ng et al., 2001), we can apply standard rounding techniques
to the solution of (17) and get back an integer solution to (16).
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3.5. Prediction

It is worth noting that, the solution yy′ in (11) is relaxed to M =
∑

t:yt∈Y µtyty
′
t in

(13). When the optimal kernel in (13) is spanned by one base kernel, we can solve the exact
solution of (11). However, in practice, existing MKL algorithms return the solution spanned
by a few base kernels. Since the sign of labeling yt of MMC (Li et al., 2009b) is ambiguous,
the final cluster assignment can only be determined by using eigendecomposition on M.
However, in relative outlier detection, since most yi’s are +1, for new-coming instances, we
can use a predicting function as follows,

ypre = w′ϕ(x) =
∑
t

µt
∑
i

αiytik(xi,x) =
∑
i

αi
(∑

t

µtyti
)
k(xi,x),

which is the ensemble output from a set of largely violated yt’s. This prediction is more
robust than a single hypothesis for detecting relative outliers.

3.6. Complexity Analysis

Since the computations of MMD-ROD is dominated by solving MKL problems and finding
the largely violated labeling y, in this subsection, we mainly discuss the complexity of these
two components. Nowadays MKL techniques usually involve a series of SVM training,
and usually converges in a few iterations. Empirically, SVM takes O(n2.3) time and O(n)
space complexities, so the SVM training can scale for large datasets. Thus, solving MKL
problems is still very efficient. For finding the largely violated labeling problem, it involves
a few iterations of matrix vector product operations, which takes O(n2) time. So MMD-
ROD can work medium sized datasets. In order to improve the efficiency and deal with
large datasets, we can also use random feature mapping (Rahimi and Recht, 2007) instead
of computing kernel functions.

4. Experiments

In this section, we perform comprehensive empirical studies to evaluate several state-of-
the-art relative outlier detection methods including our proposed method in identifying
relative outliers on a collection of real-world datasets, which covers various characteristics
and application domains. The statistics of the real-world datasets are shown in Table 1.

Besides the USPS handwritten dataset, the other seven datasets are from UCI machine
learning repository. The first dataset is concerning credit card applications. The normal
instances are the approved customers. Due to various reasons, some customers are rejected,
which are set as outliers. In the DNA dataset, it is to detect splice junctions as exon/intron
boundaries (referred to as EI sites), intron/exon boundaries (IE sites) and neither of them.
We set the EI as the normal class, and the others are outliers. In the Ionosphere dataset,
radar signals pass through the ionosphere to detect free electrons in the ionosphere. The
normal instances are those showing evidence of some types of structure, and outliers re-
turned are those that do not. In the Segment dataset, the instances were drawn randomly
from a database of seven outdoor images. The images were hand-segmented to create a
classification task. We set the first class “brickface” and second class “sky” as normal in-
stances, and the other five classes as outliers. In the Ball-bearing dataset, the task is to
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distinguish new ball-bearings from bearings where abnormal race includes completely bro-
ken, broken cage, damaged case and worn bearings. The USPS dataset is a collection of
images for handwritten digit 1-9 and 0. We suppose the first five digits as normal instances,
and the last five as outliers. According to the Arrhythmia dataset, its aim is to distinguish
between the presence and absence of cardiac arrhythmia and to classify the ECG in one of
the 16 groups. Class 1 refers to normal ECG, and classes 2 to 15 refer to different classes of
arrhythmia and class 16 refers to the rest of unclassified ones. We set class 1 as the normal
class, classes 2-15 as novelties. For the Scene dataset, the images consist of six classes, like
Corel stock photo library and personal images. We use class ‘0’ and ‘1’ as normal instances,
and others as novelties.

Since the normal instances in some datasets, such as the USPS dataset, come from
several major classes, which are considered as multi-modal normal instances, and the other
classes as different outliers, which are multi-modal outliers. We also have some datasets use
one class as the normal instances. In this way, our experiments include different settings
such as one class vs several classes and several classes vs several classes. Hence, we can
evaluate the performances of different relative outlier detection methods under different
characteristics of datasets.

Table 1: Datasets used in the experiments.
ID Data # instances # Features

1 Australian 690 14
2 DNA 3186 180
3 Ionosphere 351 34
4 Segment 2310 19
5 Ball-bearing 4150 32
6 USPS 7291 256
7 Arrhythmia 420 287
8 Scene 1211 294

4.1. Compared Methods

We compare our proposed MMD-ROD with the following cutting edge methods in (rela-
tive) outlier detection: 1) Least-Squares Outlier Detection (LSOD) method (Hido et al.,
2008) 1; 2) Maximum Likelihood Outlier Detection (MLOD) method (Kanamori et al.,
2009) 2; 3)Truncated Kullback Leibler (TKL) divergence estimation (Smola et al., 2009);
4)Kullback Leibler(KL)divergence estimation (Smola et al., 2009) 3. Note that TKL and
KL are implemented in C++; while the other three methods including MMD-ROD are
implemented by Matlab. All experiments are conducted in a PC with 16GB memory and
the Intel(R) Core(TM) i7 CPU (2.80GHz).

For MMD-ROD, the C parameter is selected in a range of {0.001 0.01 0.1 1 10 100 1000}
and the η parameter is selected from {0 0.01 1 10 100 1000}. Based on the suggestion of
(Smola et al., 2009), the weight of regularization term λ is {0.001 0.01 1 10 100 1000}
in TKL and KL. Particular in TKL, the thresholded level ρ is selected from the range of
{0.001 0.01 0.1 1 10 100 1000}. According to (Kanamori et al., 2009; Hido et al., 2008), the

1. The software is available at http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/LSOD/index.html
2. The software is available at http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/MLOD/index.html
3. The source codes of KL and TKL are obtained from the authors.
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weight of regularization term λ is chosen from {0.001 0.01 1 10 100 1000} in LSOD, and
the number of kernels are among {10 50 100 150 200}.

Gaussian kernel is used in the experiments. In particular, the width σ of the Gaussian
kernel exp(−||z||2/2σ2) is picked via the range {0.25

√
γ, 0.5

√
γ,
√
γ, 2
√
γ, 4
√
γ} where γ

is the average distance from all pairs of instances. Following (Smola et al., 2009), we use
random feature mapping (Rahimi and Recht, 2007) to approximate Gaussian kernel to speed
up the training process of TKL and KL. From our experimental results, the performances
of LSOD and MLOD using the original leave-one-out cross-validation (LOOCV) are inferior
to those adopting artificial outliers for validation. For fair comparisons, we use artificial
outliers in validation for all comparing methods.

4.2. Experimental Setup

Here, 1/4 of the positive instances is for the target and source domains respectively, and
1/4 is for validation and testing sets respectively. To illustrate the robustness of different
relative outlier detection methods with varying ν, following the setup from (Smola et al.,
2009), we also set the outlier ratio as 2%, 4% and 8% for negative instances in the target
domain respectively, and the rest negative instances are used in the testing set. Moreover,
the same amount of artificial outliers as the normal instances are added into the validation
set. The artificial outliers here are created by using a uniform distribution U that is defined
within a bounded subspace whose minimum and maximum are limited to be 10% beyond
the observed minimum and maximum from the training data (Abe et al., 2006).

To evaluate the performance in detecting relative outliers, we follow (Smola et al., 2009)
to choose the Average Precision@k (AP@k) (Joachims, 2005) as the evaluation criterion for
performance measures. Note, AP@k means the mean of the precision scores obtained after
the k novelty instances are retrieved. Thus, AP@k also considers ranking information com-
pared with the traditional accuracy. The training, validation and testing set are randomly
generated and all the methods are evaluated by the average performance of 20 repetitions.

We evaluate the performances of all methods in two stages. We first remove the labels
for the target dataset, and use the validation dataset to choose parameters for each method.
After that, the prediction function is used to decide the labels for both the target and test
datasets (in the first and second stages, respectively). Then we measure the outlier detection
performances according to the true labels. Results for the target and unseen test set are
shown in Table 2 and Table 3 respectively. The best performance is listed in bold.

4.3. Analysis of Experimental Results

In the target datasets (TABLE 2), most of the instances are normal and only a few per-
centages are novel instances. Based on this setting, we compare the performance of differ-
ent methods. From TABLE 2, we observe that hyperplane-based outlier detection meth-
ods (MMD-ROD) outperform density estimation methods (LSOD, MLOD, TKL and KL).
MMD-ROD achieves 100% accuracy in all the eight datasets. Meanwhile, LSOD and MLOD
gain 100% accuracy in three datasets; while TKL and KL achieve this in one dataset only.
We also observe that MMD-ROD significantly outperforms other density-ratio based meth-
ods on the USPS dataset, in which there are multi-modal normal instances. It is possibly
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Table 2: AP@k (%) on various target datasets

Dataset Novelty ratio(%) MMD-ROD LSOD MLOD TKL KL

Australian 2 100.00±0.00 100.00±0.00 100.00±0.00 83.48±19.22 86.08±12.55
4 100.00±0.00 100.00±0.00 100.00±0.00 72.38±17.14 74.61±21.11
8 100.00±0.00 100.00±0.00 100.00±0.00 66.64±19.23 70.02±14.82

DNA 2 100.00±0.00 90.11±16.37 82.01±24.37 100.00±0.00 100.00±0.00
4 100.00±0.00 87.33±12.06 91.77±7.73 100.00±0.00 100.00±0.00
8 100.00±0.00 91.76±6.17 91.18±6.36 100.00±0.00 100.00±0.00

Ionosphere 2 100.00±0.00 100.00±0.00 100.00±0.00 97.50±11.18 97.50±11.18
4 100.00±0.00 100.00±0.00 100.00±0.00 92.71±18.23 100.00±0.00
8 100.00±0.00 100.00±0.00 100.00±0.00 97.33±5.25 94.90±12.56

Segment 2 100.00±0.00 100.00±0.00 100.00±0.00 96.56±10.70 97.92±6.55
4 100.00±0.00 100.00±0.00 100.00±0.00 96.19±9.22 97.94±9.23
8 100.00±0.00 100.00±0.00 100.00±0.00 99.07±2.35 95.75±6.58

Ball-bearing 2 100.00±0.00 85.13±10.04 88.14±11.36 99.47±1.77 97.04±6.80
4 100.00±0.00 92.15±4.72 90.70±7.10 98.97±1.83 98.65±2.55
8 100.00±0.00 93.72±3.60 93.09±3.29 98.41±2.66 98.63±2.30

USPS 2 100.00±0.00 71.47±19.72 66.81±25.12 83.54±20.83 82.13±17.24
4 100.00±0.00 63.53±21.14 66.35±15.29 78.68±21.52 62.81±14.16
8 100.00±0.00 74.43±8.37 72.95±10.83 68.87±12.00 66.29±10.57

Arrhythmia 2 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
4 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.17±3.73
8 100.00±0.00 100.00±0.00 100.00±0.00 96.67±4.72 96.34±6.53

Scene 2 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
4 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.17±3.73
8 100.00±0.00 100.00±0.00 100.00±0.00 99.63±1.64 97.16±5.67

because estimating the density ratio of normal instances is more challenging on multi-modal
problems.

In the second stage (TABLE 3), using the learned classifier from stage I, we detect the
new coming instance, and again, our MMD-ROD performs the best on seven out of eight
datasets. Moreover, we also observe that the generalization performance of MMD-ROD is
very stable across different outlier ratios. While the generalization performances of TKL
and KL degrade on four and five datasets respectively with decreasing outlier ratio on the
training sets. It is possibly due to the fact that the density ratio estimation in TKL and
KL is still sensitive to diverse outliers.

Here, we also provide an empirical assessment of the time complexity of different relative
novelty detection methods in Figure 1. There are the eight datasets sorted by their size
in the x axis, and the average training CPU time of the five methods is presented. The
time complexity of MMD-ROD and MLOD are the highest. Because MMD-ROD needs to
solve MKL problems, involving a series of SVM training (O(n2.3)), and the MLOD is also
time consuming. However, MMD-ROD is a kernel method, which is only sensitive to the
number of instance, but not to the number of features. The time complexity of LSOD is
better than above two methods; and TKL and KL are the best, which is due to the use of
random feature mapping. Moreover, TKL and KL are implemented in C++, but the other
three methods are implemented by Matlab. So the comparison between (T)KL methods
and other three methods are just for reference.
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Table 3: AP@k (%) on various unseen test datasets

Dataset Novelty ratio(%) MMD-ROD LSOD MLOD TKL KL

Australian 2 89.39±3.00 86.16±2.57 84.07±5.38 87.94±4.43 86.60±4.55
4 90.99±4.47 87.01±4.25 85.17±3.73 87.57±3.64 88.79±2.91
8 89.19±3.67 86.38±2.06 85.03±5.33 88.60±2.84 90.11±2.93

DNA 2 94.33±1.74 86.79±2.46 86.91±2.96 93.47±1.63 88.90±3.14
4 91.93±3.30 86.96±2.80 88.10±1.78 94.30±1.51 89.75±3.59
8 92.76±2.66 87.93±2.19 88.18±3.08 93.81±1.71 92.78±2.47

Ionosphere 2 97.41±1.38 91.03±7.17 94.97±4.15 84.33±2.53 83.32±4.27
4 98.72±1.12 93.70±5.50 95.37±4.99 83.71±5.29 83.35±5.48
8 97.18±1.33 91.62±7.50 93.76±7.74 87.52±4.21 84.86±5.12

Segment 2 98.98±1.09 97.24±3.61 97.53±6.07 81.11±6.78 85.52±8.43
4 98.22±3.98 96.78±4.11 98.65±3.68 89.06±6.43 86.43±7.58
8 99.43±0.43 96.36±3.94 97.29±4.43 94.11±3.38 89.58±6.23

Ball-bearing 2 98.62±0.38 97.36±1.38 89.62±3.59 98.25±1.08 97.73±2.06
4 98.95±0.35 96.97±1.29 90.78±3.90 98.90±0.67 98.59±0.98
8 99.25±0.39 96.68±1.55 90.11±4.19 98.95±0.73 99.09±0.64

USPS 2 91.88±2.54 87.22±2.82 85.12±3.28 82.39±2.90 83.57±3.09
4 93.69±1.99 88.47±1.86 84.51±2.55 83.72±3.44 83.72±3.73
8 94.82±1.74 87.35±2.32 83.66±3.24 87.24±2.37 86.45±2.72

Arrhythmia 2 86.59±3.47 85.22±2.26 79.76±9.50 75.60±6.31 72.33±6.46
4 85.52±4.65 84.47±2.69 79.74±9.61 74.90±5.33 73.59±4.90
8 84.69±4.29 83.61±2.23 82.00±8.58 73.38±5.95 74.86±5.42

Scene 2 85.75±3.75 80.61±4.24 80.90±3.95 81.54±9.41 80.67±3.96
4 87.07±4.92 79.81±4.42 80.83±3.61 83.60±8.09 82.52±8.59
8 85.75±4.37 81.52±3.27 81.90±3.33 86.63±4.47 85.21±5.96

5. Summary and Discussion

In this paper, we have cast the relative outlier detection problem as measuring the distribu-
tion difference between the target and source datasets. Particularly, we employ Maximum
Mean Discrepancy (MMD) in an asymmetric setting for matching the distribution between
these two datasets and present a novel learning framework to learn a relative outlier de-
tector. Since the resultant problem is in the form of a Mixed Integer Programming (MIP)
problem, which is computationally hard. To reduce this computational burden, we de-
velop an effective procedure to find a largely violated labeling vector for identifying relative
outliers from abundant normal patterns. Then, these largely violated labeling vectors are
combined by multiple kernel learning methods to robustly locate relative outliers. We also
present the convergence analysis for finding the largely violated labeling vectors. From
our empirical studies on real-world datasets, we show that our proposed relative outlier
detection outperforms state-of-the-art relative outlier detection methods.
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