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Many approaches to probabilistic grammar induction operate by iteratively improving
a single grammar, beginning with an initial guess. These local search paradigms include
Expectation Maximization [1, 10] and its variants [13, 14, etc.]; hill-climbing [6] and Markov
chain Monte Carlo [9]; and greedy merging [15] or splitting [16, 3, 12] of nonterminals.

Unfortunately, local search methods tend to get caught in local optima, even with ran-
dom restarts [2, 13] or linguistically guided objective functions [4, 11]. I will suggest two
techniques to try to avoid this problem.

One approach searches exhaustively within a region of parameter space, using branch-
and-bound to eliminate subregions that cannot contain the optimum. This exploits re-
laxation and decomposition techniques from the operations research community [17]. The
other approach is inspired by recent work on “deep learning” for vision [e.g., 8]. It uses spec-
tral methods [7, 5] to build up featural representations of all substrings, without premature
commitment to which substrings are constituents.
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