
JMLR: Workshop and Conference Proceedings 20 (2011) 231–246 Asian Conference on Machine Learning

Robust Generation of Dynamical Patterns in Human Motion
by a Deep Belief Nets

Sainbayar Sukhbaatar sainaa@sat.t.u-tokyo.ac.jp
Department of Mathematical Informatics,
Graduate School of Information Science and Technology, The University of Tokyo

Takaki Makino mak@sat.t.u-tokyo.ac.jp
Collaborative Research Center for Innovative Mathematical Modelling,
Institute of Industrial Science, The University of Tokyo

Kazuyuki Aihara aihara@sat.t.u-tokyo.ac.jp
Institute of Industrial Science
The University of Tokyo

Takashi Chikayama chikayama@logos.ic.i.u-tokyo.ac.jp

Department of Electrical Engineering and Information Systems,

Graduate School of Engineering, The University of Tokyo

Editors: Chun-Nan Hsu and Wee Sun Lee

Abstract

We propose a Deep Belief Net model for robust motion generation, which consists of two
layers of Restricted Boltzmann Machines (RBMs). The lower layer has multiple RBMs
for encoding real-valued spatial patterns of motion frames into compact representations.
The upper layer has one conditional RBM for learning temporal constraints on transitions
between those compact representations. This separation of spatial and temporal learning
makes it possible to reproduce many attractive dynamical behaviors such as walking by
a stable limit cycle, a gait transition by bifurcation, synchronization of limbs by phase-
locking, and easy top-down control. We trained the model with human motion capture
data and the results of motion generation are reported here.

Keywords: Deep Belief Net, Restricted Boltzmann Machine, motion generation, bifurca-
tion, limit cycle, phase-locking

1. Introduction

Deep Belief Nets (DBNs) are deep generative models that have been successfully applied
to various machine learning problems, such as hand-written digit recognition and object
recognition (Hinton and Salakhutdinov, 2006). The deep architecture is achieved by stacking
up Restricted Boltzmann Machines (RBMs), two-layer stochastic binary neural networks.
Their unsupervised learning and hierarchical structure made DBNs a promising approach
in computer vision.

Our goal is to utilize the multi-layer deep structure of DBNs in generation of human
motion, a high dimensional temporal pattern. We are interested in robust and flexible mo-
tion generation, such as walking by a stable limit cycle, a gait transition by bifurcation,
phase-locking between limb motions, and easy control by a simple top-down signal. Those

c© 2011 S. Sukhbaatar, T. Makino, K. Aihara & T. Chikayama.

Sukhbaatar Makino Aihara Chikayama

Figure 1: Motion generation steps of Temporal Deep Belief Nets

properties are inspired by models of Central Pattern Generators, a biological neural net-
work for motion generation. Most CPG-based models generate motions by phase-locked
mathematical oscillators. However, it is hard to generate high-dimensional motions, such
as human motions, by those hand-crafted models.

Applications of DBNs has been restricted to static patterns. There are two obvious
difficulties in generating dynamic patterns with DBNs. First, it is not clear how to utilize
the hierarchical architecture of DBNs in temporal patterns. Second, RBMs, which are the
building block of DBNs, are not capable of learning temporal constraints.

A recent work by Taylor et al. (2007) showed that RBMs can be modified to learn motion
data. They added additional layers, which keep the past states of the visible layer, to an
RBM so that it can learn the constraints between adjacent frames of motion. This model is
called Conditional RBM (CRBM) because the sampling in the RBM is conditioned on those
new layers. They also showed that two different motions can be learned by a single CRBM,
and addition of little noise to the hidden layer can induce a stochastic smooth transition
between the two motions. However, CRBMs have several shortcomings when it is used
for our purpose. First, motion transitions in CRBMs are stochastic and hard to control.
Second, training of CRBMs is unstable when the visible layer represents real valued motion
data. Third, in order to generate motion, CRBMs have to keep several frames of actual
motion.

Our key idea is to introduce a hierarchical structure into CRBM for robust motion
generation. Our model, which we call a Temporal Deep Belief Net, consists of multiple
RBMs and one CRBM. The RBMs work in parallel at the bottom of the CRBM. They are
trained to encode motion frames into compact representations. It is also possible to decode
motion frames back from compact representations using those RBMs. The CRBM, which
sits on the top of the RBMs, is trained with sequences of compact representations encoded
by the RBMs from training motions. During motion generation, the CRBM generates a
sequence of compact representations, which are then transformed into motion frames by the
RBMs (see Figure 1).

The main difference between our model and Taylor et al. (2007) is that ours has an ad-
ditional layer of RBMs at the bottom. Therefore, the CRBM in our model learns transition
constraints between compact representations, rather than raw motion frames. Also, previ-

232

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

ous motion frames are unnecessary for generating the next frame. This makes the learning
so easier that the hidden layer of the CRBM is not necessary for learning a single motion.
It is also possible to use this layer as a control layer when generating multiple motions,
because sampling in the CRBM is conditioned on the layer. The control layer represents
more abstract motion signals such as walking or running. A series of experiments show that
the model can generate various motions in a robust and flexible way.

The rest of the paper is organized as follows. In Section 2, we review RBMs and
DBNs. In Section 3, we propose Temporal Deep Belief Nets. In Section 4, the results from
the experiments will be presented. In Section 5, we discuss the biological plausibility of
our model and its relationship to Central Pattern Generator models. Finally, Section 6
concludes this paper.

2. Background

visible layer

hidden layer

v1

v2

v3

h1

h2

vi
si
b
le

vi
si
b
le

vi
si
b
le

tt-1t-2

h
id
d
en

time

lower RBM

upper RBM
DBN

visible

hidden

+

visible

hidden

visible

hidden

hidden

(a) (b) (c)

Figure 2: (a) A RBM (b) A CRBM for temporal patterns. (c) A DBN built from two
RBMs.

2.1. Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBMs) are a special type of Boltzmann Machines (Hinton,
2007) where units are separated into visible and hidden layers, and edges are restricted only
between visible and hidden units (see Figure 2.a). The energy of an RBM is given as

E(v,h) = −
∑
i,j

vihjwij −
∑
i

vibi −
∑
j

hjcj , (1)

where v = {v1, v2, ..., vn} and h = {h1, h2, ..., hm} are the state vectors of the visible and
hidden layers. Units vi and hj have binary values of {0, 1}, and wij is the weight of the
edge connecting vi with hj , and bi and cj are the biases of those units.

The stochastic behavior of the RBM is driven by the Boltzmann distribution

P (v,h) ∝ e−E(v,h), (2)

233

Sukhbaatar Makino Aihara Chikayama

which states that low energy states have high probability in the RBM. From (1) and (2),
we can calculate the probability of i’th visible unit being 1:

P (vi = 1|h) =
1

1 + e−
∑

j wijhj−bi
, (3)

which is the sigmoid function of the total input. The same calculation can be made for
hidden units. Therefore, one can get an unbiased sampling of the visible state v given the
hidden state h using (3), and vice versa. With a few steps of Gibbs sampling (alternat-
ingly sampling each layer), an approximate unbiased sampling of the whole network can
be achieved. A gradient descent algorithm based on this approximation (called Contrastive
Divergence) makes it possible to train RBMs efficiently (Hinton, 2002).

RBMs can handle real values with a little modification to the energy function. For
example, to make visible units real-valued, we change the energy function to

E(v,h) =
1

2

∑
i

v2i −
∑
i,j

vihjwij −
∑
i

vibi −
∑
j

hjcj , (4)

which includes the sum of the squares of the visible units to prevent them growing too
large. Under the assumption that the visible units have N (0, 1) distribution, the value of
i’th visible unit can be sampled from

N (
∑
j

wijhj + bi, 1), (5)

which is a Gaussian distribution with the unit variance and the mean equal to the total
input.

2.2. Conditional RBM

Conditional RBMs (CRBMs), first introduced in Taylor et al. (2007), are an extension of
RBMs that can be trained on temporal patterns. A CRBM introduce additional layers to
hold the past states of the visible layer (see Figure 2.b), which we call past-visible layers
in this paper. There can be arbitrary number of past-visible layers. The past-visible units
are always fixed the previous values of the visible units. Therefore, their values are not
updated during Gibbs sampling. This one-way information flow is represented by directed
edges. CRBMs can be trained with the same training algorithm as RBMs because the inputs
from the past-visible units can be handled in the same way as biases. During training, the
directed edges learn the temporal constraints between consecutive visible states.

To generate a motion by a CRBM, the visible and the past-visible units have to be
real-valued because motions are described as real-valued joint-angles. Therefore, the edges
connecting the visible and the past-visible layers have real-valued units on its both ends
and this makes the weight update unstable.

2.3. Deep Belief Nets

The representative power of RBMs is limited due to their restricted connections. Deep
Belief Nets (DBNs) solve this problem by stacking up several RBMs, where the hidden

234

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

layer of an RBM becomes the visible layer of another RBM (see Figure 2.c). Even though
DBNs have hierarchical structure with higher representative power, they can be easily
trained by greedy layer-by-layer training of each RBMs (Hinton et al., 2006). In the case
of the DBN in Figure 2.c, training has two steps. First, the lower RBM is trained with
training data, ignoring the upper RBM. Second, the upper RBM is trained with compact
representations encoded from the training data by the lower RBM. In other words, the lower
RBM learns to encode patterns in the training data to compact representations, and the
upper RBM learns to further encode patterns in those compact representations into more
compact representations at its hidden layer.

When applied to computer vision, the lower RBM learns many simple features of training
images, while the upper RBM learns to combine those simple features to construct more
complex features. Such hierarchical features are useful in image processing and it is similar
to the feature recognition in the visual cortex (Hubel et al., 1988). By using max-pooling
and convolutional connections in a DBN, a very powerful image recognition system can be
built (Lee et al., 2009). Since each RBM in a DBN encodes its visible state into compact
representations at its hidden layer, DBNs can be also used as a dimension reduction method
where training data is encoded in several steps to more and more compact representations.

3. Temporal Deep Belief Nets for Motion Generation

CRBM

RBMs

TDBN

past visiblepast visiblepast visible visible

hidden

hidden

visible

hidden

visible

hidden

visible

hidden

visible

hidden

visible

left-legleft-arm right-legright-arm trunk

past hiddenpast hiddenpast hidden hidden

visible

control

Figure 3: A TDBN is built by merging the hidden layers of RBMs with the visible layer of
a CRBM

In this paper we propose a two-layer DBN model for motion generation, which we
call “Temporal DBN” (TDBN). The lower-layer has multiple RBMs in parallel, instead of
one RBM. This distributed architecture makes TDBNs robust and flexible. The hidden
layers of those RBMs represent compact representations of motions frames. Those compact
representations are used in the upper-layer, which has one CRBM to coordinate the total
temporal behavior (see Figure 3).

Each RBM in the lower-layer correspond to a different body part. For example, the
RBM corresponding to the right leg is only trained with the motion of the right leg. This
division of training data is based on the assumption that joint-angles from the same limb are

235

Sukhbaatar Makino Aihara Chikayama

more correlated than two joint-angles from different limbs. We can expect more compact
representations at the hidden layers by putting more correlated variables in the same RBM.

Using multiple RBMs in parallel instead of a single RBM significantly reduces the the
number of learning parameters and, therefore, help us to overcome the curse of dimension-
ality. Each RBM have to learn only 7 to 21 dimensional data, instead of 56 dimensional
full motion data. Actually, these RBMs can be viewed as one large RBM with sparse
connections. However, disadvantage of using separate RBMs is the difficulty of generating
coordinated whole body motions, such as walking and running. Also, the RBMs does not
have temporal elements. Therefore, the lower-layer is only for learning static features of
motion frames, leaving dynamic features to be learned by the upper-layer.

Above those RBMs, there is only one CRBM. The role of this CRBM is to connect
the separate RBMs together and keep them in synchrony. Also, it learns dynamic features
of the human motion through its directed edges. All of the hidden units of the RBMs
in the lower-layer belong to the visible layer of the CRBM in the upper-layer. In other
words, the CRBM is trained by compact representations of motion frames, rather than raw
motions. Therefore, the visible units of the CRBM are no longer have to be real-valued.
This significantly reduces the burden of the CRBM.

In TDBNs, a simple walking motion can be generated even if there was no hidden units
in the CRBM. However, the hidden layer is useful because the sampling in the CRBM is
conditioned on it. We can use this property to control the behavior of the CRBM, and we
call the hidden layer of the CRBM as “control layer”. We can associate different motions
with different static patterns at the control layer. Such association can be made by setting
the value of the control layer to the static pattern corresponding to the motion being learned,
during positive weight updates. After this training, we can choose which motion to generate
by simply setting the control layer to the corresponding pattern.

Training of the TDBN is straightforward. First, each RBM is trained with corresponding
parts of motion frames. After the training, the RBMs learn to encode motion frame into
compact representation at their hidden layers. Then, those compact representations are
used as training data in training of the CRBM. Motion generation also has two steps.
First, the CRBM generates a sequence of compact representations. Then, each hidden
representations is converted to motion frame by the RBMs.

4. Experiments & Results

We first show experiments with the training by a simple walking motion to demonstrate
the stability and phase-locking in a TDBN. After that, we show the result of experiments,
in which a TDBN is trained with multiple motions to explore transitions among them.
All motion capture data used in the following experiments are obtained from CMU dataset
(http://mocap.cs.cmu.edu/). Each motion is represented by a sequence of 59 joint-angles
at 40fps (down-sampled from the original frame rate of 120fps). Coordinate variables are
omitted because they are not part of the motion generation.

We used five separate RBMs in the lower-layer, each corresponding to one limb or the
trunk. The total number of their visible units is 59, same as the number of joint-angles.
The visible layer corresponding to the trunk has 21 real-valued units, the largest among
the RBMs. Arms and legs each have 12 and 7 joint-angles respectively. The hidden layers,

236

http://mocap.cs.cmu.edu/

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

(a)

motion path
motion start
motion end

(b) (c)

Figure 4: (a) A walking motion frames generated from the TDBN. (b) A limit cycle pattern
emerges when 100 short walking motions are drawn as trajectories in a plane. We
added Gaussian noise to the initial hidden state of each motion. (c) The starting
and ending points of those trajectories

on other hand, each have 30 binary units. Therefore, the visible layer of the CRBM has
150 binary units. Because we keep the states of previous three time steps, the CRBM has
three past-visible layers (or the past-hidden layers of the TDBN), which have 450 binary
units in total. However, the control layer has relatively few units, 20 units in experiments
with two motions and 30 units in experiments with three motions. In the experiments
with multiple motions, the control layer will be clamped to static patterns. We used the
contrastive divergence method for all training.

4.1. Stable Walking by a Limit Cycle

In this experiment, we trained the TDBN with a short walking motion to examine its
stability. Here we used the word “stability” in the context of dynamic system, not necessarily
the physical stability. First, the RBMs are trained by walking frames. Motion frames are
learned in random order to prevent biases. After the training, the RBMs can encode real-
valued joint-angles to a compact representation of binary units in a stochastic way. But, we
used expected values during motion generation to reduce the noise induced by stochastic
sampling.

Next, the sequence of compact representations, encoded from the walking motion by
the RBMs, is used as training data in the training of the CRBM. The CRBM learns tem-
poral constraints between compact representations by its directed edges. To start motion
generation, the past-hidden layers (the past-visible layers in the CRBM) have to be set to
compact representations sampled from the training sequence. Once it is done, the next
compact representation is sampled by three Gibbs sampling in the CRBM, conditioned
on those past states. By passing the current state of the hidden layer to the past-hidden

237

Sukhbaatar Makino Aihara Chikayama

(a)

-60
-50
-40
-30
-20
-10

 0
 10
 20

 0 20 40 60 80 100 120 140 160 180 200

jo
in

t a
ng

le
 (d

eg
re

e)

frame/time (40fps)

left leg right leg

(b)

Figure 5: (a) A motion naturally returns to a normal walking motion after a perturbation.
The perturbation is simulated by forcibly shifting the phase of the left leg by a
half cycle. (b) Hip joint-angles from each leg are plotted. When the left leg is
perturbed at frame 100, the right leg motion is smoothly synchronizing eventually
with the left leg motion.

layers, subsequent compact representations can be generated. Finally, this sequence of com-
pact representations is decoded back to motion frames by the RBMs. A walking motion
generated in this way is presented in Figure 4.a.

Limit cycle behavior

Let us investigate the model as a dynamical system. Repetitive motions, such as walking,
can be considered as limit cycles in the state space and the system state must continuously
go around such limit cycle to generate a walking motion. The purpose of setting the past-
hidden layers to appropriate values (sampled values from a original motion) in the start
is to make sure that the system’s initial state is on the walking limit cycle. However, if
the CRBM succeeded in producing a stable limit cycle, any motion started from perturbed
hidden states should eventually converge to the walking motion. To test this hypothesis,
we generated 100 independent short walking motions by the TDBN with Gaussian noises
added to the past-hidden units in the start of each motion to simulate perturbations. The
result is shown in Figure 4.b where each motion is represented by a dotted trajectory. We
used Principal Component Analysis (PCA) to reduce the dimension of motion data to a
2-dimensional plane. Initial and final states of each motion are marked in Figure 4.c for
clarity. We can see that the motions started from perturbed hidden states are all ended up
on a single dark loop, which represents the normal walking motion.

We have to clarify that our model does not take account of the physical interaction with
the environment, so the dynamical stability in the CRBM does not mean physical stability
in humanoid robot. To deal with physical stability, we would need to extend TDBN so that
it can be used in motion generation with sensory input.

238

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

Synchronization of legs

We conducted another set of experiments to show the usefulness of the limit cycle behavior
with a more practical example, where a perturbed motion returns to a normal motion. Gen-
erally, it is hard to generate perturbed motions by the RBMs, because such motions must
have high energy since there are no perturbed motions in the training data. Fortunately, in
our model, motion of each limb is generated by a separate RBM. Therefore, we can easily
generate a perturbed motion by breaking the synchrony of those RBMs.

We simulated a perturbation in a walking motion by forcibly shifting the phase of the
left leg. This is done by setting the hidden units of the left-leg-RBM to the values recorded
from a previous normal walking motion with a slight delay for a limited period. The other
RBMs are sampled with normal Gibbs sampling during that time. In other words, only
the motion of the left leg is replayed from a previously recorded walking motion for short
duration. As the result, the joint-angles of the left leg will have a discontinued jump at
the start of the replay, which generates unnatural poses (see Figure 5.a). In Figure 5.b,
the hip joint-angles from the both legs are plotted. The green line (representing the left
leg) shifted its phase at frame 100 due to the forced perturbation. At the same time, the
blue line (representing the right leg) lost its synchrony with the left leg. However, those
two motions are coupled in the CRBM through their past states and such an out-of-sync
motion must have high energy (i.e. low probability). One might ask why doesn’t the right
leg instantly change its phase to synchronize with the left leg. That is because such sudden
movements also have low probability in the CRBM, since the training data did not include
such movements. As the result, the motion of the right leg gradually synchronizes with the
left leg and the motion returns to the walking limit cycle.

4.2. Gait Transition by Bifurcation

In the second set of experiments, we train the model on two different gait styles: walking
and running. The goal of this experiment is two-fold: (1) to show that it is possible to
learn and generate two different motions by a single TDBN, and (2) to demonstrate that
the model can generate a natural gait transition motion. An advantage of having a single
model for all motions is that transitions between multiple motions can be represented by
the model, which would be probably impossible if we had separate models for each motions.

The control layer is used to control which gait should be generated by the model. Each
unit in this layer will have the same fixed value: 0 for walking and 1 for running. We will
call this value a gait parameter. The control layer will always be clamped except for the
sampling from a reconstruction during training. Two separate motion capture data is used
as training data, and there was no gait transition motion.

The training of the RBMs is the same as the previous experiments, but walking and
running frames have to be learned in a random order to prevent a bias to one gait. The
training of the CRBM is slightly easier than before because we can calculate 〈vihj〉data
directly because hj is fixed to the gait parameter. During the reconstruction step, however,
we have to unclamp the control layer to calculate 〈vihj〉recon.

After the training, we successfully generated separate walking and running motions by
setting the gait parameter to 0 and 1 respectively. However, when we changed this gait
parameter during a single motion generation, the model generated a gait transition motion.

239

Sukhbaatar Makino Aihara Chikayama

(a)
 0.99

 0.995

 1

 1.005

 1.01

-10 -5 0 5 10

gait control parameter (low for walking and high for running)
1st principal component of the motion (from walking to running)
1st principal component of the motion (from running to walking)

(b) (c) (d)
 0.99

 0.995

 1

 1.005

 1.01

-10 -5 0 5 10

generated motion training data (running) training data (walking)

(e) (f) (g)

Figure 6: (a) A gait transition motion generated by the model. (b),(c) The first principal
component of gait transition motions are plotted with the gait parameter value.
(d) A hysteresis emerges when two transitions in (b),(c) are plotted to have the
same gait parameters. (e) A bifurcation in the state space when the control
parameter changes abruptly from walking to running. Two distinct limit cycles
correspond to walking and running (first 3 principal components are plotted). (f)
Even the control parameter changes slowly, the bifurcation occurs in the same way.
(c) Bifurcation between two LCs is stochastic, thus the system travels different
paths in each gait transition.

In Figure 6.a, we showed one such example where the gait parameter was changed from 0
to 1. From that moment, the motion smoothly transferred from walking to running in less
than a half second.

We observed a smooth gait transition even when the control parameter changes abruptly
from walking to running. One possible explanation for this smoothness is that the directed
connections in the CRBM learned the continuity constraints of human motion from the
training data. If it is true, even when top-down control changes abruptly, the lower level

240

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

will try to generate a pattern that meets the continuity constraints as well as the top-down
control constraint.

The number of units in the control layer is set to 20 in the experiments. More units
will boost the effect of the gait parameter on the hidden layer, making the transition more
sudden and short. On the contrary, less units will increase the effect of the past hidden
states on the hidden layer, making transition slower and even impossible in some cases.
Actually, we can replace those 20 units with a single unit with a 20 times large learning
rate.

Emergence of hysteresis

We did another set of experiments where the gait parameter is gradually changed in 5
seconds from walking to running (see Figure 6.b). Also, the same experiment is done in
the reverse direction: from running to walking (Figure 6.c). One would expect the gait
transitions to occur at the same gait parameter threshold. However, if we overlap the
two transitions to have the same gait parameter value in Figure 6.d, we can see that the
threshold for a gait transition is dependent on the direction. Such direction dependent
behaviors of dynamic systems is called hysteresis.

We are interested in this phenomenon because hysteresis is also observed in humans
during gait transitions. Diedrich and Warren Jr (1995) explained hysteresis in the context
of dynamical systems where walking and running motions are viewed as separate limit cycles
(LCs). When the locomotion speed is slow, a walking LC is stable and a running LC is
unstable. As the speed increases, the running LC also becomes stable. However, since the
walking LC is still stable, the system will remain in the walking LC. Further increase in the
speed will make the walking LC unstable and then the system will transfer to the stable
running LC. Such a qualitative change in a dynamic system is called bifurcation.

The same explanation can be applied to our model. In the walking experiment, we
showed that there is a stable walking LC in the hidden state space, but in this experiment,
we trained the model on two different motions, so there must be two separate LCs. A gait
transition happened when we changed the gait parameter. Therefore, it can be said that
the gait parameter is controlling the stability of these LCs. In Figure 6.e, we showed a
bifurcation from a walking LC to a running LC when the gait parameter changed suddenly
from 0 to 1. In Figure 6.f, however, the gait parameter changed slowly. Interestingly, the
system state keeps circling the walking LC until the gait parameter almost reaches to 1.
Then suddenly, the system state leaves the walking LC and transfers to the running LC
without losing its continuity (there are actually 5-10 frames in the transition path). Such a
bifurcation between two limit cycles is called a saddle node bifurcation. In the saddle node
bifurcation, there is a region where both attractors are stable and this produces a hysteresis
in the system.

Figure 6.g demonstrates one of the advantages of our model: a stochastic behavior. Even
though four motions of a gait transition are generated in the same condition, each motion
path differs from one another because of the inherent stochastic behavior of Boltzmann
Machines. Such variety of motions is important in some applications such as computer
games where repeated identical motions would give an artificial look to characters.

241

Sukhbaatar Makino Aihara Chikayama

4.3. Nonrhythmic Motion and Interruption

Figure 7: Sequential generation of three motions: walking, bending over, and running. (top)
Running motion is started after the completion of the bending motion. (middle)
The bending motion is interrupted by the running motion. (bottom) The inter-
ruption starts earlier.

generated motion
training data (running)

training data (bend over)
training data (walking)

generated motion
training data (running)
training data (bend over)
training data (walking)

generated motion
training data (running)
training data (bend over)
training data (walking)

generated motion
training data (running)
training data (bend over)
training data (walking)

(a) (b) (c)

Figure 8: The fist two principal components of the motions in Figure 7 are plotted along
with the original training motions. The motion starts from the walking region
(green) and smoothly transfers to the bending region (blue) and ends at the
running region (pink). In (b) and (c), however, the bending motion is interrupted
before its completion.

Motions that can be learned by the model is not restricted to rhythmic motions. How-
ever, motions with too many still frames are difficult to learn because the model predicts the
next frame based on only past three frames. In this experiment, we added a new motion of
“bend over, scoop up and rise” to the training data. Since there are three motions to learn,
we will divide the control layer into three equal parts each representing one motion. To
generate a specific motion, all we have to do is to set the control units in the corresponding

242

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

part to 1 and the other control units to 0. The learning algorithm remains the same as the
previous experiments.

In Figure 7, the model generated a bending motion between walking and running mo-
tions. This is done by changing the control units from walking to bending, then from
bending to running. We generated three versions of this motion to show the flexibility of
the model. In the top figure, the bending motion is completed before being transformed
into the running. This can be seen from the motion trajectory in Figure 8.a where each
training motion is also plotted. However, if we set the control layer to running before the
bending motion completes, the resulting motion will look like the middle figure where the
bending is interrupted and naturally transferred into the running motion. If we see the cor-
responding motion trajectory in Figure 8.b, we understand that the motion actually reaches
the bending region before turning into the running region without executing the bending
motion. If we change the control to running earlier, the motion trajectory will change the
direction before reaching the bending region (see Figure 8.c). A corresponding motion is
shown at the bottom of Figure 7 where the bending motion is barely observable. Such
flexibility is convenient in on-line applications such as computer games and robot control.
The transitions shown in Figures 8.b and 8.c are difficult to generate by traditional methods
where all possible transitions between two motions are synthesized in advance.

Unlike the walking and running motions, the bending motion has a fixed-point attractor
rather than a limit cycle because it is not cyclic. The result from this experiment shows
that a bifurcation between a limit cycle and a fixed-point attractor is possible in the model.

5. Discussions

5.1. A DBN as a biologically plausible model

Lee et al. (2009) proposed a convolutional DBN model for object recognition and they
showed that their model can make use of unlabeled data to make useful features. In-
terestingly, the learned features had a hierarchical structure, where units in higher layers
responded to whole or part of objects, while units in lower layers responded to lower level
features, such as edges and points. This resembles to the hierarchy of the visual cortex,
where neurons in early stages of the visual processing respond to small-spots or edges, while
neurons in later stages spike when we see certain objects, such as human faces.

There is another connection between brains and DBNs, which is the similarity of their
learning algorithms. Though we know little about how brains work, there are many sim-
plified learning rules of the synaptic plasticity, such as Hebbian learning, Spike Timing
Dependent Plasticity, and so forth. Basically, when two neurons spike simultaneously, the
synapse connecting them become stronger or weaker depending on the spike timing and
other external factors. Similarly in a DBN, when two units are ON, the weight between
them increase if the values are sampled from the training data, and decrease if the values
are sampled during reconstruction. This resemblance makes the DBN a good candidate
when building a biologically inspired learning model.

243

Sukhbaatar Makino Aihara Chikayama

(a) (b)

Figure 9: (a) The hierarchical structure of (a) the biological motion generation and (b)
TDBNs

5.2. TDBN as Central Pattern Generator

Central Pattern Generators (CPGs), which are neural networks found in the spinal cord,
have a crucial role in the biological motion generation. While CPGs can generate rhythmic
motions autonomously, its behavior (e.g. speed, gait type) can be controlled by simple
signals from the Central Nervous System (CNS) (Grillner, 1985; Shik, 1966).

There are many inspiring papers that tried to build an artificial CPG for motion gen-
eration (Ijspeert, 2008). Most of them studied CPGs in an abstract level using distributed
mathematical oscillators (Collins and Stewart, 1992; Schöner et al., 1990). Phase-locking
between those oscillators produce complex motion patterns similar to the motion of real
animals (Ijspeert et al., 2007). While such motion controls are robust and manageable,
they are often restricted to low dimensional motions because of the complexity limitation
of carefully hand-crafted models.

The TDBN proposed in this paper can be considered as one implementation of CPG,
because there are several properties of the TDBN that are similar to CPG-based models and
biological CPGs. First, we demonstrated that the TDBN generates rhythmic motions by
stable limit cycles, and gait transition motions by bifurcations. Second, when we consider
that there are separate oscillators for different limbs, the TDBN successfully learned the
phase-locking between those oscillators. Last, there is also a structural similarity between
TDBNs and CPGs (see Figure 9). CPGs are capable of autonomously generating temporal
patterns, while their behaviors can be controlled by simple top-down signals from the CNS.
Our model achieved a similar structure. The hidden layer (and the past-hidden layers) can
generate temporal patterns by itself, but a change in the control layer will affect the hidden
layer, altering motion patterns (e.g from walking to running). In this paper, we generated
59 dimensional human motions, which shows that TDBNs are scalable to high dimensions.

5.3. Higher-order TDBNs

Our results show that TDBNs are a promising model for learning temporal patterns. The
hierarchical structure of TDBNs makes it possible to control motion in an abstract level
(i.e. walk, run, etc.) using the highest layer, while lower layers generate corresponding

244

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets

motion in a smooth way. If we train another TDBN on those abstract level patterns (i.e.
the patterns of the control layer), we can generate a long-term abstract motion plan (e.g.
walk-run-stop-bend) using the new TDBN. Then the lower TDBN would generate actual
motions according to this plan. Such hierarchical temporal pattern generation will be useful
for other applications too, such as speech generation.

6. Conclusion

In this paper, we introduced TDBNs, which are capable of learning and generating human
motions. TDBNs have multiple RBMs at the bottom and one CRBM at the top. The
RBMs encode still frames into compact representations, and the CRBM learns the temporal
constraints between those compact representations. We have to note that TDBNs are not
restricted to motions, and they can be used with any temporal patterns.

The results from the experiments show that TDBNs not only regenerates learned mo-
tions, but also possesses several attractive dynamical properties. In the walking motion
generation experiments, we empirically demonstrated the stability of the limit cycle in the
hidden state space. The same stability is also seen in the experiment where two legs gradu-
ally synchronized. In other experiments, the TDBN smoothly transferred between the limit
cycles of walking and running, generating a smooth gait transition motion. Such transition
occurs as the result of bifurcation in the system state, triggered by the change of the control
parameter, making the transition more robust and flexible. These dynamical behaviors are
vital to motion generation in both humans and robots. It is novel to produce synchroniza-
tion of limbs and hysteresis of a gait transition in motions generated by a neural network
trained by real motions.

Acknowledgments

This research is partially supported by the Aihara Project, the FIRST program from JSPS,
initiated by CSTP.

References

JJ Collins and IN Stewart. Symmetry-breaking bifurcation: a possible mechanism for 2:1
frequency-locking in animal locomotion. Journal of mathematical biology, 30(8):827–838,
1992.

F.J. Diedrich and W.H. Warren Jr. Why change gaits? Dynamics of the walk run transition.
Journal of Experimental Psychology, 21(1):183–202, 1995.

S. Grillner. Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228(4696):
143, 1985.

G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

G.E. Hinton. Boltzmann machine. http://www.scholarpedia.org/article/Boltzmann_
machine, 2007.

245

http://www.scholarpedia.org/article/Boltzmann_machine
http://www.scholarpedia.org/article/Boltzmann_machine

Sukhbaatar Makino Aihara Chikayama

G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504, 2006.

G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

D.H. Hubel, J. Wensveen, and B. Wick. Eye, brain, and vision. Scientific American Library
New York, 1988.

A.J. Ijspeert. Central pattern generators for locomotion control in animals and robots: a
review. Neural Networks, 21(4):642–653, 2008.

A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen. From swimming to walking with
a salamander robot driven by a spinal cord model. Science, 315(5817):1416, 2007.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations. In ICML
’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages
609–616. ACM, 2009.

G. Schöner, WY Jiang, and JAS Kelso. A synergetic theory of quadrupedal gaits and gait
transitions. Journal of theoretical Biology, 142(3):359–391, 1990.

M.L. Severin F.V. Orlovsky G.N. Shik. Control of walking by means of electrical stimulation
of the mid-brain. Biophysics, 11:756–765, 1966.

G.W. Taylor, G.E. Hinton, and S.T. Roweis. Modeling human motion using binary latent
variables. Advances in Neural Information Processing Systems, 19:1345, 2007.

246

	Introduction
	Background
	Restricted Boltzmann Machine
	Conditional RBM
	Deep Belief Nets

	Temporal Deep Belief Nets for Motion Generation
	Experiments & Results
	Stable Walking by a Limit Cycle
	Gait Transition by Bifurcation
	Nonrhythmic Motion and Interruption

	Discussions
	A DBN as a biologically plausible model
	TDBN as Central Pattern Generator
	Higher-order TDBNs

	Conclusion

