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Abstract

In this paper, we tackle the task of graph language learning. We first extend the well-known
classes of k-testability and k-testability in the strict sense languages to directed graph lan-
guages. Second, we propose a graph automata model for directed acyclic graph languages.
This graph automata model is used to propose a grammatical inference algorithm to learn
the class of directed acyclic k-testable in the strict sense graph languages. The algorithm
runs in polynomial time and identifies this class of languages from positive data.
Keywords: Graph languages; graph automata; k-testable languages

1. Introduction

Regular string language inference has been widely applied to many tasks, from bioinfor-
matics (Sakakibara, 2005; Peris et al., 2008) to script recognition (Ron et al., 1998). See
de la Higuera (2010) for a bibliographic study.

It is important here to note that in many contexts structural information is of great
importance. This kind of information is not easy to model with subclasses of the regular
language class. Nevertheless, structural information can be naturally modeled by context-
free grammars of various types. In this line of work, Sakakibara 1990; 1992 presented the
first algorithms for learning context-free languages with polynomial time complexity. Some
other recent results for non-regular language inference study the inference of context-free
languages (for instance, Nakamura, 2006; Clark et al., 2008).

Trees are a simple class of graphs with very interesting properties. Thus, several works
study the task of tree language inference (Garcia, 1993; Lopez et al., 2004, among others),
as well as its application to real tasks (for instance, Rico-Juan et al., 2005; Kosala et al.,
2006). In the grammatical inference framework, when more general graphs are considered,
the main problem that arises is computational complexity, and, usually, graphs are reduced
to less complex representations (usually some kind of graph traversal).
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Our paper considers graphs as elements of some formal language. In this framework,
the handbook edited by Rozemberg (1997) summarizes, among other results, the two main
formalisms used to generate graph languages (node and hyperedge replacement grammars)
as well as many theoretical results that relate graph grammars with logic. But, despite
many works study the generating paradigm, there does not exist a recognizing device
that properly fits all the different characterized classes of graph languages. Despite this,
there have been proposed some graph automata models, for instance Potthoff et al. (1994);
Branderburg and Skodinis (2005); Berwanger and Janin (2006).

Some works have studied the inference of graph grammars, but all of them based on
the search of general subgraph isomorphism, and therefore, with high time complexity
(Jeltsch and Kreowski, 1991; Jonyer et al., 2002; Kukluk et al., 2006)Recently, some works
take profit from results on mining in graphs in order to propose graph grammar inference
methods (Blockeel and Nijssen, 2008; Floréncio, 2009).

In this paper, we first extend the well-known families of k-testable and k-testable in the
strict sense (k-TSS) languages (McNaughton, 1974) to directed-graph languages. We also
prove some lemmas that show that the main features of the k-TSS class of languages are still
applicable to graph languages. Second, we take into account the paper by Potthoff et al.
(1994) to propose a graph automata model for directed acyclic graph languages, and finally,
we propose a polynomial grammatical inference algorithm to learn the same class of directed
acyclic k-TSS graph languages from positive data. Let us note that the k-testable structures
our approach takes into account help to bound the above mentioned high complexity of
graph comparison. Besides, the consideration of directed acyclic graphs also help to further
ease the general complexity. We study the time complexity of this algorithm and prove its
polynomial behavior.

2. Notation and Definitions

A node-labeled directed graph (from now on referred to as graph if not stated otherwise)
can be defined by a tuple g = (V, E, u), where V' is a finite set of nodes (also called vertexes),
E C (V x V) —idy is the set of edges (where idy denotes the smallest reflexive relation),
and p: V — X is the node labeling function. We will refer to the components of a graph g
as Vg, By and iy only when necessary. An acyclic graph is such that the reflexive-transitive
closure of F is a partial order. Two graphs g = (V, E,u) and ¢’ = (V', E’, i) are isomorphic
if there is a bijection f : V — V' such that, for any nodes w,v € V, u(v) = p/(f(v)) and
(u,v) € E if and only if (f(u), f(v)) € E.

For any given node v, an edge (u,v) is called incoming (resp. outgoing for edges of the
form (v,u)). The incoming degree of a node v (resp. outgoing degree) will be denoted by
idg(v) and is defined as idg(v) = [{(u,v) € E}| (resp. the outgoing degree is defined as
odg(v) = |{(v,w) € E}|). For any graph g = (V, E, ), let V*(g) be defined as V;'(g) =
{veV : idg(v) =nAodg(v) =m}, and let ¢, denote the empty graph (the graph with no
nodes). In the following, two sets of nodes will be of special interest: the set of nodes with
zero incoming degree and the set of nodes with zero outgoing degree of a graph g, which
we will denote respectively with V°(g) and Vo(g).

Let a typed alphabet X7 be the association of an alphabet ¥ with a relation r C
(X x N x N). This alphabet plays the same role as the plain alphabet in string languages
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g: .a g: .E
Figure 1: Example of a directed acyclic graph g and its corresponding extended graph ¢. In

order to give an explicit representation, we label non-frontier nodes (those with
outgoing degree greater than 0) with Greek letters.

or the ranked alphabet in tree languages. Since the nodes of the graph may have different
incoming and outgoing degrees, it is necessary to establish which symbols can label those
nodes. We will denote with X7, the set: {s € ¥ : (s,n,m) € r}, that is, the set of symbols
that are able to label the nodes with a given incoming degree n and outgoing degree m.

Once the typed alphabet is defined, the set of all possible consistently labeled graphs
can be defined. Formally, let G(X2) denote the set of graphs over ¥7. A graph language is
any set Lg C G(X7). R

Given a typed alphabet X7, let the extended alphabet ¥ be the alphabet defined as the
set: N

Y=A{ay : a€X, (a,n,m)er}

Taking into account the extended alphabet, given a graph g = (V,E, ), we define its
extended graph as § = (V, E, i), where fi : V — ¥, and such that for each node v in V])'(g),
if u(v) = a, then fi(v) = a]),. Intuitively, the labels of the nodes of the extended subgraph
g explicitly include the incoming and outgoing degrees. Figure 1 shows an example.

From now on we will consider skeletal graphs and skeletal graph languages (graphs
where the nodes v such that odg(v) # 0 (internal nodes) are labeled with the same symbol).
Nevertheless, our results either support, or can be easily extended, to consider general
graphs. In order to give the clearer the better (two-dimensional) graph representations, in
the following, we will use Greek symbols to label internal nodes and Latin symbols to label
frontier nodes (those with outgoing degree zero).

For any given sequence of nodes wy,wo, ..., wy such that (w;, w;y1) € E for 1 <i < k,
we say that there exists a path from w; to wi. We define the length of the path as the
number of nodes in the sequence. A graph is possible to have more than one path between
a pair of nodes v and v. Thus, Let us denote the set of shortest paths from u to v by
((u,v)). Also, let |((u,v))| denote the length of the (possibly multiple) shortest path. Thus,
the length of a non-existent path is infinite and |((u,u))| = 1. We define the diameter of
a graph ¢ = (V, E, 1) as the maximum distance among two connected nodes of the graph.
More formally:

diameter(g) = maz{|((u,v))| : [((u,v))| < o0}

u,veV

Given a graph g = (V, E,pu), the subgraph of g rooted in the node v with radius k
is defined as Ry(v,k) = (W,E’, 1) such that W = {u eV : |((v,u))| <k} and where
E' = En(W x W), that is, the set of edges restricted to the nodes in W. In the same way,
i/ is the restriction of i to the nodes in W. We extend this definition to consider, for any
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graph g = (V, E, ), the subgraph of g rooted in the node v, denoted by R,(v) = (W, E', i)
where W ={u eV : |((v,u))] < co} with the set E’ and the labeling function y’ defined
as above.

We now recall some definitions from multiset theory which will be used in the transition
function of a new graph automata model. In the following, we will denote the set of naturals
with N.

For any given set D, a multiset over D is a pair (D, f) where f : D — N is an enumeration
function. That is, for any a € D, the function f(a) denotes the number of elements a in the
multiset, and we say that a is in A, and write it a € A, if and only if f(a) # 0. The size of
a multiset is defined as the number of elements that a multiset contains. This number can
be finite, in which case the multiset is finite. The size of a multiset M will be denoted by
|M|. We are interested in the class of multisets whose size is equal to a constant n. That
is, the class of all multisets (D, f) such that ) ., f(a) = n. In the sequel, we will denote
this class by M, (D).

We say that a multiset A(D, f) is empty if and only if, for all @ € D, f(a) = 0. In this
way, for any pair of multisets A = (D, f) and B = (D, g), we say that A = B if and only
if, for all @ € D, f(a) = g(a), and in the same way, A is a subset of B (A C B) if and
only if, for all a € D, f(a) < g(a). Furthermore, let the sum of two multisets A = (D, f)
and B = (D, g) (denoted by A @ B) be defined as the multiset C' = (D, h) where for all
a € D, h(a) = f(a) + g(a). Finally, we extend in a natural way the definition of power set
to multisets, thus, for any multiset C, its power set is the set of all possible subsets of C
and will be denoted by 2¢.

A very useful concept for dealing with multisets is the Parikh mapping. Formally, a
Parikh mapping can be viewed as the application ¥ : D* — N" where D = {d;,ds,...,d,}
and D* is the set of strings over D. For any z € D*, this mapping is defined as ¥(z) =
(#d,,F#dy>» - - - » #d,,) Where #4, denotes the number of occurrences of d; in . Note that this
allows to represent a multiset using whichever string with the correct Parikh mapping. We
will do so in the following.

3. k-testable graph languages

Testable and testable in the strict sense languages (McNaughton, 1974) are defined by a
vector (I, S, F) which represents those structures that are allowed to appear in the mem-
bers of the language. These families have been defined over string and tree languages
(Garcia and Vidal, 1990; Garcia, 1993). In this section, we extend the definition to con-
sider graph languages.

Given a typed alphabet X2 and the corresponding set of graphs over it G(X7), for any g =
(V,E,u) € G(X79), let us define the k-testability vector Ty(g) = (Ix—1(9), Px(9), Frk—1(g))
where:

Iiz1(9) = {Ry(v,k = 1) : veVg)}
Pi(g9) = {Ry(v, k) : v eV, diameter(Ry(v)) > k}
Fi—1(9) = {R3(v,k — 1) : v eV, diameter(Ry(v)) < k —1}

Note that Py(g) = 0 if diameter(g) < k. Some examples are given below.
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Example 1 Given the graph in Figure 1, Figure 2 shows the components of the 3-testability
vector. It is worth noting that the nodes of the graphs in each component of the k-testability
vector are labeled with the extended function fi. For each node, this extended labeling function
depicts what the neighborhood was in the mother graph. For instance, note that the nodes
labeled ag i Figure 2 do not always have two incoming edges. The extended labeling allows
relevant structural information to be dealt with in a straightforward way. This labeling will
play an important role in our grammatical inference algorithm.

Ix(g) = ; Fa(g) =

@ @ 7 @ 7 | |

Figure 2: The components of the 3-testability vector for the graph in Figure 1 are shown.

It is not necessary for the graph to be acyclic in order to obtain the k-testability vector.
An example is shown in Figure 3. The 2-testability vector is also shown in the same figure.
Note that, in this case, the set I,(g) is empty because the set V°(g) is empty.

The functions I, F} and P, can be extended in a natural way to a set GG of graphs:
Ik(G) ={Ik(9) 1 g € G};  Pu(G) ={P(9) : g € G}; Fi(G) ={Fi(9) : g € G}

For any pair of graphs g and ¢/, it is possible to define an equivalence relation = over G(X7)
taking into account the k-testability vector, where g = ¢ if and only if Ty(g) = Tr(d).

Figure 3: Directed graph and its corresponding 2-testability vector.
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This equivalence relation is key in defining the classes of k-testable and k-testable in the
strict sense graph languages.

Definition 1 A graph language G is k-testable (k > 2) if it results from the union of a
finite number of equivalence classes of the relation =.

Intuitively, and in the same way it happens with string or tree languages, if g is a graph
in a k-testable graph language, then, every graph ¢’ such that it has the same k-testability
vector than g is also in G.

Definition 2 For any k > 2, a graph language G is k-testable in the strict sense (k-TSS)
if there exist three finite sets of graphs (B, S, E) such that, g € G if and only if Ix_1(g) C B,
Py(g) € S and F,_1(g9) C E.

According the definition, and a shared feature of string and tree k-TSS languages, the
membership to a k-TSS graph language of graphs with diameter smaller than k& depends on
Fi_1(g). This is because for those graphs Py (g) = 0 and I;_1(g9) C Fr—_1(9).

Note that, for a given set of graphs G, the k-testability vector defines a k-TSS language
when the sets of graphs B, S and FE are set to I;_1(G), Px(G) and Fi_1(G), respectively.
Let this language be denoted by Li(G). We now prove some results related to this class of
languages.

Lemma 3 Let G be a finite set of graphs and k > 2, then G C Li(G).
Proof Let g € G, trivially Iy—1(g9) C Ix-1(G), Px(9) € Px(GQ) and Fr_1(g) C Fr—1(G).
The language Li(QG) is defined by the vector Ti(G) = (Ix—1(G), Px(G), Frx_1(G)); there-
fore, g € Li(G).
To prove that the inclusion is strict, note that any disconnected graph obtained by join-
ing graphs in the set G will belong to the k-TSS language Li(G). This implies that every
k-TSS graph language, except the empty one, are infinite. |

In string (Garcia and Vidal, 1990) and tree languages (Garcia, 1993), it is proved that,
when the value of k is greater than the maximum length (depth in trees) of the elements in
a set S, then the k-TSS language obtained from that set (of strings or trees) equals S. This
is not generally true when graph languages are taken into account. To enlighten this, please
note first that, in this context, it is always possible to obtain new graphs belonging to the
k-TSS language by disconnected joint of different graphs in the set S. Furthermore, it is
possible in some cases to build new graphs taking into account the graphs rooted in the set
of nodes with zero incoming arity. As an example, let consider a set of graphs containing
only the graph g shown in Figure 4 (with diameter(g) = 3) and its corresponding 4-testable
vector. Note that the graph ¢’ shown in the same figure belongs to the language L4({g}).

Lemma 4 For any set of graphs G and a given k > 2, the language Li(G) is the smallest
k-TSS language that contains G.
Proof We will prove that, for any given k-TSS language T, if G C T, then T ¢ Li(G).
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Figure 4: Given the graphs g and ¢’ note that the graph ¢’ belongs to the language L4({g}).
The components of the 4-testability vector are also shown.

Let (Bp, St, ET) be the sets that define the language T'. Let us suppose that T C Li(G);
then there is a graph g € Li(G) —T. On the one hand, g € Li(G), then I_1(g9) C I;_1(G),
Py(g9) C Pi(G) and F—1(g) C Fx—1(G). On the other hand, g ¢ T, therefore, I,_1(g) € Br
or Pe(g9) € St or Fr_1(9) £ Er.

In other words, there are some structures in the k-testability vector of Ly(G) that are
not present in the one of T. From this, it follows that there ewists a graph ¢’ such that
g € G and g & T; therefore, G € T, which contradicts the previous assumption. |

Lemma 5 Let G and G’ be two sets of graphs and k > 2. If G C G', then Li(G) C Li(G').
Proof It is easy to see that, if G C G', then I_1(G) C I;_1(G"), Px(G) C P.(G") and
Fi—1(G) C F_1(G"). Therefore, L(G) C Li(G"). [ ]

Lemma 6 For any set of graphs G and k > 2, Li11(G) C Lk(G).
Proof We need to prove that, for every g € Lxy1(G), g is also in Li(G), in other words,
we need to prove that for any g € Lipi1(G), Ix—1(9) C Ix—1(G), Fr—_1(9) € Fr_1(G) and
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Note that the sets I._1(G) and Fy_1(G) can be obtained from the sets I;,(G) and Fi(G)
as follows:

Ik_l(G) = [k—l(Ik(G))
Fk_l(G) = Fk—l(Fk(G))

Concerning Pi(G) and Py11(G), for every graph g € Li11(G), we distinguish two cases:
o if diameter(g) < k, then Pxy1(g) = 0, which is a subset of Pi(G)

o if diameter(g) > k, then Py(9) = Pir(Pr+1(9)) C Pr(Pr+1(G)) = Pr(G)

Thus, as mentioned above, any graph fulfilling the conditions fized by the (k + 1)-
testability vector also fulfills those fixed by the k-testability vector. Therefore, we conclude
that Li+1(G) € Li(G) u

In the next section, we propose a new model of graph automata for directed acyclic
graphs. and use this model to propose a grammatical inference algorithm.

4. Graph automata

The automata model we propose takes into account the work by Potthoff et al. (1994). We
note here that our proposal is not able to process whole class of directed graphs but those
without cycles. The transition function of the automata we propose takes into account a
multiset which permits, in a natural way, the graphs to be processed without taking into
account any order among the nodes except for the partial one induced by the directed edges.

Let us first note that the analysis of any graph is, in essence, similar to the analysis
carried out in the context of tree languages, but taking into account that there does not
exist any order among the siblings. Second, we also note that this process can be carried out
with polynomial complexity using a dynamic programming scheme similar to the proposed
in the paper by Zhang (1996). In his paper, Zhang proposes a polynomial algorithm to
obtain an edit measure among two unordered trees.

Due to the few graph automata models proposed in the literature, we think it is in-
teresting to provide the more general definition the better, thus, we define our model as
non-deterministic.

Definition 7 Let X7 be a typed alphabet where m denotes the mazimum outgoing degree in
Y.. A (non-deterministic) graph automaton for a language over X2 is defined as the tuple
GA = (Q, i,&, F), where Q is a finite set of states, S is the extended alphabet of X7, the
set F' C Q contains the final states and 0 is a set of transition functions defined as follows:

§ = U 3

0<j<m
Jj: In>0,%7 #0

where each §; is defined as:
5 Ehx Mi(Q) = 2M @ 0<ji<m

and where M represents the class of multisets of size j as defined in Section 2.
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We note that the definition of the domain of the transition function considers the ex-
tended alphabet instead of the original one. This allows the graph to be processed taking
into account both the outgoing degree (the size of the multiset) and the incoming degree
of the node (captured in the symbol of the extended alphabet). In order to extend the
transition function to operate on graphs, the intuitive idea consist of a recursive analysis
over each zero-incoming degree node. The multisets returned by these analysis are then
summed. Formally, for any given graph g the function ¢ is extended as follows:

§:G(E) — 2M@

ig) =06 = P 6(Ryw))
v, €VO(g)
where:

6(Ry(vi)) = 6m(pg(vi), Min & ... & Miy,) © Myj € 0(Rg(wy)), (vi,w;) € E

For any graph ¢ the extended version ¢ is isomorphic, thus, there is no problem in
reducing the parsing of a graph to its extended version.
Let us now define the language accepted by the automaton as follows:

L(GA)={g€G(X]) : Vg€ i(9), € F}

Thus, any graph g is accepted by the automaton G A if and only if the extended transition
function returns, a multiset such that for every state ¢ with non zero enumeration function,
the state ¢ is final. When necessary, we will refer to these multisets as final multisets.

Example 2 Taking into account the graph shown in Figure 1 and the following automaton,
a representation of the analysis is depicted in Figure 5. We recall that the strings in the
transition function denote multisets according the Parikh function. Thus, the string qiqo
represents the multiset with one element g1 and one element qo.

(5(a0,)\) ql
3(bg, A)=
(027(11(]2): Q1
(017q1): q2
6(03, q2q2)= @1
§(09,q1q2)= q1, where 1 € F

5. Inference algorithm

We now propose Algorithm 5.1 to infer the class of k-TSS graph languages from positive
presentation. The algorithm follows the same scheme used previously to infer k-TSS string
or tree languages (Garcia and Vidal, 1990; Garcia, 1993). The algorithm first establishes
the set of states taking into account the graph structures of diameter £ — 1 in the k-
testability vector of the input sample. The set of final states is also established. Then, the
algorithm creates the transitions using the graphs in Fi,_1(G) and P;(G). Please note that
the automaton output by the algorithm is deterministic. An example of run is given below.
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803, o) =1 — (0%, q1q2) = 1 ~—— (01, q1) = @2

T

6(0%7 ql) =q2

T

5(0’%,%) =q 5(037/\) =q — 5(0’5,(11%) =q1 5(b(1),>\) =q

Figure 5: Example of the parsing of the graph in Figure 1. The graph is recursively traversed
to reach those nodes with zero outgoing degree. The arrows show the order of
the parsing process once those nodes are reached.

Algorithm 5.1 Grammatical inference algorithm from positive sample for the class of
k-TSS graph languages.
Require: A set G of graphs. A value k > 2
Ensure: A graph automaton that recognizes the language Li(G)
Method:
Compute (Ir—1(G), Pi(G), Fi-1(G)) R
Let X7 be the typed alphabet from G and X7 be the extended one
for g € {Ix-1(G) U Fy—1(G) U Iy—1(Px(G))} do
Let Q[g] be a new state related to g
end for
F=A{Q[g] : g€ li1(G)}
for all g € Fj_1(G) with (v,w;) € Ey, v € V°(g), 1 <i<m do
(10, QIR (w1)] - QLR () = Qo]
end for
for all g € P, (G) with v € V9(g), (v,w;) € E;, 1 <i<m do
a0, QIR (w1, = 1)] - QR (1, & — 1)) = QIR (v s — 1)
end for R
return (Q,%7,F,0)
EndMethod:

Example 3 Let us consider k = 2, and the set G of graphs shown in Figure 6. The
elements of the 2-testability vector are shown in Figure 7.

Figure 6: Set of graphs example.
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ma):{}; Fl(G):{;}; PAG) - ;

Figure 7: Elements of the 2-testability vector for the graphs example.

First, the algorithm constructs the set of states taking into account I;(G), F1(G) and
L(P(G)):

Q@] =a; QB)] = a2 QD] =g QO] = a; QO] = a5 QO] = a6

The algorithm obtains the set of final states, which is F = {q¢}. Then, the algorithm
considers the graphs in Fp_1(G). Note that the diameter of the graphs is 1. Therefore, the
transitions 6(a3,\) = q1 and §(b, \) = q2 are added to the automaton. Note that X denotes
the empty string. The algorithm now processes the graphs in Py(G). As an example, let us
consider the following graph in Py(G):

The algorithm takes into account the subgraphs of diameter k — 1 rooted at the nodes
below the node 0§ and the graph of diameter k—1 rooted at the node 09. Thus, the algorithm
adds the transition 5(09, q5q4) = ge.

Once all the structures in the k-testability vector have been processed, the following
automaton is obtained:

(am N=aq 3(01,q5)= g4
( ): q2 5(0-%7q1): 44

5(09, q5q4)= g6, where gs € F 6(03,q192)= g3

8(0%, qaq4)= g5 8(09, qaq4)= g, where g5 € F
§(o1,q3)=qu 5(02, ququ)= g3

As an example, Figure 8 shows two graphs that were not in the input set and that belong
to the 2-TSS graph language.

We now prove that the algorithm identifies in the limit the class of k-TSS directed
acyclic graph languages from positive presentation.

Theorem 8 Algorithm 5.1 identifies the class of k-TSS graph languages from positive sam-
ple.
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Figure 8: Two graphs not provided in the input set that belong to the example 2-TSS
language.

Proof We first prove that, given a set of graphs G, the algorithm returns a graph automaton
GA that accepts the language Li(G). Note that, on the one hand, for any graph g, its
membership to the language of the automaton output by Algorithm 5.1 implies the analysis
of each of the p nodes with zero incoming arity. In order to accept the graph g, all these
analysis should return a final multiset. On the other hand, the membership of any graph g to
Li(G) implies that, among other criteria, for every node v in VO(g), Ry(v,k—1) € Iy_1(G).
Thus, for the sake of clarity, and without loss of gemerality, we will consider graphs with
just one node with zero incoming degree.

o Li(G) C L(GA):
We will prove by induction on the diameter of the graphs, that, if g € Lx(G), then
0(g) returns a final state.

First, if diameter(g) < k and v € V°(g), then g is isomorphic to § = Ry(v) €
Iy—1 N Fy_1, and the algorithm sets 6(Ry(v)) = Q[Ry(v,k — 1)] = Q[Ry(v)], which is
a final state.

Let us suppose that, for any graph g such that diameter(g) = n, it is fulfilled that
8(9) = Q[Ry(v, k — 1)] where v is in VO(g).

Now let g be a graph with v € V9(g), such that, for 1 < i < m, there exists (v,w;) € E
and diameter(Rgy(w;)) < n, and where at least one of the graphs Ry(w;) has diameter
n. Then, §(Ry(w;)) = Q[Rg(w;, k — 1)] for each i, and therefore:

6(9) = 6(9) =0m(1g(v), 6(Ry(w1)) ® 6(Ry(w2)) @ ... & 6(Ry(wm)))
:5m(ug(?)), Q[Rg(’wl, k— 1)]Q[Rg(’w2, k— 1)] e Q[Rg(’wm, k— 1)]
Note that there is an edge in g from v to each w;. Thus, the resulting joint graph with

all the Ry(w;, k — 1), where v is in Py(g), is such that 6(g) = Q[Ry(v,k — 1)]. Note
also that the state is final, because Ry(v,k — 1) is in I_1(g).

o L(GA) C Li(G):

We will prove that, for any graph g € L(GA), it is fulfilled that Fy,_1(g) C Fr—1(Q),
Pi(g9) C Py(G) and there is a final state q (q € Ix—1(g)) such that: 6(g) = Qq]. We
will prove the result by induction on the diameter of the graph.

First, if diameter(g) < k with v € VO(g), then § € Fr_1(9) € Fx_1(GQ), Pi(g) = 0
and Ry(v,k — 1) is in I_1(G).
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Let us suppose by induction hypothesis that, for any graph g € L(GA) such that
diameter(Rgy(w;)) = n > k, it is fulfilled that F,_1(g) € Fi—1(G), Pi(g) C Px(G) and
3(9) = Q[Ry(v, k = 1)].

Now let g be a graph such that v € VO(g), with (v,w;) € E where diameter(Rg(w;)) <
n for all 1 <i < m, with at least one of the graphs Rqy(w;) of diameter n. Therefore:

6(9) = 0(9) =0m(ug(v), 0(Ry(w1)) & 0(Ry(w2)) & ... & 0(Ry(wm))) =
=0m 1y (v), Q[Ry (w1, k = 1)]Q[Ry (w2, k — 1] Q[Rg(wm, k —1)] =
=Q[Rg(v, k —1)]

where Ry(v,k) € Py(g) because (v,w;) € E for all 1 < i < m. Besides, Q[R4(v,k —
1)] = q. Moreover:

Falg) = |J Fro1(Ry(wi) € Fra (G)

1<i<m

Pe(g) = [ {Ra(v, )} U | Pu(Ry(wi)) | € P(@)

1<i<m

Also, if g € L(GA), then Q[Ry(v,k — 1)] is a final state. Therefore Ry(v,k — 1) is in
I—1(G) and g € Li(G).

Given the fact that, for any k given, the elements in the components of the k-testable
vector are finite, we conclude that the proposed algorithm identifies the class of k-TSS di-
rected acyclic graph languages. |

Finally, we note that our algorithm runs in polynomial time. Let us consider any input
set of graphs G over X7 such that m denotes the greatest outgoing degree of the graphs
nodes in G. Let also be k > 2. The time complexity to obtain each transition is bounded by
O(m-|22]-mF~1), that is, the biggest outgoing degree times the size of the alphabet times
the size of the greatest subgraph that can be reduced to a state. The whole inference step
implies, at most, the creation of as many transitions as the number of nodes of the graphs
in G. Let n denote that number. Thus, the inference process is bounded by O(n - ]i’] -mk).

6. Conclusions and Future work

In this paper, we extend the well-known families of k-testable and k-TSS languages to
directed-graph languages. To our knowledge, this is the first result that characterizes a class
of graph languages taking into account the features of the graphs instead of the structure
of graph grammar rules. We also propose a model of graph automata that allows us to
propose a polynomial time algorithm which identifies the subclass of directed acyclic k-TSS
graph languages.
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The definition of k-testable and k-TSS languages support general directed graph lan-
guages (those that may contain cycles), nevertheless, the automata model proposed, as well
as the inference algorithm do not so, and are focused to directed acyclic graphs. The main
problems to extend the results to general directed graphs are the need to establish a pro-
cessing order and the accepting criterion (because both the zero-incoming and zero-outgoing
sets of nodes may be empty).

Of course, both the definition of k-TSS graph grammars, and the algorithm to obtain,
from any given (k-TSS or not) graph automaton, an equivalent graph grammar, are very
interesting problems and should be addressed as future work.
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