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Abstract

De la Higuera and Janodet (2001) gave a polynomial algorithm that identifies the class of
safe ω-languages which is a subclass of deterministic ω-languages from positive and negative
prefixes. As an extension of this work we study the learning of the family of bi-ω languages.
Keywords: DB-machine, bi-ω language, learning.

1. Introduction

Nivat (1979) has made a study of infinite words and infinite successful computations in
an attempt to define the semantics of recursive programs. He has considered a method of
generating infinite words by algebraic or context-free grammars. Bi-infinite words or two
sided infinite words are natural extensions of infinite words and have also been objects of
interest and study. The theory of finite automata has been extended to bi-infinite words by
Nivat and Perrin (1986) and the study has been continued (Beauquier, 1986; Devolder and
Litovsky, 1991).

Maler and Pnueli (1995) have exhibited a learning algorithm for a subclass of ω-regular
languages which is recognized by a finite automaton with Büchi condition and is also rec-
ognized by a finite automaton with Muller condition from membership queries and counter
examples based on the framework suggested by Angluin (1987). A linear time learning
algorithm in Gold’s framework of identification in the limit from positive data (Gold, 1967)
is given for a subclass of ω-regular languages with restricted superset queries by Saoudi and
Yokomori (1994).

S. Gnanasekaran and Thomas (2001) have introduced a new class called Büchi local ω-
languages and proved that the class of ω-regular languages is an alphabetic morphic image
of the class of Büchi local ω-languages. They gave a polynomial algorithm that identifies
the class of ω-regular languages. Thomas et al. Thomas et al. (2002) extended this result
to bi-ω regular languages.

de la Higuera and Janodet (2001) investigated the question of inferring ω-languages
through the prefixes of accepted or rejected infinite words. They gave a polynomial al-
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gorithm that identifies the class of safe ω-languages which is a subclass of deterministic
ω-languages from positive and negative prefixes.

As an extension of this work, in this paper, we exhibit that the classes of bi-ω regular
languages and deterministic bi-ω languages are not identifiable in the limit using factors of
accepted and rejected bi-ω words and the subclass of bi-ω regular languages called bi-ω safe
languages are learnable from positive and negative factors of bi-ω words.

2. Bi-ω Languages and Results

In this section we recall the notions of bi-ω languages (Beauquier, 1986; Nivat and Perrin,
1986) and prove certain results.

An alphabet Σ is a finite set whose members are called symbols. A finite string or word
on an alphabet Σ is a finite sequence of zero or more symbols of Σ. The set of all words on
Σ is denoted by Σ∗ and ε denotes the empty word which has length zero.

If x, y ∈ Σ∗ then x is a prefix of xy and y is a suffix of xy. If x, y, z ∈ Σ∗ then y is a
subword or factor of xyz. For each x ∈ Σ∗, Fact(x) is the collection of all factors of x and
Fact(L) = ∪x∈LFact(x).

An infinite word or a right-infinite word or an ω-word on an alphabet Σ is a mapping
from the set N of natural numbers to Σ. An infinite word x on Σ is written as x = x1x2x3 . . .
(xi ∈ Σ, i ≥ 1). Let left-infinite word x on an alphabet Σ is mapping from the set Z− of
negative integers to Σ and is written as x = . . . x−3x−2x−1 (x−i ∈ Σ, i ≥ 1).

Let ΣZ denote the set of all mappings from the set of integers into Σ. A bi-infinite word
is a class under the equivalence relation ρ over ΣZ , defined by uρv, where u = (ui)i∈Z and
v = (vj)j∈Z , if and only if there exists some p ∈ Z such that for every n ∈ Z, un+p = vn.
A bi-infinite word is written as x = . . . x−3x−2x−1x0x1x2x3 . . . (xi ∈ Σ, i ∈ Z). The set of
infinite words on Σ is denoted by Σω, the set of all left-infinite words on Σ is denoted by
ωΣ and set of all bi-infinite words on Σ is denoted by ωΣω.

Definition 1 A Büchi (finite) automaton M over an alphabet Σ is
M = 〈Q,Σ, EM , Ilinf , Trinf 〉 where Q is a finite set of states; Σ is a finite alphabet; EM is
a subset of Q× Σ×Q, called the set of arrows; Ilinf ⊆ Q is a set of left-infinite repetitive
states; Trinf ⊆ Q is a set of right-infinite repetitive states.

An arrow c = (p, a, q) is also denoted by c : p
a→ q. A path in M is a bi-infinite

sequence of arrows ci, i ∈ Z, namely c = . . . c−2c−1c0c1c2 . . . . The arrows in the paths

are consecutive in the sense that ci+1 : qi
ai+1→ qi+1 where i ∈ Z. The bi-infinite word

a = . . . a−2a−1a0a1a2 . . . is called the label of the path c. A notation c : Ilinf
w→ Trinf

denotes a bi-infinite path c of label w which passes through states of Ilinf infinitely often on
the left and through states of Trinf infinitely often on the right. Let

Lωω(M) = {w ∈ ωΣω/∃(c : Ilinf
w→ Trinf )}

be a bi-ω language accepted by M . Let Rec( ωΣω) = {L ⊆ ωΣω/∃ a Büchi automaton M
such that Lωω(M) = L} and Rec ωΣω is known as the family of all bi-ω regular languages
each of which is a finite union of sets of the form

ωXY Zω = {u ∈ ωΣω/u = . . . xn . . . x2x1yz1z2 . . . zn−1zn . . . , with xi ∈ X,
y ∈ Y and zi ∈ Z, i ≥ 1}
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where X,Y and Z are regular languages in Σ∗. The Büchi automaton M over Σ is said to be
deterministic if for every three states q, q1, q2 ∈ Q and every symbol a ∈ Σ, (q, a, q1) ∈ EM

and (q, a, q2) ∈ EM ⇒ q1 = q2.

Definition 2 A bi-ω language L is safe if
∀x ∈ ωΣω, ∀v ∈ Fact(x), ∃u ∈ ωΣ, w ∈ Σω such that uvw ∈ L⇒ x ∈ L
i.e., ∀x ∈ ωΣω, Fact(x) ⊆ Fact(L)⇒ x ∈ L
i.e., ∀x ∈ ωΣω, x 6∈ L⇒ ∃v ∈ Fact(x) such that ∀u ∈ ωΣω, w ∈ Σω, uvw 6∈ L
Let Safeωω(Σ) denote the class of all safe bi-ω regular languages.

Example 1 ωabω + ωbaω + ωab∗aω + ωbω is a safe language accepted by the automaton
M = 〈Q,Σ, δ, Ilinf , Trinf 〉, Q = {1, 2, 3}, Σ = {a, b}, Ilinf = {1, 2}, Trinf = {2, 3} and δ is
the transition function.

a a

a

b

b
1 2 3

But ωabω + ωbaω + ωab∗aω is not a safe language because every factor bk of ωbω is a
factor of ωabω + ωbaω + ωab∗aω + ωbω. It follows that the class of all safe bi-ω regular
languages is a subclass of all deterministic bi-ω languages. Hence Safeωω(Σ) 6= Detωω(Σ).

Definition 3 A DB-machine is a deterministic Büchi automaton where Ilinf = Q = Trinf .

Definition 4 (Beauquier, 1986) A language L is bi-ω regular if there exist three sequences
of regular languages (Ai)i∈{1,...,n}, (Bi)i∈{1,...,n} and (Ci)i∈{1,...,n} such that

L =
n⋃

i=1

ωAiBiC
ω
i .

We note that

Fact(L) = Fact

(
n⋃

i=1

ωAiBiC
ω
i

)
=

n⋃
i=1

Fact ( ωAiBiC
ω
i )

Fact ( ωAiBiC
ω
i ) = Suff(Ai)A

∗
iBiC

∗
i Pref(Ci) ∪ Suff(Ai)A

∗
iPref(Bi)∪

Suff(Bi)C
∗
i Pref(Ci) ∪ Suff(Ci)C

∗
i Pref(Ci)∪

Suff(Ai)A
∗
iPref(Ai) ∪ Fact(Bi)

where Fact(L) is the set of all factors (finite words) of members of L ⊆ ωΣω, Pref(C) is
the set of all prefixes (finite words) of members of C ⊆ Σ∗ and Suff(A) is the set of all
suffixes (finite words) of members of A ⊆ Σ∗.

Definition 5 (de la Higuera and Janodet, 2001) A language P ⊆ Σ∗ is a regular factor
language if (1) P is regular (2) Every factor of a word of P is a word of P i.e., ∀u ∈ Σ∗,
∀a, b ∈ Σ, aub ∈ P ⇒ u ∈ P (3) Every word of P is a proper factor of another word of P
i.e., ∀u ∈ P , ∃a, b ∈ Σ such that aub ∈ P .

A deterministic finite state automaton (dfa) is a factor automaton (factor dfa) if and
only if (1) Every state is initial and final (2) Every state is alive i.e., ∀q ∈ Q, ∃a, b ∈ Σ
and q′ ∈ Q, δ(q, b) ∈ Q and δ(q′, a) = q.
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Proposition 6

1. If L is a bi-ω regular language then Fact(L) is a regular factor language.

2. If P is a regular factor language, then there exists a factor automaton which recognizes
P .

3. If A = 〈Q,Σ, δ, I, T 〉 is a factor automaton then the language L(M) recognized by
the DB- machine M = 〈Q,Σ, δ, Ilinf , Trinf 〉 is bi-ω regular and satisfies L(A) =
FactL(M).

Theorem 7 L is a safe bi-ω regular language if and only if L is recognized by a DB-
machine.

3. Learning of Bi-ω Languages

In this section, we define ’positive factors’ and ’negative factors’ of a word in a bi-ω language
L and exhibit that bi-ω safe languages are learnable from positive and negative factors of
bi-ω words.

Definition 8 Let v ∈ Σ∗

1. v is an ∃ positive factor of L iff ∃ u ∈ ωΣ, w ∈ Σω such that uvw ∈ L

2. v is an ∀ positive factor of L iff ∀ u ∈ ωΣ, w ∈ Σω such that uvw ∈ L

3. v is an ∃ negative factor of L iff ∃ u ∈ ωΣ, w ∈ Σω such that uvw 6∈ L

4. v is an ∀ negative factor of L iff ∀ u ∈ ωΣ, w ∈ Σω such that uvw 6∈ L

Given a bi-ω language L, let P∀(L) denote the set of all ∀-positive factors of L, P∃(L)
denote the set of all ∃ positive factors of L, N∀(L) the set of ∀-negative factors of L and
N∃(L) the set of all ∃-negative factors of L.

Two finite sets S+ and S− of finite words form together a set of (p, n) examples for a
bi-ω language if and only if S+ ⊆ Pp(L) and S− ⊆ Nn(L).

Without explaining the notions and notations which can be naturally extended for bi-ω
languages from the case of ω-languages (de la Higuera and Janodet, 2001), we obtain the
following results.

Lemma 9 Let L be a class of bi-ω languages and R a class of representations for L. If
there exist L1 and L2 in L such that L1 6= L2, Pp(L1) = Pp(L2) and Nn(L1) = Nn(L2) then
the problem < LR, idlim,< p, n >> has a negative status.

Theorem 10 For any class of representations R and for all (p, n) ∈ {∃,∀}×{∃, ∀} problems
〈Regωω(Σ)R, idlim, (p, n)〉 and 〈Detωω(Σ)R, idlim, (p, n)〉 have negative status where idlim
stands for identification in the limit.

Theorem 11 〈Safeωω(Σ)DBM , polyid, (∃,∀)〉 has a positive status where polyid stands for
polynomially identifiable in the limit.

The result is an extension of the result given in (de la Higuera and Janodet, 2001).
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Appendix

Proof of Proposition 1.

1. L is a bi-ω regular language. So L =
⋃n

i=1
ωAiBiC

ω
i where Ai, Bi, Ci are regular sets.

Since regular languages are closed under union, product and star,

Fact(
n⋃

i=1

ωAiBiC
ω
i ) is a regular language. Hence Fact(L) is regular.

2. Let P be a regular factor language. P is recognized by a dfa A which is minimal and
dead state free. As P is a factor language, every state of this automaton is initial
and final. Moreover let q1 be a state of A and u, a word of P , such that δ(q, u) = q1.
By the definition of a factor language, there exist a, b ∈ Σ such that aub ∈ P . So
δ(q′, a) = q and δ(q1, b) is necessarily defined. Hence q is alive.

3. Let A = 〈Q,Σ, δ, I, T 〉 be a factor automaton. Consider the corresponding DB-
machine M = 〈Q,Σ, δ, Ilinf , Trinf 〉 (where Ilinf = Trinf = Q).
Let us prove that FactL(M) = L(A).
Let v ∈ FactL(M).
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Then there exist u ∈ ωΣ and w ∈ Σω such that uvw ∈ L(M). So there exists a state
q ∈ Q such that δ(q, v) ∈ Q and hence v ∈ L(A).

Converesly let v ∈ L(A) and q′′ = δ(q′, v), q′, q′′ ∈ Q. As q′ and q′′ are alive, we can
build two words x, u, w, y such that δ(q0, x) = q0, δ(q0, u) = q′, δ(q′′, w) = q′′′ and
δ(q′′′, y) = y.

q
0 q q q

x

u v w

y

Clearly the bi-infinite path of label ωxuvwyω passes through the state q0 infinitely
often on the left and the state q′′′ infinitely often on the right. So ωxuvwyω ∈ L(M).
Thus v ∈ FactL(M).

Proof of Theorem 1. Let L be a language recognized by a DB-machine M = 〈Q,Σ, δ, Q,Q〉
and w ∈ ωΣω. Assume that every factor wi of w can be continued into a word of L
recognized by M . The mapping c : N → Q such that c(i + 1) = δ(c(i), wi) is a run of M
on wi and hence on w. Since all the states of M are marked, this run is successful and so
w ∈ L. Hence L is a safe bi-ω regular language.

Conversely, let L be a safe bi-ω regular language. By proposition 6, Fact(L) is a regular
factor language which is recognized by some factor automaton A = 〈Q,Σ, δ, Q,Q〉. We
claim that L is recognized by the DB- machine M = 〈Q,Σ, δ, Q,Q〉. By Proposition 6,
the language L(M) satisfies FactL(M) = L(A). By the first part of the proof, L(M) is a
safe language since M is a DB-machine. So L and L(M) are both safe languages such that
Fact(L) = FactL(M) = L(A). Assume that there exists a word w ∈ L and not in L(M)
(or vice-versa). As Fact(L) = FactL(M), every factor of w is in FactL(M). Since L(M)
is a safe language, w itself is in L(M), a contradiction. So L = L(M).
Proof of Theorem 2. We prove the theorem by giving counterexample.

L1 = ωaba∗(a+ b)ω, L2 = ωaω + ωaba∗(a+ b)ω

These languages are accepted by the following automata, respectively.
1) Q = {q1, q2}, Ilinf = {q1}, Trinf = {q2}

q
1

q
2

a a,b

b

2) Q = {q1, q2}, Ilinf = {q1}, Trinf = {q1, q2}

q
1

q
2

a a,b

b

But it is clear that whatever the choice of quantifiers p and n, languages Pp and Nn are
identical in both the cases.

Formally, P∃(L1) = P∃(L2) = Σ∗; P∀(L1) = P∀(L2) = a∗ba∗(a+b)∗; N∃(L1) = N∃(L2) =
a∗ + a∗ba∗; N∀(L1) = N∀(L2) = φ.
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