
JMLR: Workshop and Conference Proceedings 21:69–83, 2012 The 11th ICGI

Integrating Grammatical Inference into Robotic Planning∗

Jane Chandlee janemc@udel.edu

Jie Fu jiefu@udel.edu

Konstantinos Karydis kkaryd@udel.edu

Cesar Koirala koirala@udel.edu

Jeffrey Heinz heinz@udel.edu

Herbert Tanner btanner@udel.edu

University of Delaware, Newark, DE

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

This paper presents a method for the control synthesis of robotic systems in an unknown,
dynamic, and adversarial environments. We (1) incorporate a grammatical inference mod-
ule that identifies the governing dynamics of the adversarial environment and (2) utilize
game theory to compute a motion plan for a system given a task specification. The frame-
work is flexible and modular since different games can be formulated for different system
objectives and different grammatical inference algorithms can be utilized depending on the
abstract nature of the dynamic environment.

Keywords: motion planning, robotics, infinite games, grammatical inference, automata.

1. Introduction

This paper shows how grammatical inference (GI) and game-theoretic techniques can be
jointly utilized for robotic planning. The planning problem is to find a sequence of robot
maneuvers (implemented by existing low-level controllers) to complete a desired task. When
the environment in which the robot is operating is unknown, dynamic, and possibly adver-
sarial, GI can enable the robot to learn from experience and improve its planning capability
over time. Our hypothesis is that under certain technical conditions, this improvement
indeed takes place and the robot can devise strategies that are guaranteed to accomplish
the task—despite the dynamic, potentially adversarial environment.

Research in robotic planning largely addresses the problem of planning when the en-
vironment is static (Piterman and Pnueli, 2006; Belta et al., 2007; Lahijanian et al., 2010;
Wongpiromsarn et al., 2010; Kress-Gazit et al., 2011; LaViers et al., 2011). As for learn-
ing, in robotics it has been used primarily for adjusting parameters in the robot’s mod-
els or control laws during the robot’s interaction with its environment. The learning
methodologies are based primarily on reinforcement learning, applied to a wide variety of
problems, including multi-agent coordination (Matarić, 1997), walking (Byl and Tedrake,
2009), humanoid robots (Peters et al., 2003), varying-terrain wheeled robot navigation
(Brunskill et al., 2009), and unmanned aerial vehicle control (Abbeel et al., 2010). The

∗ We thank the anonymous reviewers for useful questions and suggestions. This research is supported by
grant #1035577 from the United States National Science Foundation.

c© 2012 J. Chandlee, J. Fu, K. Karydis, C. Koirala, J. Heinz & H. Tanner.

Chandlee Fu Karydis Koirala Heinz Tanner

robot(s)environment

abstraction

control

planninglearning

transition
system

transition

system
environment

actuators

sensors

specification× ×

abstraction

identification

?

(a) The architecture.

1 2
3

4

a

b c

d

e f

(b) The room visiting game.

Figure 1: The architecture of robotic planning with a module for grammatical inference (a) and the
application example in the form of a noncooperative game (b).

use of grammatical inference as a learning mechanism in robotics has been limited (with a
few exceptions, see Luzeaux (1996); Dean et al. (1992); Rivest and Schapire (1993); Rieger
(1995); Schmill et al. (2000); Krishnaswamy et al. (2011); Chen et al. (2012)). The afore-
mentioned learning techniques operate typically on discrete models, like a Markov chain
or a transition system. Other research on planning has focused on establishing formal
(rather than heuristic) relationships between the concrete domain of continuous system
dynamics in which behaviors are expressed in terms of differential equations, and the dis-
crete world of automata and transition systems (Tanner et al., 2012; Fainekos et al., 2009;
Kloetzer and Belta, 2007; Pola et al., 2008). These relationships are needed to ensure that
policies computed at the discrete level can always be implemented at the finer level of con-
tinuous dynamics. At the higher level, a planner computes a discrete plan which ensures
the completion of the task or the satisfaction of a specification expressed in some formal
logic, and then the formal abstraction interfaces translate the plan into control laws for the
lower-level continuous dynamics.

This paper assumes the actual low-level dynamics are given, and the challenge is to
compose them temporally so that a specification is met in the presence of unknown—but
rule-governed—environment dynamics. The proposed solution utilizes GI within the overall
architecture depicted in Figure 1(a). We envision a flexible and modular robotic system
which includes a grammatical inference module. The robot interacts with its environment
through its sensors and actuators. Both the robot and its environment are modeled as
hybrid dynamical systems (represented as ovals) and are assumed to admit discrete ab-
stractions in the form of some finite-state system (dashed rectangles). The robotic system
(enclosed inside the solid rectangle) has a certain objective, encoded in the form of a task
specification. The robot, equipped with an abstraction of its dynamics, the specification,
and its perception (theory of mind) of its environment, plans its actions and implements
them via some control loops. The same sensory data used by the robot’s low level controllers
serve as input to the GI module. With this information, the robot refines the abstract model
of its environment through a GI algorithm which learns the discrete environment dynamics
under some learning criterion. An important contribution of this paper is to present and
analyze such a system in the context of well-known and well-understood GI algorithms.

70

Integrating GI into Robotic Planning

This architecture is illustrated and analyzed with respect to a simple scenario introduced
in §3. In this scenario, the robot’s task is to visit each of four rooms (see Figure 1(b))
connected with doors (marked with the letters a,. . . ,f in the figure). Doors can be open or
closed (like e and b in Figure 1(b)) by an adversary of the robot that is operating under
constraints unknown to the robot. Once the robot has learned these constraints, it outwits
the agent whenever a strategy for completing the task exists. The term strategy indicates
our approach to the planning problem from the viewpoint of game theory: the scenario can
be formulated as a two-player zero-sum game with the robot and adversary as players. The
game theoretic analysis offers algorithms for the robot to make the best planning decisions.
This analysis is presented in §3 and its interaction with the GI module is described in §4.

2. Preliminaries

2.1. Languages, Automata and Game Theory

Let Σ denote a fixed, finite alphabet, and Σn, Σ≤n, Σ∗, Σω be sequences over this alphabet
of length n, of length less than or equal to n, of any finite length, and of infinite length,
respectively. The empty string is denoted λ, and the length of string w is denoted |w|. A
language L is a subset of Σ∗. For all w = σ1σ2 · · · σn ∈ Σ∗, the shuffle ideal of w is defined
as SI(w) := Σ∗σ1Σ

∗σ2 · · ·Σ
∗σnΣ

∗. A string u is a factor of string w iff ∃x, y ∈ Σ∗ such
that w = xuy. If in addition |u| = k then u is a k-factor of w. The function Fk maps words
to the set of k-factors within them: Fk(w) := {u : u is a k-factor of w}. This function is
extended to languages as Fk(L) :=

⋃

w∈L Fk(w).
A positive text S of a language L is a total function S : N → L ∪ {#} (# is a ‘pause’)

such that for every w ∈ L, there exists n ∈ N such that S(n) = w. Let Si denote the first
i elements of S. A learner φ is an algorithm which maps finite initial portions of positive
texts to grammars. The learner φ identifies a class of languages L in the limit from positive
data iff for all L ∈ L, for all positive texts S for L, there is some i ∈ N such that for all
j > i, φ(Sj) = φ(Si) is a grammar generating exactly L. A language class with such a φ is
identifiable in the limit from positive data.

A semiautomaton (SA) is a tuple A = 〈Q,Σ, T 〉 where Q is the set of states, Σ is
the set of alphabet symbols and the transition relation is T : Q × (Σ ∪ {λ}) → Q. The
transition relation is expanded recursively in the usual way. If T (q, w) 6= ∅, we write
T (q, σ) ↓; otherwise T (q, σ) ↑. A word w is admissible in A if there exist q1, q2 ∈ Q
such that T (q1, w) = q2. A finite state acceptor (FSA) is a tuple A = 〈A, I, F 〉 where
A = 〈Q,Σ, T 〉 is a SA and I, F ⊆ Q are the initial and final states, respectively. The
language accepted by the FSA is L(A) = {w | T (I, w) ∩ F 6= ∅}. A discrete event system
(DES) (Cassandras and Lafortune, 1999) is an FSA equipped with an active event function
Γ : Q → 2Σ, which singles out the labels of the defined outgoing transitions at each state:
Γ(q) = {σ | T (q, σ) ↓, σ ∈ Σ}. The activation function is practically redundant, since all the
information is included in the transition function; its introduction does, however, simplify
notation occasionally. For this reason we will abuse the definition of a SA at places and
implicitly equip this machine with an activation function as well.

A game G(X) on Σ is a set X ⊂ Σω. A play in the game is a word x = w0w1 . . . ∈ Σω

in which two players alternate so that player 1 plays w0, player 2 plays w1, etc. Player
1 wins the play if x ∈ X; otherwise player 2 wins. A strategy for player 1 is a function

71

Chandlee Fu Karydis Koirala Heinz Tanner

f : (Σ2)∗ → Σ from the set of words of even length into Σ. A strategy for player 2 is
a function g : (Σ2)∗Σ → Σ from the set of words of odd length into Σ. Strategy f is a
winning strategy for player 1 if for any infinite word x = w0w1 . . . such that for all n ≥ 0,
w2n = f(w0 . . . w2n−1) it is the case that x ∈ X. In other words, f is winning if it ensures
the victory of player 1 as long as player 1 adheres to it. A game is determined if one of the
players has a winning strategy.

2.2. Hybrid Dynamical Systems

A hybrid system is a dynamical process involving states that take values in a continuous
domain and evolve according to some differential equations, and states that take discrete
values and change based on some discrete logic. A hybrid system H is defined as a tuple of
objects (Lygeros et al., 2003) that includes the domains of continuous and discrete variables,
the subsets of initial states in those domains, the description of the family of continuous dy-
namics parameterized by the discrete states, and rules for resetting continuous and discrete
states and switching between the members of the family of continuous dynamics.

The present analysis focuses on a specific class of hybrid systems wherein the continuous
dynamics have specific (set) attractors, the shape and location of which are dependent
on a finite set of parameters that are selected by the system’s supervisor (Tanner et al.,
2012). By judiciously selecting the parameters, a controller activates a specific sequence of
continuous and discrete transitions, steering the hybrid system H from a given initial state
to a final desired state. Tanner et al. (2012) describe an abstraction process which derives
a SA which is observably bisimilar (Stirling, 1996) to H; in other words, the sequences of
discrete modes executed by H can be matched by words admissible in the SA, modulo some
subset of symbols in Σ that are thought of as silent, and vice versa. Moreover, the abstract
system that is derived in Tanner et al. (2012) is deterministic in transitions, as ensured by
the convergence of vector fields for each discrete mode.

3. Game Theoretic Analysis

3.1. Constructing the game

In a game theory formulation the behaviors of the two competing players can be modeled as
SAs. Let these SAs be A1 = 〈Q1,Σ1, T1〉 for player 1 and A2 = 〈Q2,Σ2, T2〉 for player 2. In
the example case study considered here, there are two players: the robot and its adversary.
Time is discretized into turns, and agents alternate taking turns and making their moves.
During its turn, the robot chooses an adjacent room with an open door. The adversary can
open exactly one door and close exactly one, provided that the two doors closed belong to a
predetermined list. This list is a parameter of the game (example configurations are shown
in Table 1). The SA for the robot, A1, is shown in Figure 2(a), while the behavior of the
adversary in the Opposite configuration (Table 1), A2, is depicted in Figure 2(b). In A1,
there is one state for each room and each transition is labeled with the room the robot is
going into. In A2, the states correspond to pairs of doors currently closed, and a transition
label indicates the pair of doors that are subsequently closed.

In the robotics literature, task specifications are typically given in higher-level for-
malisms which are translated into a Kripke structure (Belta et al., 2007), essentially a finite

72

Integrating GI into Robotic Planning

Opposite Only opposite doors can be closed at any time:
{a, d}, {a, e}, {a, f}, {b, f}, {c, e}, {e, f}

Adjacent Only adjacent doors can be closed at any time:
{a, b}, {a, c}, {b, c}, {b, d}, {b, e}, {c, d}, {c, f}, {d, e}, {d, f}

General Any pair of doors can be closed at any time

Table 1: Rules for the adversary (controlling the doors).

1 2

34

2

1

1
3

4 1 3 2

4

2

4

3

(a) The robot SA, A1.

ad af

bf

ef

ad af bf

ef

. . .

. . .

. . .

. . .

. . .

af

ad ef

af

bf

af

efbf

(b) The adversary SA (part of) A2.

Figure 2: Semiautomata for the robot (left) and for a fragment of the adversary (right).

SA with marked initial states, which is also equipped with a function labeling each state
with a set of atomic propositions that are true there (Clarke Jr. et al., 1999). Different
task specifications result in different types of games, such as a reachability game where
X ∈ (Σ1 ∪ Σ2)

∗, or a Büchi game where X ∈ (Σ1 ∪ Σ2)
ω.

In the example scenario, the robot needs to visit all four rooms in any order; this
specification is expressed as the union of shuffle ideals of the permutations of 1234.1 A
fragment of the FSA As representing this specification is shown in Figure 3. With these

0 1

13

12

134

123

124

.

1234

1

3

2

4

3

4

2

3

4

2

x x,1
x,1,2

x,1,3

x,1,2,3

x,1,3,4

x,1,2,4

x,1,2,3,4

Figure 3: Fragment of the specification automaton As, in which x = Σ2.

three ingredients in place—A1, A2 and As—we define what we call the turn-based product,
through which we construct a bipartite graph that expresses the moves players can make in
alternation. The standard product of the bipartite graph with the specification yields the
representation of the game.

Note that a move by one player may influence a move of the other; this is captured
by the interacting functions Ui : Qi × Qj → 2Σj , (i, j) ∈ {(1, 2), (2, 1)}, which for each
player i, single out the transitions that the other player cannot take. For example, when
the adversary closes a door, the robot cannot go through it on its next turn.

1. This whole operation of constructing such an FSA can be fully automated.

73

Chandlee Fu Karydis Koirala Heinz Tanner

Definition 1 (Turn-based product) Given two semiautomata A1 = 〈Q1,Σ1, T1〉 and
A2 = 〈Q2,Σ2, T2〉 with interacting functions U1, U2, the turn-based product P = A1 ◦ A2

can be obtained as follows: (i) for each Ai, i = 1, 2, add a state 0 and transitions Ti(0, λ) =
qi,∀qi ∈ Qi. The set of states in P is Qp = (Q1 ∪ {0}) × (Q2 ∪ {0}) × {0, 1}; (ii) Σ1 ∪ Σ2

is the alphabet; and (iii) T is the transition relation defined as follows:

• T
(

(0, 0, c), σ
)

=

{

(T1(0, λσ), 0, 0) if c = 1, σ ∈ Σ1

(0, T2(0, λσ), 1) if c = 0, σ ∈ Σ2

• T
(

(q, 0, 0), σ
)

=
(

q, T2(0, λσ), 1
)

if σ ∈ Σ2

• T
(

(0, q, 1), σ
)

=
(

T1(0, λσ), q, 0
)

if σ ∈ Σ1

• For q1 ∈ Q1 and q2 ∈ Q2,
2

T
(

(q1, q2, c), σ
)

=

{

(T1(q1, σ), q2, 0) if c = 1, σ ∈ Γ(q1;A1) ∩ {Σ1 \ U2(q2, q1)}

(q1, T2(q2, σ), 1) if c = 0, σ ∈ Γ(q2;A2) ∩ {Σ2 \ U1(q1, q2)}
.

The construction of Definition 1 is an important step for defining a two-player turn-based
game as a run in an FSA. The turn-based product involves a binary variable, or “coin” c
which keeps track of whose turn it is: c = 1 if player 1 is to play, c = 0 if player 2 moves
next. A fragment of the A1 ◦ A2 for our example is shown in Figure 4. The machine being

(0,0,1) (1,0,0) (1,ad,1)

(4,ad,0)

(3,ad,0) (3,af,1)

(4,af,1)

(2,af,0)

(4,af,0)

(1,af,0)

(3,af,0)

... ...

...

...

...

...

...

...

...

...

...

...

...

... ...

...
1 ad

4
3

af

af

1

2
4

1
3

Figure 4: Fragment of turn-based product P = A1 ◦A2 for the robot and its adversary.

at state (r, d1d2, c) means the robot is in room r, doors d1 and d2 are closed, and c indicates
whose turn it is. We define a set of legitimate initial states of the turn-based product as
I ⊆ Q, which is the set of possible configurations the game can be initialized from. By
taking I as the set of legitimate initial states and setting all states final, we can obtain a
non-deterministic FSA: (A1 ◦ A2)

0 = 〈A1 ◦ A2, I,Qp〉.
3 Then, we can embed the winning

condition into the game by taking the intersection of (A1 ◦A2)
0 and the specification FSA

As. The outcome of this operation is the game automaton.

Definition 2 (Game automaton) The game automaton is a FSA and is defined as G =
〈Q,Σ, T,Q0, F 〉 = (A1 ◦ A2)

0 × As where (A1 ◦ A2)
0 = 〈A1 ◦ A2, I,Qp〉, Ai = 〈Qi,Σi, Ti〉

i = 1, 2 represent the players’ behaviors, I is the set of legitimate initial states and the set
of final states includes all states in A1 ◦ A2. The FSA As = 〈Qs,Σ, Ts, q0s, Fs〉 encodes the
winning conditions for player 1.

A fragment of the game automaton for the room visiting game is shown in Figure 5.

2. In what follows, Γ(q;A) denotes the Γ(q) map of A.
3. (A1 ◦A2)

0 is non-deterministic because of the existence of multiple initial states and is deterministic in
transitions.

74

Integrating GI into Robotic Planning

(1,ad,1),1
(4,ad,0),14

(3,ad,0),13

(3,af,1),13

(4,af,1),14

(1,af,0),13

(2,af,0),123

(4,af,0),124

(1,af,0),14

(3,af,0),134
...

...

...

...

...

...

...

...

...

...

...

......

...

...

...4
3

af

af

1

2
4

1
3

Figure 5: Fragment of the game automaton G = (A1 ◦ A2)
0 × As for the door-robot game, where

the set of legitimate initial states is I = {(q1, q2, 1) | q1 ∈ Q1, q2 ∈ Q2}.

3.2. Computing the winning strategy

Since the task specification is described as a regular set, the game is a reachability game
(Thomas, 2002) and is determined. The control synthesis problem has been converted into
computing the winning strategy for player 1 in the game. The following result is obtained by
adapting the computation of strategy in a two-player zero-sum game in (Perrin and Éric Pin,
2004; Mazala, 2001).

Let G = 〈Q,Σ, T,Q0, F 〉 be a game automaton where Q0 ⊆ Q is the set of possible
initial states for the game and F ⊆ Q is the subset of the states in which player 1 has won
the game. Let Γ be its event activation function. Then the attractor of F , denoted Attr(F),
is the largest set of states W ⊇ F in G from which player 1 can force the play into F . It is
defined recursively as follows. Let W0 = F and define

Wi+1 = Wi ∪ {q =
(

(q1, q2, 1), qs
)

∈ Q | for some σ ∈ Γ(q), T (q, σ) ∈Wi}

∪ {q =
(

(q1, q2, 0), qs
)

∈ Q | for all σ ∈ Γ(q), T (q, σ) ∈Wi} . (1)

Since G is finite, there exists the smallest m ∈ N such that Wm+1 = Wm. Then Attr(F) =
Wm. On the other hand, since G is determined, the complement of Attr(F) forms a trap for
player 1; it contains all the states from which player 2 can prevent player 1 from winning
the game. By construction, therefore, the following theorem is proved:

Theorem 3 Player 1 has a winning strategy iff Attr(F) ∩Q0 6= ∅.

If Attr(F) = Wm ∩ Q0 6= ∅, we can ensure that for a particular initial state q0 ∈
Attr(F) ∩ Q0, there exists a winning strategy WS1 for player 1: WS1 : Q → 2Σ1 defined
as WS1(q) = {σ | q =

(

(q1, q2, 1), qs
)

, σ ∈ Γ(q), T (q, σ) ∈ Attr(F)}. This winning strategy
is not necessarily optimal, i.e., the one involving the least number of moves. To compute
an optimal winning strategy, partition Wm into a set of subsets Vi, i = 0, . . . ,m in the
following way: let V0 = W0 = F and set Vi := Wi \Wi−1, for all i ∈ {1, . . . ,m}. The sets
Vi partition the attractor into layers.

Lemma 4 For each q ∈ Vi+1, i = 0, . . . ,m− 1, there exists at least one σ ∈ Γ(q) such that
q′ = T (q, σ) ∈ Vi. Moreover, if at q it is player 2’s turn, then for each σ ∈ Γ(q), there is a
j ≤ i such that T (q, σ) ∈ Vj .

75

Chandlee Fu Karydis Koirala Heinz Tanner

Proof Let q ∈ Vi+1. According to (1), either (i) it is player 1’s turn and so ∃σ ∈ Γ(q) :
T (q, σ) ∈ Wi, or (ii) it is player 2’s turn and ∀σ ∈ Γ(q), T (q, σ) ∈ Wi. Consider player
1’s turn and suppose there exists k < i, T (q, σ) ∈ Vk. Then according to (1), q belongs to
Vk+1. But since the sets Vi partition the states of the attractor, Vk+1∩Vi+1 = ∅ since k 6= i.
This contradicts the assumption that q is also in Vi+1. Thus T (q, σ) 6∈ Wi−1 and belongs
instead to Vi. When it is player 2’s turn, the same argument shows there exists at least one
σ such that T (q, σ) = Vi. Additionally, if it is player 2’s move at state q, and σ ∈ Γ(q) with
T (q, σ) /∈ Vi, then it follows that T (q, σ) ∈ Vj for some j < i because T (q, σ) ∈Wi.

Lemma 4 suggests that if the current state is in player 1’s attractor, then the move of player
1, and all moves of player 2, will lead to a state with rank strictly decreasing by at least 1.
It implies that at this stage the best player 2 can do is to slow down the victory of player
1 by selecting an action that results in a state with level decreased by 1.

Proposition 5 Suppose q0 =
(

(q1, q2, 1), qs0
)

and that q0 ∈ Vk for some k ≤ m. Then
player 1 wins the game in at most k turns following the strategy WS

∗
1, according to which

WS
∗
1(q) = {σ | T (q, σ) ∈ Vi−1, q ∈ Vi, i ≥ 1} . (2)

Proof Given a state q =
(

(q1, q2, 1), qs
)

∈ Vi, player 1 adhering to WS
∗
1 will choose σ∗ such

that T (q, σ∗) = q∗ for some q∗ ∈ Vi−1 (Lemma 4). At q∗ it is player’s 2 turn. Any move
also forces the game automaton to a state q′′ ∈ Vj for j < i− 1. Again by Lemma 4, player
2 can only slow player 1’s victory by selecting a σ such that j = i−2. It follows inductively
that player 1 wins in at most k turns.

It is suggested that WS
∗
1 ensures player 1 will win in a minimal number of steps, which is

crucial if a cost is associated with each action. Let us see how Proposition 5 applies to the
robotic case study we consider here, by looking at Figure 5. The winning set of states is
F = {(q, 1234) ∈ Q | q ∈ A1 ◦A2}; Attr(F) is obtained by computing the fixed-point of (1).
Space limitations prevent us from enumerating all the states in Attr(F), so we will only give
a winning path for the robot according to the winning strategy WS

∗
1, assuming that the rules

for the adversary correspond to the Opposite game configuration (Table 1) and that the
initial states lies in Q0 ∩Attr(F) = {

(

(1, ad, 1), 1
)

,
(

(1, ce, 1), 1
)

,
(

(2, ad, 1), 2
)

,
(

(2, bf, 1), 2
)

,
(

(4, ce, 1), 4
)

,
(

(4, bf, 1), 4
)

}.
Let us arbitrarily select q0 =

(

(1, ad, 1), 1
)

∈ Attr(F) ∩ Q0. Following WS
∗
1 of (2)

the robot’s fastest route (play) to victory is (1, ad, 1, 1)
4
→ (4, ad, 0, 14)

ae
→ (4, ae, 1, 14)

2
→

(2, ae, 0, 124)
ce
→ (2, ce, 1, 124)

1
→ (1, ce, 0, 124)

ef
→ (1, ef, 1, 124)

3
→ (3, ef, 0, 1234) .

On the other hand, in the cases of the Adjacent and General configurations (Table 1),
the robot cannot win no matter what the initial state is since in both cases Attr(F)∩Q0 = ∅.
In these game configurations, the robot player, even with perfect knowledge of the moves
the adversary can and cannot make, can never win.

4. The Grammatical Inference Module

4.1. Overview

The previous section outlined a methodology for computing optimal strategies (if they exist)
in noncooperative, adversarial games when the behavior of both players can be captured in

76

Integrating GI into Robotic Planning

the form of SAs. The computation of a winning strategy hinges on complete knowledge of
these behaviors. In this section, this assumption is relaxed such that only one player—the
adversary—has full knowledge of the rules of the game; the robotic player does not.

Instead, the robot is equipped with a GI module. Any GI algorithm (de la Higuera,
2010) can be plugged into the modular architecture developed here. Prior knowledge, if
available, can help select the particular algorithm. The behavior of the unknown environ-
ment becomes a positive learning text for the GI module. Inference over this text yields
an abstract model of the environment’s dynamics (Figure 1(a)). This model can then be
used to recompute the game and the attractor as described in §3. It is therefore guaranteed
that the robot’s theory of mind for the unknown adversary will eventually converge to the
true abstract model of the adversary, provided (i) the true model lies within the class of
models inferrable by the GI module, and (ii) the unknown environment’s behavior suffices
for a correct inference to be made (in other words, a characteristic sample for the target
language is observed).

4.2. Theory of Mind

The theory of mind refers to the ability of an agent to infer the mental (read: hidden,
unobservable) states of others (Frith and Frith, 2003; Premack and Woodruff, 1978). When
the robot begins planning, it is unaware of the capabilities of its adversary. Its initial theory
of mind about its adversary is that the latter is absent, or if present, cannot act at least in
a way that affects how it accomplishes its task.

In our toy example, this means the unsuspecting robot initially assumes that its envi-
ronment is static. If the game begins with doors e and b closed then the robot’s “theory of
mind” is that the doors e and b will remain closed and every other door will remain open.
Hence in the robot’s mind, the environment is a SA with only one state eb with a self-loop
labeled eb. The robot uses this hypothesized model for the adversary to compute the game,
based on which a strategy is computed. As outside observers, we see the robot entertains a
false belief about its environment. Therefore, the robot can easily make a move which keeps
it inside its hypothesized attractor, but which actually takes it outside the true attractor.
And once this mistake has been made, the adversary will win because it knows the true
nature of the game, and can therefore prevent the robot from visiting all four rooms.

This is where GI enters the picture. Our approach is to use GI to enable the robotic
player to incrementally construct an increasingly more accurate model of the behavior of
its adversary. We expect that as this model becomes more accurate, the planning efficacy
of the player increases. After a sufficient period of observation, it should be able to devise
strategies that enable it to succeed regardless of the play of its adversary, at least from
those initial starting positions where winning strategies for the robot exist.

4.3. Learning to play using strictly local models

A language L is Strictly k-Local (SLk) iff there exists a finite set S ⊆ Fk(⋊Σ∗
⋉), such that

L = {w ∈ Σ∗ : Fk(⋊w⋉) ⊆ S}. Languages which are SLk form a subclass of the regular
languages (McNaughton and Papert, 1971; Rogers and Pullum, 2011) with some interesting
and useful properties. For example, it is decidable a) whether the language of a regular
grammar is Strictly k-Local, and b) if so what the value k is (Trahtman, 1998).

77

Chandlee Fu Karydis Koirala Heinz Tanner

By combining the results of Caron (1998) and Trahtman (1998), we verified for all sets
of rules in Table 1 that the behavior of the adversary is a Strictly 2-Local (SL2) language.
(This is obvious from Figure 2(a) which is clearly a Myhill graph.)

Garcia et al. (1990) proved the following:

Theorem 6 (Garcia et al. (1990)) For every k, Strictly k-Local languages are identifi-
able in the limit from positive data.

The algorithm by Garcia et al. (1990) essentially constructs a prefix tree of the observed
strings, and then merges those states that have the same incoming path of length k− 1. A
functionally equivalent algorithm described in set-theoretic terms also exists (Heinz, 2010).

The implications of this theorem for the example scenario are that a robot equipped with
a Strictly 2-Local learner will eventually develop a true model of its adversarial environment
(assuming the adversary’s behavior is a positive text).

4.4. Simulation

Figure 6 serves as an illustration of the motion planning of a robot incorporated with a
GI. Through interacting with the environment, the robot employs GI to update its theory
of mind for the adversary A2 and then consequently the game G using the products, with
which a winning strategy is computed that determines its own action. We allow the game
to be played repeatedly with random initial game states. The convergence of GI ensures
that the robot’s strategy will converge to the true winning strategy.

Update WS
∗

1

Hypothesis for the game G0 G1 G2 · · · Gi · · · → G

↑ ↑ ↑ · · · ↑ · · ·

Adversary model A0

2
A1

2
A2

2
· · · Ai

2
· · · → A2

↑ ↑ ↑ · · · ↑ · · ·

Presentation S0 S1 S2 · · · Si · · ·

Figure 6: Motion planning with a grammatical inference module. The superscript i indicates that
the environment model and the game are updated as the game is played repeatedly.

Algorithm 1 shows how the simulation is implemented. In the simulation, the robot
and the adversary play intelligently: they move within their attractor if such a move is
available. If no such move exists for the robot, the game is restarted as the robot resigns.
Otherwise, if the state is in the robot’s attractor, the environment makes a move to slow
down the victory of the robot.4 When a game is restarted, the configuration stays the same,
the robot is randomly placed in an initial room and a permissible pair of doors is randomly
closed, but the model of the adversary (A2) is passed forward.

The robotic simulations use the Khepera IITM miniature wheeled mobile robot, whose
position and orientation feedback is provided by a motion capture system (VICONTM). The
robot’s wheels are internally controlled by PID loops. This enables simple motion primitives
(move straight, turn in place). This behavior can be formally captured as a hybrid system
of the form described by Tanner et al. (2012) (§2.2), which affords finite abstractions.

4. More intelligent choices exist which take us beyond the scope of this paper. For example, if the adversary
maintained a theory of what the robot player believed, it could choose to open and close doors in a manner
that would make the robot player take longer to converge to the true model of the adversary.

78

Integrating GI into Robotic Planning

Algorithm 1: Motion planning of the robot with a GI module through repeated games.
input : The abstract model A1, task specification As, and S0 = λ
output: A semiautomaton A2

Let i = 1, starting the first game with state q = (q1, q2, 1, q0s) and S1 = q2. The upper limit
on the number of turns in repeated games is set to N .
Attr(Q\F)← Attractor (G, Q\F); WS

∗
2 ← WinningStrategy (G,Attr(Q\F)); // The

strategy played by the adversary environment is computed by taking Q \ F
as the target states with the true game.

while t ≤ N do
Ai

2 ← BuildEnvModel (Si); ; // Constructing Ai
2 from presentation Si with GI.

Gi = 〈Q,Σ, T,Q0, F 〉 ← ComputeGame (Ai
2, A1, As)

Attr(F)← Attractor (Gi, F); WS
∗
1 ← WinningStrategy (Gi,Attr(F))

if q ∈ Attr(F) then
if q /∈ F then

a← RobotMove (WS
∗
1, q); q ← T (q, a); t← t+ 1;

if q /∈ F then
b← EnvMove (WS

∗
2, T (q, a)); Si+1 ← AddEnvMove (Si, b)

// The adversary makes a move to keep the game within its

own attractor, or if the state is not in its attractor, it

plays to slow down the victory of the robot.

i← i+ 1; t← t+ 1; q ← T (q, b)
end

end
if q ∈ F then Restart the game with a random initial state.

q = (q1, q2, 1, q0s)← Choice (Q0); Si+1 ←AddEnvMove (Si, q2)
end

else The robot resigns, and the game is restarted.
q = (q1, q2, 1, q0s)← Choice (Q0); Si+1 ←AddEnvMove (Si, q2)

end

end

Three robots each played 300 games in the Opposite configuration. Robot 1 had no
prior knowledge of the adversary and no GI module. Robot 2 was equipped with a GI
module. Robot 3 had complete prior knowledge of the adversary. Robot 1 lost every game;
robots 2 and 3 won 79 and 82 games, respectively. In this toy example, the incorporation
of an appropriate GI module allows robots to nearly reach their maximal potential.

5. Discussion

Our approach a) offers a game-theoretic framework for robotic planning in an unknown,
dynamic, but rule-governed environment, and b) demonstrates how the inclusion of a GI
module makes a difference in terms of the robot’s success. Moreover, the theory presented
is modular and flexible, in the sense that as long as the hypothesized abstract models of the
environment, the robot model, and the task specification are finite-state, the GI learning
algorithm is guaranteed to work. An additional desideratum would be to show that the

79

Chandlee Fu Karydis Koirala Heinz Tanner

theoretical analysis also provides practical procedures. In this brief discussion, we explain
why we are optimistic.

• The time complexity for computing the attractor Attr(F) is O(|Q| × Σ).

• The example game G consisted of 1008 states. While a concern about the size of G
becoming too large when more complex problems are considered is reasonable, we believe
there are representations of the game that enable the computation of the attractor (or
at least the next move) without requiring the utilization of the full state space.

• While § 4 suggests that the game automaton G = (A1 ◦A2)
0×As has to be recomputed

with every new hypothesis on A2, we anticipate the number of product operations actu-
ally required will remain quite limited since portions of G can be precompiled. This is
partly because A1 and As are known in advance and fixed. Indeed, aspects of A2 that
are known can also be precompiled. In our ongoing simulations, we avoid computing
the product at every instance by using a larger, more general representation of the game
with many of the transitions turned off.

The interaction of an adaptive agent with its environment as defined by a probablistic
process can alternatively be modeled as a Markov Decision Process (Watkins and Dayan,
1992), in which reinforcement learning (RL) is applied for the planning of the agent. In
the case of an agent-environment scenario, minimax Q-Learning (Littman, 1994), Nash-Q
(Hu and Wellman, 2003), Friends-or-Foe Q (Littman, 2001) and other extensions can decide
what action of the agent will maximize the reward over time. In the case of an adversarial
environment, certain conditions are necessary to prove convergence. Our formulation of the
agent-environment interaction is fundamentally different because (a) the environment is not
probabilistic and hence is not a Markov game; and consequently (b) the target of learning
is different: here we aim to learn a (class of) languages while RL is a stochastic process.
Moreover (c) it is unclear how to ensure that the agent will win in the shortest number
of actions in the setting of RL. Yet, this requirement can be crucial in agent-environment
interactions if costs are associated with actions in the dynamical system. Although the
problem addressed in this paper can probably be reformulated so that RL is applicable,
this paper aims to introduce an alternative method, which, although in a preliminary stage,
builds a bridge between GI and the symbolic planning and control of systems.

6. Conclusion

This paper has demonstrated how grammatical inference (GI) within a game-theoretic
framework for robotic planning can guarantee the completion of a desired task even when
the environment is unknown, dynamic, and even adversarial. The conditions for this result
are that the robot dynamics can be abstracted in the form of a semiautomaton, the task
can be expressed by a finite state acceptor, and the unknown environment dynamics are
rule-based and equivalent at an abstract level to a language belonging to a learnable class. It
has been shown that nontrivial families of models exist for the robot, task, and environment
that fulfill these requirements. When they do, a GI algorithm allows the robot to create
a model for its environment and refine it in the course of observation, in such a way that
it gradually converges to an accurate representation of its world. As soon as this happens,
the computation of optimal strategies for the completion of the task becomes possible.

80

Integrating GI into Robotic Planning

References

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. International Journal of Robotics Research, 29(13):
1608–1639, 2010.

Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George
Pappas. Symbolic planning and control of robot motion. IEEE Robotics Automation
Magazine, 14(1):61–70, 2007.

Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, and Nicholas Roy.
Provably efficient learning with typed parametric models. Journal of Machine Learning
Research, 10:1955–1988, 2009.

Katie Byl and Russ Tedrake. Metastable walking machines. International Journal of
Robotics Research, 28(8):1040–1064, 2009.

Pascal Caron. Langage: A Maple package for automaton characterization of regular lan-
guages. In Derick Wood and Sheng Yu, editors, Automata Implementation, volume 1436
of Lecture Notes in Computer Science, pages 46–55. Springer Berlin / Heidelberg, 1998.

Christos Cassandras and Stéphan Lafortune. Introduction to Discrete Event Systems.
Kuwer, 1999.

Yushan Chen, Jana Tøumová, and Calin Belta. LTL robot motion control based on au-
tomata learning of environmental dynamics. In Proceedings of the IEEE Conference on
Robotics and Automation, (to appear), 2012.

Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
1999.

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, 2010.

T Dean, K. Basye, L. Kaelbling, E. Kokkevis, O. Maron, D. Angluin, and S. Engelson.
Inferring finite automata with stochastic output functions and an application to map
learning. In Proceedings of the 10th National Conference on Artificial Intelligence, San
Jose, CA, 1992.

Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343–352, February 2009.

U. Frith and C.D. Frith. Development and neurophysiology of mentalizing. Philos. Trans.
R. Soc. Lond. B Biol. Sci., (358):459–473, 2003.

Pedro Garcia, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory, pages
325–338, 1990.

Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 897–906, Uppsala, Sweden, July 2010.

81

Chandlee Fu Karydis Koirala Heinz Tanner

Junling Hu and Michael P. Wellman. Nash q-learning for general-sum stochastic games. J.
Mach. Learn. Res., 4:1039–1069, dec 2003.

M. Kloetzer and C. Belta. Temporal logic planning and control of robotic swarms by
hierarchical abstractions. IEEE Transactions on Robotics, 23(2):320–331, 2007.

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive, high-level robot
control. Robotics Automation Magazine, IEEE, 18(3):65 –74, sept. 2011.

Kavita Krishnaswamy, Jennifer Sleeman, and Tim Oates. Real-time path planning for a
robotic arm. In Proceedings of the 4th International Conference on Pervasive Technologies
Related to Assistive Environments, PETRA ’11, pages 11:1–11:4, New York, NY, USA,
2011. ACM.

M. Lahijanian, J. Wasniewski, S.B. Andersson, and C. Belta. Motion planning and control
from temporal logic specifications with probabilistic satisfaction guarantees. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pages 3227 –3232,
may 2010.

A. LaViers, Yushan Chen, C. Belta, and M. Egerstedt. Automatic sequencing of ballet
poses. Robotics Automation Magazine, IEEE, 18(3):87 –95, sept. 2011.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning.
In In Proceedings of the Eleventh International Conference on Machine Learning, pages
157–163. Morgan Kaufmann, 1994.

Michael L. Littman. Friend-or-foe q-learning in general-sum games. In Proceedings of
the Eighteenth International Conference on Machine Learning, pages 322–328. Morgan
Kaufmann, 2001.

D. Luzeaux. Machine learning applied to the control of complex systems. In Proceedings of
the 8th International Conference on Artificial Intelligence and Expert Systems Applica-
tions, Paris, France, 1996.

J. Lygeros, K.H. Johansson, S.N. Simić, and S.S. Sastry. Dynamical properties of hybrid
automata. IEEE Transactions on Automatic Control, 48(1):2–17, 2003.

Maja J. Matarić. Reinforcement learning in the multi-robot domain. Autonomous Robots,
4(1):73–83, 1997.

René Mazala. Infinite games. In Automata, Logics, and Infinite Games, pages 23–42, 2001.

Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.

Dominique Perrin and Jean Éric Pin. Infinite words:automata, semigroups, logic and games.
Elsevier, 2004.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Reinforcement learning for humanoid
robotics. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
2003.

82

Integrating GI into Robotic Planning

Nir Piterman and Amir Pnueli. Synthesis of reactive(1) designs. In In Proc. Verification,
Model Checking, and Abstract Interpretation (VMCAI’06, pages 364–380. Springer, 2006.

Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508—2516, 2008.

D. Premack and G. Woodruff. Does the chimpanzee have a theory of mind? Behav. Brain.
Sci, pages 515–526, 1978.

A. Rieger. Inferring probabilistic automata from sensor data for robot navigation. In
Proceedings of the MLnet Familiarization Workshop and Third European Workshop on
Learning Robots, pages 65–74, 1995.

R.L. Rivest and R.E. Schapire. Inference of finite automata using homing sequences. In-
formation and Computation, 103:299–347, 1993.

James Rogers and Geoffrey Pullum. Aural pattern recognition experiments and the sub-
regular hierarchy. Journal of Logic, Language and Information, 20:329–342, 2011.

Matthew D. Schmill, Tim Oates, and Paul R. Cohen. Learning planning operators in real-
world, partially observable environments. In in Proceedings of ICAPS, pages 246–253.
AAAI Press, 2000.

Colin Stirling. Modal and temporal logics for processes. In Faron Moller and Graham
Birtwistle, editors, Logics for concurency: structure vs automata. Springer, 1996.

Herbert Tanner, Jie Fu, Chetan Rawal, Jorge Piovesan, and Chaouki Abdallah. Finite
abstractions for hybrid systems with stable continuous dynamics. Discrete Event Dynamic
Systems, 22:83–99, 2012.

Wolfgang Thomas. Infinite games and verification (extended abstract of a tutorial). In
Proceedings of the 14th International Conference on Computer Aided Verification, CAV
’02, pages 58–64, London, UK, UK, 2002. Springer-Verlag.

A. N. Trahtman. A polynomial time algorithm for local testability and its level. Interna-
tional Journal of Automation and Computing, 9(1):31–39, 1998.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):
279–292, 1992.

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon control
for temporal logic specifications. In Proceedings of the 13th ACM international conference
on Hybrid systems: computation and control, HSCC ’10, pages 101–110, New York, NY,
USA, 2010. ACM.

83

	Introduction
	Preliminaries
	Languages, Automata and Game Theory
	Hybrid Dynamical Systems

	Game Theoretic Analysis
	Constructing the game
	Computing the winning strategy

	The Grammatical Inference Module
	Overview
	Theory of Mind
	Learning to play using strictly local models
	Simulation

	Discussion
	Conclusion

