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Abstract

The mapping kernel is a generalization of Haussler’s convolution kernel, and has a wide
range of application including kernels for higher degree structures such as trees. Like
Haussler’s convolution kernel, a mapping kernel is a finite sum of values of a primitive
kernel. One of the major reasons to use the mapping kernel template in engineering novel
kernels is because a strong theorem is known for positive definiteness of the resulting
mapping kernels. If the mapping kernel meets the transitivity condition and if the primitive
kernel is positive definite, the mapping kernel is also positive definite. In this paper, we
generalize this theorem by showing, even when we extend the definition of mapping kernels
so that a mapping kernel can be a converging sum of countably infinite primitive kernel
values, the transitivity condition is still a criteria to determine positive definiteness of
mapping kernels according to the extended definition. Interestingly, this result is also
useful to investigate positive definiteness of mapping kernels determined as finite sums,
when they do not meet the transitivity condition. For this purpose, we introduce a general
method that we call covering technique.

Keywords: kernel, discrete structure, alignment

1. Introduction

The mapping kernel (Shin and Kuboyama, 2008, 2010) is a generalization of Haussler’s
convolution kernel (Haussler, 1999), and is known to have a wide application range for
analysis of discrete structures such as strings and trees. A mapping kernel is defined by

K(x,y) = Z ’Q(’Yw(w/%f}/y(y/))a

(2'y")EMa,y

where M, , and x are a finite set and a kernel. Shin and Kuboyama (2008) showed that
K is positive definite for any positive definite x, if, and only if, the family of finite sets
{M,y | z,y € X} meets the certain condition referred to as transitivity (Definition 2 and
Theorem 3). Although this result is significantly useful to design positive definite mapping
kernels for various structures, it still has a couple of constraints. First, the constraint that
M, ,, should be finite will be an obstacle to extend the result to the continuous applications.
Secondly, it is also a fact that a mapping kernel can become positive definite for a non-
transitive {M, ,} and/or a non-positive-definite x. As we will see in Section 4.2, we have
some important practical examples of this case. In this paper, we first show that Theorem 3

* A note

© 2011 K. Shin.



SHIN

by Shin and Kuboyama (2008) can extend to the case where M, , is countably infinite
(Theorem 6). This not only relaxes the first constraint, but also is useful to address the
second problem. In fact, we present a method based on our covering theorem (Theorem 12),
a corollary to Theorem 6, with which we can investigate positive definiteness of mapping
kernels with non-transitive {M, ,} and/or non-positive definite x.

We start with a brief review of Haussler’s convolution kernel. Let X" be a space of objects
and X’ be a domain over which a kernel « is defined. To define an R-convolution kernel,
Haussler (1999) assumed a finite relation R € X' x X, and let

K(z,y)= > > I G

(517"'7£n7x)6R (7]1777]"L1y)6RZ:1

With respect to positive definiteness of R-convolution kernels, Haussler (1999) showed the
following theorem

Theorem 1 (Haussler (1999)) If ' is positive definite, K is also positive definite.

Shin and Kuboyama (2008) simplified this definition, and showed that any R-convolution
kernel can be derived from kernels determined by the following simpler formula

K@y = > &y

(a/,y") X, X X))

Both X, and Xé are finite subsets of X’, and are determined according to = and y. To
see how an R-convolution kernel can be derived from this formulation, we have only to
let Xa/: = {(&1,--, &) | (§15--.,&n,7) € RY, qu ={(m,....mn) | (m,....mm,x) € R} and
(&1, &n), (m, - ymn)) = Ty £ (&, m). Furthermore, since the formula determines
nothing other than R-convolution kernels with n = 1, Haussler’s theorem holds true for the
kernels determined by this formula as well.

Starting from the aforementioned simple formalization of the convolution kernels, Shin
and Kuboyama (2008) generalized the concept of the convolution kernel, and introduced
the mapping kernel. A mapping kernel is defined by the formula

Ky = Y  #&(@) @)

(xlvyl)EMI:y

In the above, M, , is a finite subset of X, x X, and 7, is an arbitrary mapping from A}, to
X’. The mapping kernel generalizes Haussler’s convolution kernel in two ways.

1. The range of the pair (z',y’) can be a subset M, , instead of the entire X, x Aj.

2. The set X, can be an arbitrary set not limited to a subset of A”.

In other words, the convolution kernel is the special case of the mapping kernel when M, ,
is A, x &, and 7, is an inclusion mapping (this implies that & is a subset of A”).

In addition, the family of sets {M,, | z,y € X'} are called a mapping system and
the triplet (X', k, {7, | © € X}) an evaluation system. An evaluation system is said to
be positive definite, if, and only if, x : X’ x X’ — R is positive definite. In relation
to positive definiteness of mapping kernels, Shin and Kuboyama (2008) introduced the
following important notion and theorem.
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Definition 2 A mapping system {M,, | z,y € X'} is transitive, if, and only if, the follow-
ing conditions are met

o If(«',y) € My, then (y',x') € My, holds.
o If (2/,y) € Myy and (y,7') € M, ., then (z,2") € M, . holds.

Theorem 3 (Shin and Kuboyama (2008)) The following conditions are equivalent.
1. The mapping system {My, | x,y € X'} is transitive.

2. For an arbitrary positive definite evaluation system (X', k,{v. | x € X'}), the mapping
kernel derived from it is positive definite.

One of the major advantages of using the mapping kernel template to design positive
definite kernels is due to this beautiful theorem regarding positive definiteness. In fact,
the mapping kernel has a wide range of application. Many string kernels in the literature
fall within this range. The spectrum kernel (Leslie et al., 2002) is a typical example. On
tree kernels, Shin and Kuboyama (2010) performed an exhaustive survey, and reported
that, 18 of 19 tree kernels of different types from the literature can be defined using the
mapping kernel template in a straightforward manner. The popular examples of tree kernels
of the parsing tree kernel (Collins and Duffy, 2001) and the elastic tree kernel (Kashima
and Koyanagi, 2002) belong to this category. Also, Zhang and Chan (2009) defined a new
tree kernel based on local alignments of subtrees, and proved its positive definiteness taking
advantage of the fact that it is a mapping kernel.

A remark that we should make here is that, although A and &} do not have to be
finite, Shin and Kuboyama (2008) assumed M, , being finite. This was to make mapping
kernels have definite values on one hand and to prove Theorem 3 on the other hand.

In this regard, this paper will generalize the mapping kernel template and Theorem 3
by eliminating this constraint of finiteness. In fact, we show that the condition that M, ,
must be finite is not necessary to have Theorem 3 hold. To be precise, if a mapping kernel
function converges to a definite value with countably infinite M, ,, the condition that the
mapping system is transitive is equivalent to the condition that the resulting mapping kernel
is positive definite for any positive definite evaluation system. This is the assertion of our
main theorem (Theorem 6).

This generalization can have important practical application in particular to deal with
mapping kernels with finite but non-transitive mapping system. In Section 4, we propose a
new technique, namely covering technique, to examine positive definiteness of such mapping
kernels taking advantage of Theorem 6. In Section 4.2, we see two examples to show how
this technique can work. In the first example, we convert the soft minimum version of
the well known Levenshtein string edit distance into a kernel. Although the resulting
kernel is a mapping kernel, the associated mapping system is not transitive, and hence,
Theorem 3 is not helpful to prove that the kernel is positive definite. However, thanks to
the covering technique, its positive definiteness turns out to be reduced to Theorem 6. To
be specific, we first expand the original mapping system {M, , } in a certain way, and obtain
a new mapping system {Mxy} The new mapping system becomes transitive but countably
infinite. Moreover, it is a covering of the original one in the sense that a surjective mapping
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from Mmﬁy to M, , is given. We view the kernel in question as a mapping kernel defined
over M,,, and prove that it is positive definite by Theorem 6. In the second example,
focusing on a different kernel, the time series kernel introduced by Cuturi et al. (2007), we
prove that the kernel is positive definite in a similar way to the first example. Since Cuturi
et al. (2007) proved the same result in a specific way, our proof is an alternative proof. The
value of our proof probably exists in that we could show that the problem can be dealt with
in a more general framework.

2. Extension to countably infinite mapping systems

The objective of this section is to introduce our main theorem (Theorem 6). We first see
some conditions for mapping kernels to converge with countably infinite M, ,, and then
show the assertion of Theorem 6. A proof to Theorem 6 will be given in Section 3.

2.1. Conditions for convergence
With a countably infinite M, ,, the kernel
K(l‘,y) = Z H(Pyr(x,)vay(y/))
(x’,y/)GMz,y

always converges to the same value regardless of the order of calculating the sum, if, and
only if, we have the following hold.

> k(e w )| < oo
(¢! y")EMz,y
This property is a direct consequence from Proposition 4.
Proposition 4 When {a;};cn is an infinite sequence of real numbers, the following condi-
tions are equivalent.

1. >, lai| < oo holds.

2. M = Zai>0 a; < oo andm=>_ a; > —oo hold.

a; <0
3. |Z§i1 ai(j)| < oo holds for an arbitrary bijection i : N — N.
Furthermore, we have Z]Oil a;(;y = M + m, when these conditions hold.

Proof Since the equivalence between 1 and 2 is evident, we see that 2 and 3 are equivalent
to each other. First, we show that 2 implies 3. By definition, for an arbitrary € > 0, there
exists an integer n. such that, for any n > n.,

M—e< Z aj <M and m < Z aj <m+e
j<n,a; >0 j<n,a;<0

hold. When we let N. = max{i~'(j) | j < n.}, for any n > N., we have

M-c< > apn<M and m< > g <me,

J<n,a;;y>0 J<n,a;;)<0
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and hence,

n
M+m—s§2ai(j) <M+m-+e.
j=1

To prove that 3 implies 2, we prove its contra-position. Without loss of generality, we
can assume M = oo, and then, we can define i : N — N such that

dYooowp =2 Y

for any n > 0. Evidently, > 7%, a;(;) diverges to oo. [ |

Even if Z;’il a;(j) converges with some bijective ¢ : N — N, the condition 1 or 2 of

Proposition 4 does not necessarily hold. In fact, when we let as,_1 = % and ag, = —%,
> o2, an = 0 holds. Nevertheless, we have
=1 > q
Zaizz,>/ —dx = lim Inz = oo.
- 1 1 €T Tr—00
a; >0 i=1

In general, if the condition 1 or 2 of Proposition 4 does not hold, the value of Z?:l a;(5)
can vary according to the order of taking sum, that is, i : N — N.

2.2. Main theorem
We first introduce the notion of converging evaluation systems.

Definition 5 We let {M,, | z,y € X'} be a mapping system such that My, is countable.
An evaluation system (X', k,{vz | * € X'}) is said to be converging with respect to { My},

if, and only if, 3= vnem, , 1K(02(2"), 7 (y'))] < oo holds.

By Proposition 4, the condition that an evaluating system is converging is necessary
and sufficient that the associated mapping kernel K(z,y) = > (v nen, , k(v (@), 1 (¥))
always converges to the same value and is well defined. Hence, our main theorem can be
described as follows.

Theorem 6 For a mapping system {M,, | =,y € X} such that M,, is countable, the
following conditions are equivalent.

1. The mapping system is transitive. That is, (2',y’) € My, implies (y',z") € My 5, and
(@', y') € Myy N (Y, 2") € My, implies (2,2") € M,_,.

2. For an arbitrary positive definite converging evaluation system (X', k,{vz | v € X'}),
the mapping kernel derived from it is positive definite.
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3. A proof to Theorem 6

In this section, we assume |X| < oo without any loss of generality. This is because positive
definiteness of a mapping kernel K is defined so that, for an arbitrary finite subset Xy € X,
the Gram matrix of K associated with Xy is positive definite.

3.1. 1 implies 2

Since M, , is assumed to be countable, we have an injective (one-to-one) numbering scheme
Ngy : My, — N. Furthermore, we let

M) = {(2',y) € May | nay((a',y) < n}.

To start with, we see the following preliminary proposition.

Proposition 7 If {M'(z,y) € X, x X | z,y € X'} and {M"(z,y) € &} x & | z,y € X}
are both transitive, then {M'(x,y) N M"(x,y) | z,y € X'} is also transitive.

Proof If (2/,y") € M'(x,y) N M"(z,y), both (¢y/,2') € M'(y,z) and (v',2') € M"(y,x)
hold, since {M'(z,y)} and {M"(z,y)} are transitive. (y',2’) € M'(y,x) N M"(y, z) follows.
In the same way, if (2/,y') € M'(z,y) N M"(x,y) and (v/,2") € M'(y,z) N M"(y, z),
(/,2") € M'(x,z) and (2/,2") € M"(z,z) hold, and hence, we have (2/,2") € M'(z,z) N
M (z,z).
The assertion of the proposition immediately follows. |

Lemma 8 will play a crucial role to prove that 1 implies 2.

Lemma 8 Assume X is finite and { My} is transitive. For any {Ma%) CEMyl|z,ye X}

such that |M:§7§)| < 00, a transitive mapping system {M,, | x,y € X} exists, and satisfies
Mﬁ;) CMyy S Myy and |Myy| < oo for Vo,y € X.

Proof Wej/eﬁne X C X by X, = {2/ | )W), y) € Mé@,} Siin/ce X and Mﬁ;)
are finite, |X',| < oo holds for Vor € &X. Also, it is evident that {X, x X, | z,y € A} is
transitive. Therefore, to show the assertion, it suffices to define M, = M, , N (?; X f;)
for Va,y € X. Its transitivity follows from Proposition 7. |

Now, we are ready to complete the proof of 1 = 2.

Since MS@) < n, we can apply Lemma 8 to {Mé? | z,y € X'} to obtain {M;n; | z,y €

X} {M;n; | z,y € X'} is transitive, and |M§3n;| < 00 holds. By Theorem 3,

@y = Y k(ula)y @)

(@ y)eM)

turns out positive definite.
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On one hand, M;,(;n;) - MQET;) for m < n and ;2 Mény) = M, , hold, and K(z,y) is a
point-wise limitation of K™ (z,y) = Z( L yeM) k(2 (x'), 1y (y")). That is to say,
z/, zy

K(z,y) = lim K™ (z,y)

n—oo

holds. On the other hand, M7} € B7\") implies

lim K™ (z,y) = li_)m F(n)(x,y).

n—00

Thus, K(x,y) turns out to be a point-wise limitation of positive definite kernels, and
therefore, we can conclude that K (x,y) is positive definite as well.

3.2. 2 implies 1

Since M, , is countable and X is finite, without loss of generality, we can assume that X, is
also countable. In fact, we can redefine X by X, = {2’ | 3(y)3(y)[(«’,y') € My,}. Hence,
we have an infinite increasing sequence of finite subsets of X such that

20 S C. . Cayand | =

T
n=1

In addition, we let
M) = My, N (X;W x Xy’(”)) .
With this setting, we have the following lemma.
Lemma 9 {M,, | z,y € X'} is transitive, if {Ma(;ny) | 2,y € X} is transitive for all n > 0.

Proof Assume (2/,y') € M,, and (v',2') € M, .. By definition, there exists an integer
n such that 2’ € X;(n), y € X;(n) and 2’ € le(n), and hence, we have (2/,y') € MJ%) and
(y,7) € Mén) (o', 7)€ Mé@ follows, since {Ma(f;)} is transitive. ]

To prove that 2 implies 1, we claim that, if M, , is not transitive, then there exists an
converging evaluation system (X', k, {7, | z € X}) such that  is positive definite but the
mapping kernel K derived from it is not.

By Lemma 9, {Mg%) | z,y € X'} is not transitive for some n > 0. Since ‘XCZ(”)‘ < 00, by
Theorem 3, we have a partial evaluation system (X', k, {7, | z € X'}) such that:

e The domain of definition of v, is Xé(n);

e x is positive definite;

_ ) Ny . .
o K(z,y) = Z(x’,y')erEf;} K(vz(2"), v(y")) is not positive definite.
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To complete the proof, we first add the null element @ to X’ and let x(e,&) = k(£,0) =0
for V¢ € X’. This modification to k does not harm its positive definiteness. Next, we expand
the domain of definition of v, so that v,(z') = e for 2/ € X\ Xx™  This modification does
not change the definition of the resulting mapping kernel. In fact, we have

> i@ W)= D s, w@)

(@ 9)eMey (') ML

Evidently, these modifications determine a positive definite converging evaluation system
that results in a non-positive-definite mapping kernel.

4. Covering technique

Theorem 6 enables us to investigate positive definiteness of mapping kernels, even if they
are defined over non-transitive mapping systems or with evaluation systems that are not
positive definite. In this section, we introduce a new technique, namely covering technique,
that fill the gap between Theorem 6 and such mapping kernels.

4.1. Covering theorem

In this section, we will see a technique to examine positive definiteness of a mapping kernel
when the mapping system {M, , | ,y € X'} is not transitive and/or the kernel x of the
evaluation system is not positive definite. Although Theorems 3 and 6 assert that, if a
mapping system is transitive, the resulting mapping kernel derived from a positive definite
evaluation system is always positive definite, they do not deny the possibility that map-
ping kernels with non-transitive mapping systems and/or non-positive-definite evaluation
systems can be positive definite.

In the following, we let {M,, S X; x Xy | 2,y € X} be a mapping system that is not

/
- y
such that each M, , is countable but not necessarily finite.

necessarily transitive and {M,, € y/x x X, | z,y € X} be a transitive mapping system

Definition 10 A mapping system {M, < ?; X T; | z,y € X'} is a covering of {M,, &
Xy x X | z,y € X}, if, and only if, there exists a family of mappings ¢ = {¢uzy | z,y € X'}
such that each @, is a surjective mapping from M, onto My,,.

In Definition 10, although M, , is not necessarily finite, the existence of M, , implies
that M, , is countable for Vz,y € X.

Definition 11 The pair of a mapping system M = {M,,, | z,y € X} and an evaluation
system & = ({7, | © € X}, X', k) is resolvable, if, and only if, there exist a transitive
mapping system M = {M,, C I; X Y; | 2,y € X} and a evaluation system € = ({7, |
T € X},?l,ﬁ) such that:

1. M is a covering of M;

2. R is positive definite and x(x',y’) = Z(i,g/)eﬂé((f,y,)) R(@,Y).
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Theorem 12 provides us with a method to cope with the problem to examine whether
a mapping kernel is positive definite when the associated mapping system is not transitive
and/or sub-kernels x is not positive definite.

Theorem 12 If the pair of a mapping system {Mg, | z,y € X'} and a converging evalua-
tion system € = ({7, | v € X}, X', k) is resolvable, the resulting mapping kernel is positive
definite.

Proof Let M and € be as defined in Definition 11. By definition,

Y. wl@y)= ) Y.  m@)|= Y, w9

(@'y") Mo,y (@"y")eMayy \(2,7)Epzy(x'y)) (.9 )EMa,y

holds, and the assertion of the theorem follows from Theorem 6. |

4.2. Examples

In this section, we see two examples where a mapping kernel defined over a non-transitive
mapping system is proved to be positive definite using the covering technique.

4.2.1. LEVENSHTEIN EDIT DISTANCE KERNEL

We start with a brief review of the well known Levenshtein edit distance for strings, and
then define a kernel which is tightly relating to it. The positive definiteness of the kernel is
proved taking advantage of the covering technique (Section 4.1).

We let 3 be an alphabet, and let « and y be strings over 3. Hence, x and y are elements
of ¥*, and an alignment of x and y is a two-row table to represent an edit script to convert x
into y. The following is an example of alignments when we let x =& ... & andy =n1 ... 17

SRS T - T & S 3
- m n2 — M3 N4 N5 — TNe Nr

The columns of an alignment determine a set of edit operations that comprise the edit
script that the alignment determines. Each edit operation is either deletion, insertion or
replacement of characters. An alignment determines an edit script as follows: A column
<§i> indicates deletion of &; A column (;) indicates insertion of 7;; A column <$’>

_ j J

indicates replacement of & with 7;; The column <_> must not appear. For example, the

edit script depicted by the diagram above deletes &1, &3 and &4, inserts 192,13, 74,15 and ng,
and replaces & and &5 with n; and ny.

Also, when we let ¥ = ¥ U {—}, each row of an alignment determines a string over .
Thus, an alignment is viewed as a pair of strings (z/,y') € ¥* x $*, and we let M, , denote
the subset of ¥* x ¥* that consists of all of the possible alignments from z to y.

Next, we see the definition of the cost of edit scripts and then that of the Levenshtein
distance. For an alignment o = (§~1 . .g,,, m...My) € * x 2%, the cost of the corresponding
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edit script o, is calculated by cost(oa) = 327, cost(§; — 7;), where cost(€ — 7]) represents
the cost assigned to the edit operation 5 — 7. Although the assignment of costs to edit
operations is not unique, a typical way to define cost(¢ — 7)) is to let cost(€é — 7j) = 1 — Oz -
For simplicity, we adopt this typical definition in this section. Finally, the Levenshtein edit
distance d(z,y) between z and y is defined by

d(z,y) = min{cost(o,) | @ € M, 4}.

Levenshtein edit distance has proved very useful to measure the similarity between strings.

Now, we will try to convert Levenshtein edit distance into a positive definite kernel.
By this, we would be benefited by taking advantage of the kernel-based classifiers such as
SVM. A common method to convert a distance d(z,y) into a kernel is to define the kernel
as e~ 14@Y) for v > 0. If Levenshtein edit distance were negative definite, the kernel derived
in this way would be positive definite. However, in the reality, this is not the case.

In order to obtain a positive definite kernel, we consider the soft minimum version
of Levenshtein edit distance. That is to say, we define a new distance by evaluating the
soft minimum of edit costs instead of evaluating their hard minimum. The soft mini-
mum of aq,...,a, is defined by —= log (>°i_, e 7%), and approximates the hard minimum
min{ay,...,a,}. In fact,

min{ai,...,a,} = ll)m —flog (Ze vab>

holds. The soft minimum has several advantages that would benefit us, and one of them is
that it is an analytic function in a1, ...,a,—_1 and a,. This is a clear contrast with the hard
minimum.

Thus, the soft minimum version of Levenshtein edit distance should be defined by

~ 1
d(%y) = _; log Z G_W.COSt(GO‘)
OLEMz,y

Hence, we apply the aforementioned method to convert this new distance into a kernel, and
define the kernel by

1

K(.%',y) _ e*W[*;log(ZaeMx’y e—w~cost(oa))] _ Z e_,ylcost(aa). (1)
a€EMy .y

The kernel K defined by Equation (1) is an instance of the mapping kernel. In the
following, we will formally determine a mapping system and an evaluation system for K.

e Since M, C >* x ¥* holds as described before, we let X/ = %* for all z € ¥* to view
{My,y | z,y € £*} as a mapping system.

e To determine the evaluation system (X', k, {7z}), we let X’ be * and v, : X, — X’
be the identity. Although the domain of definition of the function e~ <ost(?a) jg My,
it is easily expanded to X’ x X’ by taking advantage of the property of

e cost(oa) _ H e~ cost( &—)771 _ H 7’y<175§},ﬁ¢)
)

=1
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when o = (£, ...&,,71 ...7,). We can indeed define x : ©* x ¥* — R as follows.

¢ & v _’7(1_657;71') ; — -
k(€1 e M) = [liie n), o if = v
0, if p#v.

Now, we see that K is a mapping kernel.

To prove that K is positive definiteness, it might be helpful to take advantage of Theo-
rem 3. That is to say, if k is positive definite and the mapping system is transitive, we can
conclude that K is positive definite.

On one hand, it is easy to see e -cost(E—) 6_7(1_65777) is a positive definite kernel
defined over X, and positive definiteness of x follows.

On the other hand, the mapping system turns out not to be transitive. This is because,

even if (2',y') € My, and (v, 2') € My, hold, (2, 2") may include (:) as columns, and if
this is the case, (2, 2’) cannot be an alignment by definition. For example, in the following

example, (z/,y) or (v, 2") includes no (:), whereas (', 2) includes five <:)

g & &L - & - - - 4 - &
v - m m o~ m3 oma ms — M6 17
20 & - G - - - a6

Thus, we cannot rely on Theorem 3 in a straightforward manner to prove that K is
positive definite. Speaking the consequence first, the covering technique described in Sec-
tion 4 is effective, and Theorem 12 enables us to prove that K is positive definite. In the
remainder of this section, we will determine a covering {M, ,} of {M,,} and a positive

definite evaluation system (X', %, {¥,}) to show that {M, ,} and (X', K, {7,}) is resolvable.
To determine M, ,, letting X, = X! = ©*, we expand M, so that each (z',y') € My,

is obtained by adding zero or more of the column <_> to some alignment (z',y") € My ,,.

For example, the following (Z',4’) € M, is obtained by adding three <:> to (z/,y) in

the previous example.

- & &L - & - - - - &4 - - &

/

vyi—-— — m M2 - n3 — Mg N — N — N7

Contrarily, to determine the associated ¢, we define ¢, (&', 7') by eliminating all <_>

from (Z',7'). ¢uy(7',y') includes no <:>, and hence fall within M, ,. For example, the

aforementioned pair (z',4') € M, is evidently mapped to /(m’ ,Y') € My, by oy
To determine the positive definite evaluation system (X', %, {7,}), we let X be ¥* and
¥, : X, — X be the identity in the same way as for (X’, k, {7,}). What is left to define is
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the positive definite 7. We first introduce a new positive definite kernel A : & x & — R as
follows. ~
)\(é‘: ﬁ): {67 if (5777):(_7_)7
(1= e %) it (€,77) # (=, -).

A constant € is determined so that 1 > € > (1 — €)e”” holds, and hence, it is selected from
the interval [e™7/(14+€77),1). By this choice, A becomes positive definite. In fact, the Gram
matrix for A(£,7) — (1 —e€)e™" is such that all of the diagonal elements are non-negative and
all of the other non-diagonal elements are zero. Finally, when we define % over £* x ©* by

o (1— ) TT, M), if m=m;
E(fl...fm,ﬁl...ﬁy):
0, if m # n,

it is also positive definite.
Finally, to prove that the pair ({M;y}, (X', k,{72})) is resolvable, we claim

Z E(f,ay/) = ’%(xlayl)'

(j/7g’)€¢;ll,y,(gg”y/)
We will prove this claim. Let (2/,y') € My, = (&1...&,71...7,) and (Z,7) satisfy
0oy, y) = (2/,y). As two-row tables, (Z',y') can be obtained by inserting zero or more
of the column <:> to (2/,y'). Since (2/,3y’) has v columns, there are v + 1 positions in

(2',y") for the insertion. Hence, we have

00 v+l
> A =(-9 (Z A —)i) [[7E)

(f’,gj’)etp;l!y, (x’,y’) ZZO

v+1 v v
=(1—¢) (1 i 6) H A&, i) = 1_1677(1765”7”> = sz, y).
i=1 i=1

4.2.2. GLOBAL ALIGNMENT KERNEL FOR TIME SERIES

Cuturi et al. (2007) introduced an alignment kernel that is similar to the kernel introduced
in Section 4.2.1 but is different in the definition of alignments. This kernel is introduced
in relation to the well known Dynamic Time Warping (DTW) family of distance, and is to
handle time series such as speech data.

In the following, we see the definition of alignments for this kernel. We let X = ¥*.
Forxz =& ...§, and y = n1...7m, in X', we first consider a two-dimensional p x v lattice.
The left-bottom point of the lattice corresponds to (£1,71), and the right-top point does to
(&4my). An alignment between x and y is a path from (§1,71) to (§,,7,) such that the next
point of a point on the path is a point adjacent to the point in the lattice that is located in
the direction of either north, east or north-east of the point. The following diagram displays
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an example of alignments in the case of y =5 and v = 7.

& .
&4 T
&3 - =

) - 7

& —

mom2 M3 N4 N5 Me M7

Also, we can uniquely represent any alignment as a pair of strings of the same length.
In fact, letting z = &1...§, and y = n1...7m,, we determine (&) - -- i), M(1) - - - Mji(p)) SO
that (&;(x),7j(x)) is the k-th point of the path. For example, the alignment depicted by the

previous chart corresponds to (£1£1£282€3€3€38485, Mm2n3nanansnenznr). Thus, we define the
entire set of alignments between x and y by

M, = {(fz‘(l) i) M) M) |

1:_i(1)Si(%)---gi(p):m,lzj(l)§j(2)---§j(p):n,
iz <10)-6)-Q)} ¥

Then, the kernel in question is defined as a mapping kernel on this M, , as follows, when
a local kernel A : ¥ x ¥ — R is given.

p
K(ZL‘, y) = Z H fz(k n](k;

(&i(1)-Eilp) Mi(1) -+ (p)) EMa,y

Note that we let X = X’ = X, = ¥* and ~, be the identity.

For a reason similar to as seen in Section 4.2.1, this mapping system {M,, | z,y € X'} is
not transitive. Hence, we cannot rely on Theorem 3, to conclude that K is positive definite
even if A is positive definite.

To investigate when K is positive definite, we take advantage of the covering technique
again. Speaking the consequence first, we let X = X = f; = ¥* and 7, be the identity.

Furthermore, we define Mgw by

Me,. ey mm = {(&'(1) i) M) - M) |

1=1i(1) <i(2)---<i(p) =m,1=4(1) <j(2)---<j@) =n
Gl ={0)-()- )

By adding <8> to the last condition, {M,,, | z,y € X} becomes transitive.

The associated mapping ¢, , : Mz,y — M, can be defined as follows. If (52-(1) - Silp) M) - - -

includes more than one (&4, ) in it, that is, if i(k) = --- =i({) = a and j(k) = --- = j({) =
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b holds for ¢ > k, we eliminate ¢ — k of them, and leave one. By applying this operation
to all of the multiple occurrences of (§,,m), we finally obtain an alignment in M, ,. To
determine %, we assume that it is of the form

[T A&, mi), if m=mn;

’f(fl---fuafl--~§v):{0 if m#n

for some kernel X. The condition to apply Theorem 12 is that Z(j Fee ) (@) Rz, y') =
z/,y/ )

k(z’,y") holds for any (2',y') € My,. On one hand, when we let & =& ... &, y=m1 ... 7,

' =&y - Sip) and ¥ = 5 -+ M)

2. m(”—kH1<ZA@ ) ﬁm i)

(GRTOISE A G (gz(k n5( ))

On the other hand, we have r (', y') = [T_; A& k), njx)). Hence, to have Z @ 7wt @) " (T

k(2',y') hold, it suffices that we require A = A\/(1 — \), equivalently, A = \/(1 + \).

Unfortunately, even if X is positive definite, ) is not necessarily positive definite. Cuturi
et al. (2007) defined that A is geometrically divisible, if, and only if, A/(1+ ) is positive defi-
nite. Also, Cuturi (2011) proved the following important lemma with respect to geometrical
divisibility.

Lemma 13 (Cuturi (2011), Lemma 3) For any infinitely divisible kernel X such that
0<\<1, then \/(1—\) is geometrically and infinitely divisible.

By taking advantage of Lemma 13, starting with an infinitely divisible kernel X, we can
obtain an infinitely divisible kernel A such that A = A/(1 + A). The property of infinite
divisibility provides us with a method to avoid the situation where the diagonal elements
of a Gram matrix is dominating.

Although a proof of Lemma 13 is given in a specific manner in (Cuturi, 2011), it can
be proved based on a more general property of infinitely divisible kernels as shown in
Appendix A.

5. Conclusion

We saw that the theorem for positive definiteness of mapping kernels can be extended to the
case where mapping systems consist of countable sets that are not necessarily finite. This
extension provides us with a method to examine positive definiteness of mapping kernels
with non-transitive mapping systems and/or with non-positive-definite evaluation systems.
In fact, in this paper, we saw two important practical examples of positive definite mapping
kernels defined over non-transitive mapping systems. For future study, we will investigate
such mapping kernels more closely, and will also explore novel mapping kernels that are
positive definite but defined over non-transitive mapping systems and/or with non-positive-
definite evaluation systems.
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Appendix A. An alternative proof of Lemma 13

It is easy to see the assertion of Lemma 13 can be reduced to the following proposition.

Proposition 14 If a negative definite kernel ¢ : X x X — C satisfies Rip > 0, then 1/
is indefinitely divisible and log ) is negative definite.

Remark 15 For a negative definite 1, R > 0 (resp. R > 0) is equivalent to P [o> 0
(resp. ¥ |a>0). This follows from 0 > (x,z) + ¥(y,y) — 2Ry (x,y).

To prove the proposition, we extend the assertion of Corollary 2.10 of (Berg et al., 1984)
as follows.

Lemma 16 If a negative definite kernel ¢ : X x X — C satisfies R > 0, then log(t + )
is negative definite for arbitrary t > 0.

For an arbitrary ¢t > 0, we have

log(t 4 1) = logt + log(1 + ¢ /t).

By Corollary 2.10, log(1 + 1 /t) is negative definite, and hence, so is log(t + ).
Now, we prove the proposition. For t > 0, we define X; by

Xy ={z e X | RY(z,x) > t}.

Apparently, X; & X, holds for ¢t > s, and X is identical to  J, o X¢. Moreover, when we let
Y = Y| x,xx,, we have Ripy > t. This follows from

02 ¢z, ) + ¥y, y) = ¥(z,y) — Y(,y) = 2t = 2RP(z, y).
Thus, Theorem 2.3 of Berg et al. (1984) implies that

i__ 1
Yr b+ (Y —t)

is positive definite, since (¢ — t) > 0. The conclusion that 1/t is positive definite follows
from limy_,o 1/¢y = 1/4.

Following the same discussion, we can reach the conclusion that log v is negative definite.
Here, we use the lemma stated in the above instead of Theorem 2.3.

The infinite divisibility of 1/ follows from

1
—log — = log .
(G
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