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Abstract

Markovian models with hidden state are widely-used formalisms for modeling sequential
phenomena. Learnability of these models has been well studied when the sample is given
in batch mode, and algorithms with PAC-like learning guarantees exist for specific classes
of models such as Probabilistic Deterministic Finite Automata (PDFA). Here we focus on
PDFA and give an algorithm for infering models in this class under the stringent data
stream scenario: unlike existing methods, our algorithm works incrementally and in one
pass, uses memory sublinear in the stream length, and processes input items in amortized
constant time. We provide rigorous PAC-like bounds for all of the above, as well as an
evaluation on synthetic data showing that the algorithm performs well in practice. Our
algorithm makes a key usage of several old and new sketching techniques. In particular, we
develop a new sketch for implementing bootstrapping in a streaming setting which may be
of independent interest. In experiments we have observed that this sketch yields important
reductions in the examples required for performing some crucial statistical tests in our
algorithm.
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1. Introduction

Data streams are a widely accepted computational model for algorithmic problems that
have to deal with vast amounts of data in real-time. Over the last ten years, the model
has gained popularity among the Data Mining community, both as a source of challenging
algorithmic problems and as a framework into which several emerging applications can be
cast (Aggarwal, 2007; Gama, 2010). From these efforts, a rich suite of tools for data stream
mining has emerged, solving difficult problems related to application domains like network
traffic analysis, social web mining, and industrial monitoring.

Most algorithms in the streaming model fall into one of the following two classes: a
class containing primitive building blocks, like change detectors and sketching algorithms
for computing statistical moments and frequent items; and a class containing full-featured
data mining algorithms, like frequent itemsets miners, decision tree learners, and clustering
algorithms. A generally valid rule is that primitives from the former class can be combined
for building algorithms in the latter class.

In this paper we present two data streaming algorithms, one in each of the above cate-
gories. First we develop a new sketching primitive for implementing bootstrapped estimators
in the data stream model. The bootstrap is a well-known method in statistics for testing
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hypothesis in non-parametric settings. Second, we present an algorithm for PAC learning
probabilistic deterministic finite automata (PDFA) from a stream of strings. This new al-
gorithm uses the bootstrapping sketch as a primitive for statistical testing. The so-called
state-merging approach was introduced in the Grammatical Inference community for learn-
ing finite automata, discrete Markovian models with hidden states, and other state-based
representations.

Our interest in this problem comes from the field known as Process Mining, which is
devoted to inferring (probabilistic) state-transition models like grammars, Petri nets, finite
state machines, etc. from process traces. With the advent of the Web and other high-speed
stream processing environments, process mining methods have to deal with ever-increasing
data sets, where the target to be modeled possibly changes or drifts over time. While the
data streams computational model is a natural framework for this applications, adapting
current process mining algorithms to work in this demanding model is a challenging problem.
We propose a solution to this problem based on an algorithm for learning PDFA that meets
the memory and processing time requirements imposed by the stringent streaming setting.

Several state-merging algorithms for learning PDFA have been proposed in the litera-
ture. Some of them are based on heuristics, while others come with theoretical guarantees,
either in the limit, or in the PAC sense (Carrasco and Oncina, 1994; Ron et al., 1998;
Clark and Thollard, 2004; Palmer and Goldberg, 2007; Guttman et al., 2005; Castro and
Gavalda, 2008). However, all of them are batch oriented and require the full sample to be
stored in memory. In addition, most of them perform serveral passes over the sample. In
contrast, our algorithm keeps in memory only the relevant parts of the observed sample and
its memory usage grows sublinearly with the number of strings it processes.

Another important feature of our algorithm is its ability to perform statistical tests to
determine similarity between states in an adaptive manner. This means that as soon as
enough examples are available a decision is made. This behavior is essentially different
from the algorithms of (Clark and Thollard, 2004; Palmer and Goldberg, 2007) which share
similar PAC guarantees with our algorithm. If memory issues were ignored, both of these
algorithms could be easily adapted to the streaming setting because they work by asking
for a sample of a certain size upfront which is then used for learning the target. Thus,
these algorithms always work with the worst-case sample size, while our algorithm is able
to adapt to the complexity of the target and learn easy targets using less examples than
predicted by the worst case analysis. Our algorithm resembles that of Castro and Gavalda
(2008) in this particular aspect, though ther is still a significant difference. Their algorithm
is adaptive in the sense that it takes a fixed sample and tries to make the best of it. In
contrast, having access to an unbounded stream of examples, adaptiveness in our algorithm
comes from its ability to make accurate decisions as soon as possible.

State-merging algorithms usually split different states with relatively few examples,
while merging with high confidence is in general extremely costly and always operates under
worst-case conditions. To deal with this problem, our algorithm uses bootstrapped estimates
for testing statistical similarity. Tests in all previous PAC learning algorithms for PDFA
are derived from Hoeffding bounds or VC theory. Though useful, in general this bounds
are distribution-independent, which means they work even under very adverse distributions
which one may no encouter in reality. As a consequence, sometimes the sample bounds
obtained from these theories are rather pessimistic. In contrast, bootstrapped estimates
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are usually distribution-dependent and thus can perform better in many circumstances,
while still being regarded as very accurate (Hall, 1997). Here we present a test based
on bootstrapped confidence intervals with formal guarantees that has the same rate of
convergence as usual VC bounds. Furthermore, in the experimental section we show that
a different test also based on bootstrapping can perform better than VC-based tests in
practice. Though we have no finite sample analysis for this practical test, our results
guarantee that it is not worse than tests based on uniform convergence bounds. The use
of the bootstrapped testing scheme comes at the price of an increase in the total memory
requirements of the algorithm. This increase takes the form of a multiplicative constant
that can be adjusted by the user to trade-off learning speed versus memory consumption.
In a streaming setting this parameter should be tuned to fit all the data structures in the
main memory of the machine running our algorithm.

The structure of the paper is as follows. Section 2 gives background and notation.
Section 3 presents the technical results upon which our tests are based. Section 4 gives
a detailed explanation of our state-merging algorithm and its analysis. In Section 5 we
present some experiments with an implementation of our algorithm. Section 6 concludes
with some future work. All proofs are omitted due to space constraints and will appear
elsewhere.

2. Background

As customary, we use the notation 5( f) as a variant of O( f) that ignores logarithmic factors.
Unless otherwise stated we assume the unit-cost computation model, where (barring model
abuses) e.g. an integer count can be stored in unit memory and operations on it take unit
time. If necessary statements can be translated to the logarithmic model, where e.g. a
counter with value ¢ uses memory O(log t), or this factor is hidden within the O(-) notation.

2.1. Learning Distributions in the PAC Framework

Several measures of divergence between probability distributions are considered. Let X be
a finite alphabet and let Dy and D be distributions over ¥*. The total variation distance is
Li(D1,D2) =3 csv [ Di(x) — Da(x)|. Another distance between distributions over strings
useful in the learning setting is the supremum over prefixes distance, or prefix-Lo, distance:
L5 (D1, Do) = maxzex+ |D1(2X*) — Dy(2¥*)|, where D(2¥*) denotes the probability under
D of having = as a prefix.

Now we introduce the PAC model for learning distributions. Let D be a class of dis-
tributions over some fixed set X. Assume D is equipped with some measure of complexity
assigning a positive number |D| to any D € D. We say that an algorithm L PAC learns a
class of distributions D using S(-) examples and time 7T'(-) if, for all 0 < e,d < 1 and D € D,
with probability at least 1 — J, the algorithm reads S(1/¢,1/6,|D|) examples drawn i.i.d.
from D and after T'(1/e,1/0,|D|) steps outputs a hypothesis D such that Ll(D,lA)) <e.
The probability is over the sample used by L and any internal randomization. As usual,
PAC learners are considered efficient if the functions S(-) and T'(-) are polynomial in all of
their parameters.
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2.2. PDFA and State-Merging Algorithms

A PDFA T is a tuple (@, %, 7,7,&, qo) where @ is a finite set of states, ¥ is an arbitrary
finite alphabet, 7 : @ x ¥ — @ is the transition function, v : @ x (XU{{}) — [0, 1] defines
the probability of emitting each symbol from each state — where we must have y(g,0) =0
when o € ¥ and 7(q,0) is not defined, — £ is a special symbol not in ¥ reserved to mark
the end of a string, and ¢p € @ is the initial state.

It is required that >, 50 7(q,0) = 1 for every state ¢. Transition function 7 is
extended to @ x X* in the usual way. Also, the probability of generating a given string
z€ from state g can be calculated recursively as follows: if z is the empty word A the
probability is v(q, §), otherwise z is a string ooy . ..o with k > 0 and v(q, 09071 ... 0%§) =
(g, 00)Y(7(q,00),01 ...0kE). For each state ¢ a probability distribution D, on ¥* can be
defined: for each z, probability D,(z) is v(g,x£). The probability of generating a prefix
z from a state ¢ is y(q,z) = >, Dg(zy) = Dg(xX*). The distribution defined by T is the
one corresponding to its initial state, Dy . Most commonly, we will identify a PDFA and
the distribution it defines. The following parameter is used to measure the complexity of
learning a particular PDFA.

Definition 1 We say distributions D1 and Do are pu-distinguishable when p < L5, (D1, Da).
A PDFA T is p-distinguishable when for each pair of states q1 and qo their corresponding
distributions Dy, and Dy, are p-distinguishable. The distinguishability of a PDFA is defined
as the supremum over all v for which the PDFA is u-distinguishable.

State-merging algorithms form an important class of strategies of choice for the prob-
lem of inferring a regular language from samples. Basically, they try to discover the target
automaton graph by successively applying tests in order to discover new states and merge
them to previously existing ones according to some similarity criteria. In addition to empir-
ical evidence showing a good performance, state-merging algorithms also have theoretical
guarantees of learning in the limit the class of regular languages (see de la Higuera (2010)).

Clark and Thollard (2004) adapted the state-merging strategy to the setting of learning
distributions generated by PDFA and showed PAC-learning results parametrized by the
distinguishability of the target distribution. The distinguishability parameter can sometimes
be exponentially small in the number of states in a PDFA. However, there exists strong
evidence suggesting that polynomiality in the number of states alone may not be achievable.

2.3. Data Streams

The data stream computation model has established itself in the last fifteen years for the
design and analysis of algorithms on high-speed sequential data (Aggarwal, 2007). It is
characterized by the following assumptions:

1. The input is a potentially infinite sequence of items 1, z2, . .., xy, ... from some (large)
universe X

2. Item z; is available only at the tth time step and the algorithm has only that chance
to process it, probably by incorporating it to some summary or sketch; that is, only
one pass over the data is allowed
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3. Items arrive at high-speed, so the processing time for item must be very low — ideally,
constant time, but most likely, logarithmic in ¢ and | X]|

4. The amount of memory used by algorithms (the size of the sketches alluded above)
must be sublinear in the data seen so far at every moment; ideally, at time ¢ memory
must be polylogarithmic in ¢ — for many computations, this is impossible and memory
of the form ¢¢ for constant ¢ < 1 may be required (logarithmic dependence on |X]| is
also desirable)

5. Approximate, probabilistic answers are often acceptable

A large fraction of the data stream literature discusses algorithms working under worst-
case assumptions on the input stream, e.g. compute the required (approximate) answer at
all times ¢ for every possible values of x1,...,2; (Lin and Zhang, 2008; Muthukrishnan,
2005). For example, several sketches exist to compute an e-approximation to the number of
distinct items in memory O(log(¢|X|)/e). In machine learning and data mining, this is often
not the problem of interest: one is interested in modeling the current “state of the world” at
all times, so the current items matter much more than those from the far past (Bifet, 2010;
Gama, 2010). An approach is to assume that each item x; is generated by some underlying
distribution D; over X, that varies over time, and the task is to track the distributions Dy
(or its relevant information) from the observed items. Of course, this is only possible if
these distributions do not change too wildly, e.g. if they remain unchanged for fairly long
periods of time (“distribution shifts”, “abrupt change”), or if they change only very slightly
from t to t + 1 (“distribution drift”). A common simplifying assumption (which, though
questionable, we adopt here) is that successive items are generated independently, i.e. that
x; depends only on D; and not on the outcomes x;_1, x;—2, etc.

In our case, the universe X will be the infinite set ¥* of all string over a finite alphabet
Y. Intuitively, the role of log | X | will be replaced by a quantity such as the expected length
of strings under the current distribution.

3. Stream Statistics for Similarity Testing

Suppose we have two streams (z¢)¢>0 and (z})i>0 of strings over ¥* generated by distribu-
tions D and D’ respectively. Assume that either D = D" or L5 (D, D) > p for some fixed
. We want to design a statistical test that after reading strings from each stream returns
an answer from {DISTINCT, SIMILAR, UNKNOWN } which is accurate with high probability —
UNKNOWN meaning that it cannot confidently conclude any of the other two answers. Ide-
ally we would like the whole process to run in time linear in the number of strings processed
and to use sublinear memory.

The test presented here is essentially asymmetric, using different statistics for testing
similarity and dissimilarity between distributions. The dissimilarity test is based on VC
bounds for uniform convergence of relative frequencies to probabilities. In contrast, our
similarity test is based on adapting the bootstrapping method from statistics to the data
streams scenario. Both tests use information collected from the streams in the form of
sketches.

38



BoOOTSTRAPPING AND LEARNING PDFA IN DATA STREAMS

3.1. Finding Frequent Prefixes

Our algorithm will make an intensive use of the Space-Saving algorithm by Metwally et al.
(2005). In particular, given a stream of strings we produce a new stream that contains,
for every string x in the original stream, all the prefixes of x. This new stream is fed to
a Space-Saving sketch with an adequate number of counters in order to keep information
about frequent prefizes in the stream of strings. This information will be used to estimate
the prefix-Lo, between two distributions over strings.

We begin by recalling the basic properties of the Space-Saving sketch introduced in
Metwally et al. (2005). Given a number of counters K, the Space-Saving sketch SpSv(K)
is a data structure that uses memory O(K) at all times and has two basic operations.
The first one receives an element and adds it to the sketch in time O(1). The second is a
retrieval operation that given some € > 1/K takes time O(1/¢) and returns a set of at most
K pairs of the form (z, fx) with 0< fo — fo <1 /K — where f, is the relative frequency of
x among all the elements added to the sketch so far — that is guaranteed to contain every
x whose f, > e. Using these operations an algorithm can mantain a summary of the most
frequent elements seen in a stream together with an approximation to their current relative
frequency.

In order to be able to retrieve frequent prefizes in a stream of strings, some modifications
have to be made to this sketch. First, note that given a distribution D over strings in 3*,
the probabilities of all prefixes do not necessarily add up to one because prefixes are not
independent of each other. In fact, it can be shown that ) D(z¥*) = L + 1, where
L =5, |z|D(x) is the expected length of D (Clark and Thollard, 2004). Therefore, a
Space-Saving sketch with (L 4+ 1)K counters can be used to retrieve prefixes with relative
frequencies larger than some ¢ > 1/K and approximating these frequencies with error at
most 1/K. When computing these relative frequencies, the absolute frequency needs to
be divided by the number of strings added to the sketch so far (instead of the number of
prefixes).

We encapsulate this behavior into a Prefiz-Space-Saving sketch PrefSpSv(K, L) with
two parameters: an integer K that measures the desired accuracy on relative frequency
approximation for prefixes, and an upper bound L on the expected length of strings in
the stream. As input, the sketch receives a stream of strings and uses memory O(LK) to
keep information about frequent prefixes in the stream. A string z is processed in time
O(]z|), and a set of prefixes with relative frequency larger than € > 1/K can be retrieved
in time O(L/e). In practice a good estimate for L can be easily obtained from an initial
fraction of the stream. One such sketch can be used to keep information about the frequent
prefixes in a stream of strings, and the information in two Prefix-Space-Saving sketches
corresponding to streams generated by different distributions can be used to approximate
their LE, distance.

We begin by analyzing the error introduced by the sketch on the empirical L5, distance
between two distributions. Fix v > 0. Given a sequence S = (x1,...,%,,) of strings
from ¥*, for each prefix x € ¥* we denote by S, [xX*] the absolute frequency returned for
prefix z by a Prefix-Space-Saving sketch PrefSpSv([2/v]) that received S as input; that
is, S,[xX*] = mf, if the pair (x, f,) was returned by a retieval query with ¢ = v/2, and
Sy[z¥*] = 0 otherwise. Furthermore, S(zX*) denotes the relative frequency of the prefix x
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in S: S, (xX*) = S, [X*]/m. The following lemma is a corollary of Theorem 3 in (Metwally
et al., 2005).

Lemma 2 For any v > 0 and any two sequences S and S', |L5(S,S’) — L% (S,,S.)| < v.

3.2. Testing Dissimilarity with VC Bounds

Using the PrefSpSv sketch from previous section, we define a statistic & for confidently test-
ing distribution dissimilarity. We will use this statistic to give a lower bound for L5 (D, D’)
which holds with high probability. This yields the following accurate dissimilarity test:
return DISTINCT when the lower bound is larger that 0, and return UNKNOWN otherwise.

Statistic fi is an approximation to L5 (D, D’) computed as follows. Setup a sketch
PrefSpSv([2/v]) and let S, denote the contents of the sketch after processing m elements
from the stream (z;);~0. Similarly, define another PrefSpSv([2/v]) sketch for the stream
(x})¢=0 and let S, denote its contents after processing m’ elements. The statistic ji is the
distance between the contents of both sketches: ji = L& (S,, S),).

Note that the value of /i depends on the quantities m and m’ of strings processed. Fur-
thermore, though i is deterministically computed from the streams, i can also be regarded
as a random variable on the probability space of all possible streams generated by D and
D’. Adopting this perspective, next proposition gives a deviation bound for i that holds
with high probability.

Proposition 3 Assume L5 (D,D’) = p*. Then, with probability at least 1 — &, p* >
f—v—+/(8/M)In(16(m +m’)/5), where M = mm/(\/m + Vm/)~2.

The result follows from an application of classical Vapnik—Chervonenkis bounds on the
rate of uniform convergence of empirical probabilities to their expectations (Bousquet et al.,
2004).

3.3. Testing Similarity with Bootstrapped Confidence Intervals

Now we derive a statistic for testing the similarity of two distributions over strings in a
streaming setting. The test assumes that if D # D’, then necessarily L5 (D, D’) > u for
some known parameter p. Working under this hypothesis, the goal of the test is to certify
(if possible) that LE (D, D’) < u. We do that by giving an upper bound on L% (D, D’) that
holds with high probability. If this upper bound is less that u, the test can conclude with
high confidence that D = D'.

The idea behind our test is to construct a bootstrapped confidence interval for the true
distance L5 (D, D’). Basically, the bootstrapping methodology says that given a sample
from some distribution, one can obtain several estimates of a statistic of interest by re-
sampling from the original sample. Using these estimates one can, for example, compute
a confidence interval for that statistic. Though re-sampling a sample given in stream form
using sub-linear memory is in general impossible, we introduce a bootstrapping-like method
that can be used whenever the statistic of interest can be computed from sketched data.

Given a positive integer r, our test will compute an upper bound for L5 (D, D’) using
r? statistics computed as follows. Before reading the first element on stream (x);~0, build
r identical sketches PrefSpSv([2/v]) labeled by [r] = {1,...,r}. Then, for each string x;
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in the stream, draw r indices i1,...,4, € [r] uniformly at random with replacement, and
for 1 < j < r insert z; into the i;th sketch (with possible repetitions). For i € [r] we let
B; ,(2¥*) = B, ,[z¥*]/m; denote the the relative frequency assigned to prefix € ¥* by
the ith sketch, where m; is the number of items that have been inserted in that particular
sketch after processing m elements from the stream. Similarly, we define another set of
sketches B}, with i € [r] for stream (7).

With the sketches defined above, our algorithm can compute f; ; = L (B, B}»V) for
i,j € [r]; these are the 72 statistics used to bound L5 (D, D). The bound will be obtained
as a corollary of the following concentration inequality on the probability that many of the
fui j are much smaller than L5 (D, D").

Fix some 0 < a < 1 and p > 0. Write p* = L (D, D’). Assume m and m’ elements
have been read from streams (x;) and () respectively. For i, j € [r] let Z; ; be an indicator
random variable of the event “L&(B;, Bj,) < (1 —a)u”. Let Z = > ijep] Zig-

Theorem 4 Suppose u < p*. Then, for any0 <n <1, a > 8v/u, and m,m’ large enough,

"2 —8v)t
PIZ > n?) < (4 + 400(7”;2:”) exp (—2M min {cl(au - 81/)2,02W}> :

where M = mm/(v/m~+vVm/) "2, cg = 384, c1 = 2/(1+/c), and c2 = (1—c1)*/(c1 +/c1)?.

The main difficulty in the proof of this theorem is the strong dependence between
random variables Z; ;, which precludes straightforward application of usual concentration
inequalities for sums of independent random variables. In particular, there are two types
of dependencies that need to be taken into account: first, if B; , is a bad bootstrap sample
because it contains too many copies of some examples, then probably another Bj, is bad
because it has too few copies of these same examples; and second, if fi; ; is a far-off estimate
of p*, then it is likely that other estimates fi; j» are also bad estimates of p*. Our proof
tackles the latter kind of dependency via a decoupling argument. To deal with the former
dependencies we use the Efron—Stein inequality to bound the variance of a general function
of independent random variables.

From this concentration inequality, upper bounds for p* in terms of the statistics fi; j can
be derived. Let us write /iy < ... < fi,2 for the ascending sequence of statistics {i; ; }i,je[r}~
Each of these statistics yields a bound for pu* with different accuracy. Putting these bounds
together one gets the following result.

Corollary 5 With probability at least 1 — 6, if m,m’ are large enough then it holds that

| 1 K, ./(6v)? Ky
< 8 N In 2k In 2k
AUS DD e SV max g g o T s\ ol s )

where Ky, = 412 + 400(m + m/)?r® /K2,
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4. Adaptive State-Merging with Streaming Data

In this section we present our algorithm for learning distributions over strings from a stream.
The algorithm learns a PDFA by adaptatively performing statistical tests in order to dis-
cover new states in the automata and merge similar states. The procedure requires as input
a guess on the number of states in the target and its distinguishability parameter. We will
show that when this guesses are accurate, then the algorithm is in fact a PAC-learner for
PDFA in the streaming setting.

Here we assume the distribution generating the stream is stationary. The algorithm will
read successive strings over X from a data stream and, after some time, output a PDFA. We
will show that if the stream comes from a PDFA with at most n states and distinguishability
larger than g, then the output will be accurate with high probability.

We begin with an informal description of the algorithm, which is complemented by the
pseudocode in Algorithm 1. The algorithm follows a structure similar to other state-merging
algorithms, though here tests to determine similarity between states are performed adap-
tively as examples arrive. Furthermore, Prefix-Space-Saving sketches are used in order to
keep in memory only the relevant parts of the observed sample needed for testing purposes.

Algorithm 1: ASMS procedure

Input: Parameters n, u,,e,9, L, r
Data: A stream of strings x1,xs,... € 2*
Output: A hypothesis H

initialize H with safe ¢y;

foreach o € 3 do

add a candidate ¢, to H;

t0 <0, t5 < 128, t% < (64n|X| /) In(2/d"), iy < 1;
end

foreach string x; in the stream do

foreach decomposition x; = wz, with w,z € ¥* do
if g is defined then

add z to S’w;
if ¢y is a candidate and |S,| > 5, then call STest(qy, i, );
end

end
foreach candidate q,, do
if ¢, >t then
if |Sy,|/(t —t2) < (3¢)/(8n|3|) then declare ¢, insignificant;
else t¥ « tit + (64n|X|/e) In2;
end

end
if H has more than n safes or there are no candidates left then return H;
end
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Algorithm 2: STest procedure

Input: A candidate g,

foreach safe g, not marked as distinct from q,, do
fuo <= L(Sw, Sur, i, /2);
iy <= U(Sw, Swr iy, /2);
if jiy > 0 then mark ¢, as distinct from ¢,;
else if (i, < p then merge ¢, to g, and return;
else ty, < 215, iy ¢ 1y + 15
end
f qu is marked distinct from all safes then
promote ¢, to safe;
foreach o € 3 do
add a candidate ¢, to H;
0t 15 128, %t + (64n|3|/e)In(2/6"), iwe < 1;

» Ywo » Ywo

o

end

end

Our algorithm requires some parameters as input: the usual accuracy € and confidence
0, a finite alphabet X, a number of states n, a distinguishability parameter p, an upper
bound L on the expected length of strings generated from any state, and the size r of the
bootstrapping sketch. The algorithm, which is called ASMS(n, u, ¥, €, 9, L, ), reads data from
a stream of strings over 3. At all times it keeps a hypothesis represented by a directed graph
where each arc is labeled by a symbol in X. The nodes in the graph (also called states) are
divided into three kinds: safes, candidates, and insignificants, with a distinguished initial
safe node denoted by gy. The arcs are labeled in such a way that, for each o € X, there is
at most one arc labeled by o leaving each node. Candidate and insignificant nodes have no
arc leaving them. To each string w € ¥* we may be able to associate a state by starting
at ¢, and successively traversing the arcs labeled by the symbols forming w in order. If all
transitions are defined, the last node reached is denoted by ¢, otherwise ¢, is undefined —
note that by this procedure different strings w and w’ may yield g, = qu.

For each state g, ASMS keeps a multiset S,, of strings. These multisets grow with the
number of strings processed by the algorithm and are used to keep statistical information
about the distribution D, . In fact, since the algorithm only needs information from fre-
quent prefixes in the multiset, it does not need to keep the full multiset in memory. Instead,
it uses a set of sketches to keep the relevant information for each state. We use S, to denote
the information contained in these sketches associated with state q,. This set of sketches
contains a PrefSpSv([64/4]) sketch to which the algorithm inserts the suffix of every ob-
served string that reaches g,. Furthermore, S,, contains another r sketches of the form
PrefSpSv([64/u]); these are filled using the bootstrapping scheme described in Section 3.3.
We use |S,| to denote the number of strings inserted into the sketches associated with state
G-

Execution starts from a graph consisting of a single safe node ¢y and several candidates
¢s, one for each o € X. Each element z; in the stream is then processed in turn: for each
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prefix w of x; = wz that leads to a node ¢, in the graph, the corresponding suffix z is added
to the state’s sketch. During this process, similarity and insignificance tests are performed
on candidate nodes in the graph following a certain schedule; the former are triggered by the
sketch’s size reaching a certain threshold, while the latter occur at fixed intervals after the
node’s creation. In particular, t?U denotes the time state g, was created, ¢;, is a threshold
on the size \S’w| that will trigger the next round of similarity tests, and ¢, is the time the
next insignificance test will occur. Parameter i,, keeps track of the number of similarity
tests performed for state ¢,,. These numbers are used to adjust confidences in tests by using
the convergent series defined by &; = 66'/7%i%, where ¢’ = 6/2|3|n(n + 1).

Insignificance tests are used to check whether the probability that a string traverses
the arc reaching a particular candidate is below a certain threshold; it is known that these
transitions can be safely ignored when learning a PDFA. Similarity tests use statistical
information from a candidate’s sketch to determine whether it equals some already existing
safe or it is different from all safes in the graph. Pseudocode for the similarity test used
in ASMS is given in Algorithm 2. It uses two functions £ and U that given the sketches
associated with two states compute lower and upper bounds to the true distance between
the distributions on the states that hold with a given confidence. These functions can
be easily derived from Proposition 3 and Corollary 5. We assume that when the size
assumptions in Corollary 5 are not satisfied, U returns 1.

A candidate node will exist until it is promoted to safe, merged to another safe, or
declared insignificant. When a candidate is merged to a safe, the sketches associated with
that candidate are discarded. The algorithm will end whenever there are no candidates left,
or when the number of safe states surpasses the given parameter n.

4.1. Analysis

Now we proceed to analyze the ASMS algorithm. Our first result is about memory and
number of examples used by the algorithm. Note the result applies to any stream generated
i.i.d. from a probability distribution over strings with expected length L, not necessarily a
PDFA.

Theorem 6 The following hold for any call to ASMS(n, pu, ¥, e,9, L, r):
1. The algorithm uses memory O(n|S|Lr /)
2. The expected number of elements read from the stream is at most O(n2|S|? /eu?)

3. Each item in the stream is processed in 5(7"L) expected amortized time

We want to remark here that item (3) above is a direct consequence of the scheduling
policy used by ASMS in order to perform similarity tests adaptatively. The relevant point is
that the ratio between executed tests and processed examples is O(logt/t) = o(1). In fact,
by performing tests more often while keeping the tests/examples ratio to o(1), one could
obtain an algorithm that converges slightly faster, but has a larger (though still constant)
amortized processing time per item.

Our next theorem is a PAC-learning result. It says that if the stream is generated by
a PDFA and the parameters supplied to ASMS are accurate, then the resulting hypothesis
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will have small error with high probability when transition probabilities are estimated with
enough accuracy. Procedures to perform this estimation have been analyzed in detail in the
literature. Furthermore, the adaptation to the streaming setting is straightforward. We use
an analysis from (Palmer, 2008) in order to prove our theorem.

Theorem 7 Given a stream generated from a PDFA T with n states, distinguishability p,
and expected length from all states L, let H denote the hypothesis returned by a call to
ASMS(n/, p', X, €,0,r, L") with n' > n, p' < p, and L' > L. If H denotes a PDFA obtained
from H by estimating its transition probabilities with O(n*|S|*/e3) exzamples, then with
probability at least 1 — & we have Ly (T, H) < ¢.

The proof of Theorem 7 is similar to those learning proofs in Clark and Thollard (2004);
Palmer and Goldberg (2007); Castro and Gavalda (2008). Therefore, we only discuss in
detail those lemmas involved in the proof which are significantly different from the batch
setting. In particular, we focus on the effect of the sketch on the estimations used in the
test, and on the adaptive test scheduling policy. The rest of the proof is quite standard:
first show that the algorithm recovers a transition graph isomorphic to a subgraph of the
target containing all relevant states and transitions, and then bound the overall error in
terms of the error in transition probabilities. We note that by using a slightly different
notion of unsignificant state and applying a smoothing opertion after learning a PDFA, our
algorithm could also learn PDFA under the more strict KL divergence.

The next two lemmas establish the correctness of the structure recovered: with high
probability, merges and promotions are correct, and no non-insignificant candidate nodes
are marked as insignificant.

Lemma 8 With probability at least 1 — n?|%|0, all transitions between safe states are cor-
rect.

Following Palmer and Goldberg (2007), we say a state in a PDFA is insignificant if
a random string passes through that state with probability less than £/2n|3|; the same
applies to transitions. It can be proved that a subgraph from a PDFA that contains all
its non-insignificant states and transitions fails to accept a set of strings accepted by the
original PDFA of total probability at most /4.

Lemma 9 With probability at least 1 — n|X|d" no significant candidate will be marked in-
significant and all insignificant candidates with probability less than e/4n|X| will be marked
insignificant during its first insignificance test.

Though the algorithm would be equally correct if only a single insignificance test was
performed for each candidate state, the scheme followed here ensures the algorithm will
terminate even when the distribution generating the stream changes during the execution
and some candidate that was significant w.r.t. the previous target is insignificant w.r.t. to
the new one.

With the results proved so far we can see that, with probability at least 1 — §/2, the
set of strings in the support of T not accepted by H have probability at most €/4 w.r.t.
Dr. Together with the guarantees on the probability estimations of H provided by Palmer
(2008), we can see that with probability at least 1 — § we have Ly (T, H) < ¢.
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Structure inference and probabilities estimation are presented here as two different
phases of the learning process for clarity and ease of exposition. However, probabilities
could be incrementaly estimated during the structure inference phase by counting the num-
ber of times each arc is used by the examples we observe in the stream, provided a final
probability estimation phase is run to ensure that probabilites estimated for the last added
transitions are also correct.

5. Experiments

This section describes experiments performed with a proof-of-concept implementation of
our algorithm. The main goal of our experiments was to showcase the speed and memory
profile of our algorithm, and the benefits of using a bootstrap test versus a VC-based test.

Data used for the experiments was generated using a PDFA over the Reber grammar,
a widely used benchmark in the Grammatical Inference community for regular language
learning algorithms (de la Higuera, 2010). Table 1 summarizes the basic parameters of this
target. We set ¢ = 0.1 and § = 0.05 in our experiments experiments.

Our experiment compares the performance of ASMS using a test based on VC bounds
against the same algorithm using a test based on bootstrapping. We run ASMS with the
true parameters for the Reber grammar with an input stream generated by this PDFA. In
the algorithm using a bootstrapped test we set r = 10.

In Figure 1 we plot the number of safes and candidates in the hypothesis against number
of examples processed for both executions. We observe that the test based on bootstrapping
identified all six safes and performed all necessary merges about half the examples required
by the test based on VC bounds.

Table 2 shows processing time and memory used by both executions, where we can see
that, as expected, the algorithm using the bootstrap sketch requires more memory and
processing time. We also note that without using the boostrapped test, ASMS is extremely
fast and has a very low memory profile.

We note that the number of examples consumed by the algorithm until convergence is
at least one order of magnitude larger than reported sample sizes required for correct graph
identification in batch state-merging algorithms (Carrasco and Oncina, 1994; Castro and
Gavalda, 2008). However, one has to keep in mind that our algorithm can only make one
pass over the sample and is not allowed to store it. Thus, every time a state is promoted
from candidate to safe, |X| candidates attached to the new safe are created, each having an
empty set of sketches. Among these new candidates, the non-insignificant need to have their
sketches populated with a large enough sample before a merging or promoting decision can
be made; this population will happen at a rate proportional to the probability of traversing
the particular edge that reaches each particular candidate. Owverall, it is clear that the
restrictions imposed by the streaming setting must introduce a non-negligible overhead in
the minimum number of examples required for correct graph identification in comparison
with the batch setting. Though it seems hard to precisely quantify this overhead, we
believe that our algorithm may be working within a reasonable factor of this lower bound.
Furthermore, we would like to note that in this particular example our algorithm used one
order of magnitude less examples than n?|%|?/eu? = 225000, the asymptotic upper bound
given in Theorem 6.
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Table 1: Parameters of the Reber Grammar
X[ |n| p| L
516102 7.6

Table 2: Experimental results with ASMS

Examples | Memory (MiB) | Time (s)
VC 57617 6.1 3.2
BS 23844 53.7 30.8

6. Future Work

As future work, we would like to parallelize our implementation and perform large-scale
experiments with real data. This will be very important in order to exploit the full benefits
of our approach.

Our algorithm can be extended to incorporate a change detection module. This would
allow the algorithm to adapt to changes in the target distribution and modify the relevant
parts of its current hypothesis. This can be complemented with an efficient search strategy
to determine the true number of states and distinguishability of the target PDFA generating
the stream, which may also change over time. Altogether, these extensions yield a complete
solution to the problem of learning a distribution over strings that changes over time in the
data streams framework.
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