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Abstrat

We de�ne the loally maximal subwords and loally minimal superwords ommon to a

�nite set of words. We also de�ne the orresponding sets of alignments. We give a partial

order relation between suh sets of alignments, as well as two operations between them.

We show that the onstruted family of sets of alignments has the lattie struture. We

give hints to use this struture as a mahine learning basis for induing a generalization of

the set of words.

Keywords: Finite languages, loally maximal subwords, alignments, algebrai struture

of sets of alignments on a set of words, lattie, mahine learning, learning by analogy.

1. Introdution

Muh has been done on �nding maximal subwords and minimal superwords to a set of

words, when the order relation is based on the length of words. We are interested in this

paper in the same problem, but for the �ner order relation based on the de�nition of a

subword. Is there a manner to haraterize the set of maximal subwords and that of minimal

superwords, given a �nite set U of words, aording to this relation? More than that, is

there an algebrai relation between all these sets of subwords and superwords of U? An

answer to these questions would allow to give a preise de�nition to what the words of U

share, and how this ommon ore is organised.

The �rst parts of this paper gives a partial answer to these points. We de�ne in setion 2 a

partiular ase of the notion of alignment, whih will be useful for our onstrution. Atually,

in setion 3, we de�ne two operations and an order relation on sets of alignments that leads

to the onstrution of a lattie.

We are also interested in how this struture ould be useful in mahine learning. Sine

we start from a �nite set of words, the onvenient mahine learning framework seems to be

grammatial inferene (from a �nite set of positive samples, in our ase). It seems that the

lattie struture is partiularly adapted to learning by analogy, sine some natural analogial
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proportions an be observed in suh a struture. We give in setion 4 some hints on these

points.

2. Maximal Subword, Minimal Superword, Alignment

2.1. Basis

Let Σ be an alphabet, i.e. a �nite set of letters. A word u is a sequene u1 . . . un of letters

in Σ. The length of u, denoted |u| is n. The empty word, of null length, is ǫ. A language is

a set of words. A subword of a word u is a word obtained by deleting letters of u at some

(non neessarily adjaent) positions

1

in u. We denote u • v the shu�e of the two words u

and v.

In Σ⋆
, the set of all words on Σ, we use the order relation ≤ de�ned by: (u ≤ v ⇔

u is a subword of v). When u is a subword of v, v is alled a superword

2

of u. For example:

abc ≤ aabbcd.

A word w is a ommon subword to u and v when w ≤ u and w ≤ v. The word w is a

maximal ommon subword to u and v if there does not exist any other ommon subword

x to u and v suh that w ≤ x. For example, ab and c are maximal ommon subwords to

u = cadba and v = fagbhc, while a is a non maximal ommon subword. De�ning a ommon

maximal subword to a �nite set of words is a straightforward extension.

A minimal ommon subword to two words and to a non empty �nite set of words is

de�ned in an analog way.

In a partially ordered set S, an antihain is a subset of S omposed of pairwise inom-

parable elements. Any subset T of S an be redued to its maximal antihain (by removing

from T every element lesser than another element).

2.2. Alignments

2.2.1. Definition of Alignments

De�nition 1 An alignment is a �nite set of pairs (w, l) where w is a word and l a set of

indies between 1 and |w|. The set l de�nes a subword of w denoted w[l]. Moreover, an

alignment a must satisfy the following properties for all (w, l) ∈ a and (w′, l′) ∈ a:

1. w[l] = w′[l′]

2. (w = w′) ⇒ (l = l′)

3. (w ≤ w′) ⇒ (w = w′)

The set of words on whih the alignment is de�ned is alled the support and is denoted

word(a) = {w | ∃l ⊂ N with (w, l) ∈ a} . Aording to our de�nition

3

, the support is an

antihain of words for ≤.

1. Other terms for subword are subsequene and partial word. A fator, or substring is a subword of u built

by ontiguous letters of u.

2. A superword of u, also alled a supersequene must not be onfused with a superstring of u, in whih

the letters of u are ontiguous. In other words, u is a fator (a substring) of any superstring of u. See

(Gus�eld, 1997), pages 4, 309 and 426.

3. An alignment (regardless of the third point of our de�nition), is alled a trae by Wagner and

Fisher (Wagner and Fisher, 1974) for two words and a threading sheme in Maier (Maier, 1978).
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The set of indies l will be alled the position of the indexed subword of w[l].
In the following, an alignment will be represented by a set of words in whih some letters

are boxed. For eah element (w, l) of the alignment, the boxed letters represent the subword

w[l] (also alled the boxed subword of the alignment).

For legibility, the n words an be displayed in suh a manner that the orresponding

letters of w in the n words are in the same olumn. Some blanks an be added freely to

help the reading. For example:

a =





a c b d e g

a c e h

g a h c d





denotes the alignment a = {(acbdeg, {1, 2}), (aceh, {1, 2}), (gahcd, {2, 4})}. We an write

also without ambiguity:

a = ( a c bdeg, a c eh, g a h c d).

2.2.2. Loally Maximal Alignments and Loally Maximal Subwords

Generally, two alignments on the same support W = {w1, . . . , wn} with the same boxed

subword r an be di�erent (having di�erent set of indexes). We ould de�ne maximal

alignments as those whose boxed letters are maximal subword of W .

However, all interesting alignments would not be maximal with this de�nition. Consider

for example the two words w1 = abcd and w2 = dabcab. The omplete set of ommon

subwords is {ǫ, a, b, c, ab, ac, bc, abc, d} and their set of maximal ommon subwords is {abc, d}.

Atually the alignment ( a b cd, dabc a b ) is somehow "maximal" sine it is not omparable

to the only alignment with the boxed subword abc, namely ( a b  d, d a b  ab).
This leads to de�ne the following notion of loally maximal alignment and of loally

maximal subword.

De�nition 2 An alignment a = {(w1, l1), . . . , (wn, ln)} is loally maximal if there is no

other alignment b = {(w1, l
′
1), . . . , (wn, l

′
n)} on the same support suh that for all i, li ⊂ l′i.

Notie that the empty alignment ∅ is loally maximal.

De�nition 3 The set of boxed subwords assoiated to all loally maximal alignments between

a �nite set of words W = {w1, . . . , wn} is alled the set of loally maximal subwords to W

and is denoted ·⊓ (W ).
For some r ∈ ·⊓ (W ), the set of loally maximal alignments assoiated to r is denoted

Ar(W ).
We also denote A(W ) =

⋃

r∈ ·⊓ (W )

Ar(W ).

For example, let us onsider W = {ababc, cabd}, its sets of loally maximal alignments

are given by

Aab(W ) = {( a b abc, c a b d), ( a ba b c, c a b d), (ab a b c, c a b d)}

Ac(W ) = {(abab c , c abd)} .

and A(W ) = Aab(W )
⋃

Ac(W ). Then, the set of loally maximal subwords ofW is ·⊓ (W ) =
{ab, c}.
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2.3. Language Assoiated with an Alignment

De�nition 4 Let w = w1 · · ·wp be a word, loally maximal subword of two words u and v

at only one position ( i.e. |Aw({u, v})| = 1). Then there exists an unique set of fators of

u, denoted (u1, . . . , up+1
), and an unique set of fators of v, denoted (v1, . . . , vp+1), suh

that u = u1w1 . . . u
pwpu

p+1
and v = v1w1 . . . v

pwpv
p+1

. We de�ne L(Aw({u, v})) as the

following �nite language:

L(Aw({u, v})) = (u1 • v1)w1(u
2 • v2), . . . , (up • vp)wp(u

p+1 • vp+1)

The onstrution of L(Aw({u, v})) is shown in Figure 1, with straightforward graphi on-

ventions.

u1

v1

w1
u2

v2

wi
ui+1

vi+1

wi wp−1
up

vp

wp
up+1

vp+1

• • • • •

Figure 1: The onstrution of L(Aw(u, v)) when |Aw({u}, {v})| = 1.

If |Aw({u, v})| > 1, L(Aw({u, v}) is de�ned as the union of all languages assoiated with

all di�erent positions of w as loally maximal subword of u and v. Finally, L(A({u, v})) is
de�ned as the union of the languages L(Aw({u, v})), for all w loally maximal subwords of

u and v.

Proposition 1 Let w be a loally maximal subword ommon to two words u and v and

L(Aw({u, v})) onstruted as above. We have:

1. All words in L(Aw({u, v})) are (non neessarily minimal

4

) ommon superwords of

u and v.

2. For any word W ∈ L(Aw({u, v})), we have

5 |W |+ |w| = |u|+ |v|.

Proof.

Let us onsider W ∈ L(Aw({u, v})). By de�nition of L(Aw({u, v})), there exists (u1, . . . , up+1)
and (v1, . . . , vp+1), respetively sets of fators of u and v, suh that the word W an be written as

W = x1w1 . . . x
pwpx

p+1
where, for every i ∈ {1, . . . p+ 1}, xi ∈ (ui • vi).

1. Therefore, for every i ∈ {1, . . . p+ 1}, xi ≥ ui
and xi ≥ vi.

We then have W ≥ u1w1 . . . u
pwpu

p+1 = u and W ≥ v1w1 . . . v
pwpv

p+1 = v.

4. Let two words u = abcabb and v = aabbc, the assoiated alignment ( a b ca b b, a a b b c) is loally
maximal. The language L(Aabb({u, v}) ontains the language aabcab(b · c) and, in partiular, the word

w = abcabbc. The word w′ = abcabbc is another superword of u and v, and w′ ≤ w. Thus, w is not an

loally maximal superword of u and v.

5. A onsequene of this assertion is : let LCS(u, v) be a longest ommon subword to u and v and SCS(u, v)
be a shortest ommon superword to u and v. Then we have: |LCS(u, v)|+ |SCS(u, v)| = |u|+ |v|.
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2.

|W | = |x1|+ |w1|+ . . .+ |xp|+ |wp|+ |xp+1|

= |w|+

p+1
∑

i=1

|xi| = |w|+

p+1
∑

i=1

(

|ui|+ |vi|
)

= |w|+ (|u| − |w]) + (|v| − |w|) = |u|+ |v| − |w| .

�

2.4. Construtive Algorithms

We have devised an algorithm produing a �nite automaton A ·⊓ ({u,v}) whih exatly reog-

nizes the language ·⊓ ({u, v}), the set of loally maximal subwords ommon to two words

u and v, due to lak of spae, we do not desribe it here. Its onstrution and proof of

orretness are given in (Milet et al., 2012). It is based on the transformation of an 2-d

array displaying whih letters are ommon to two words into a �nite automaton reognizing

·⊓ (u, v) (see an example on �gure 2(a)).

Starting from A ·⊓ ({u,v}), it is then simple to produe a �nite automaton that we all

A⊔({u,v}) whih exatly reognizes the language L(A({u, v})) (also denoted ⊔({u, v})). We

display an example at �gure 2(b).

z

b

y

a

x

t b u a v b w

b

a

b

ǫ

ǫ

ǫ

ǫ

ǫ

(a) An automaton whih reognizes the

language ·⊓ (r, s). We have r = zbyax

and s = tbuavbw ; a and b are letters,

while t,u,v,w,x,y and z are fators on

Σ\{a, b}.

z

b

y

a

x

t b u a v b w

b

a

b

(b) An automaton whih reognizes

⊔(r, s) = (z • t)b(u • y)a(vbw • x) ∪
(tbuav • z)b(w • yax). A retangle

holds for the shu�e of the fators on

its sides

Figure 2: Two automata built on two sentenes.

3. Order Relation and Operations Between Alignments

In this setion, we are interested in a partiular family of alignments, sine we want to

desribe what have in ommon the subwords and superwords of a �nite set U of sentenes.

We will onsider alignments on U , i.e. alignments with a support whih is subset of U .

Moreover, we will assume that U is an antihain aording to the order relation ≤.
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3.1. Order Relation

De�nition 5 (Order on alignments on U) Given two alignments on U , a = {(w1, l1),
. . . , (wn, ln)} and b = {(w′

1, l
′
1), . . . , (w

′
m, l′m)}, we write a ⊑ b if for all i ∈ (1, n), it exists

j ∈ (1,m) suh that

1. wi = w′
j

2. l′j ⊆ li

Therefore, if a ⊑ b, then word(a) ⊆ word(b).

It is easy to hek that ⊑ is a partial order relation on the set of alignments and that

the empty alignment ∅ is smaller than every other alignment.

De�nition 6 (Homogeneous sets of alignments) A set of alignments is homogeneous

if it is non empty and all its elements have the same support. The family of homogeneous

sets of loally maximal alignments is denoted AH.

In order to link this de�nition with de�nition 3, we an notie that, for any subset W of

U , A(W ) ∈ AH .

De�nition 7 (Order on homogeneous sets of alignments on U) Let A and B be two

homogeneous sets of alignments. We have A ⊑ B if for all b ∈ B, there is a ∈ A suh that

a ⊑ b.

Proposition 2 ⊑ is a partial order on AH and the smallest element is {∅}.

Proof.

Re�exivity and transitivity are immediate. In order to hek the antisymmetry, let us onsider

two homogeneous sets of loally maximal alignments, denoted A and B, suh that: A ⊑ B and

B ⊑ A. Sine A and B are homogeneous, all alignments in A have the same support, denoted

word(A), and the same holds for B, with the support denoted word(B). From the de�nition of ⊑,
we easily hek that word(A) = word(B). Let us onsider b1 = {(w1, l

′
1), . . . , (wn, l

′
n)} ∈ B: sine

A ⊑ B and B ⊑ A, it exists a ∈ A and b2 ∈ B suh that a ⊑ b1 and b2 ⊑ a. By transitivity, we

have b2 ⊑ b1. At last, b1 and b2 having the same support and being loally maximal, it implies that

b1 = b2 and then a ∈ B. Hene, A ⊆ B. Similarly, we an hek that B ⊆ A.
�

3.2. De�nition and Properties of g

De�nition 8 Let a ∈ Ar({u1, · · · , un}) and b ∈ As({v1, · · · , vm}), where a = {(u1, l1), . . . ,
(un, ln)} and b = {(v1, l

′
1), . . . , (vm, l′m)}. Firstly, we onstrut a+ b, the �nite set of align-

ments  = {(w1, L1), . . . , (wp, Lp)} suh that

1. {w1, . . . , wp} = word(a) ∪ word(b)

2. for all (i, k), if (wk = ui) then (Lk ⊆ li)

3. for all (j, k), if (wk = vj) then (Lk ⊆ l′j)
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Seondly, we denote ag b the set of minimal elements of a+ b aording to ⊑.

As onsequene, if ·⊓ ({r, s}) 6= ∅, then the boxed word in  ∈ a+b is a subword of r and

s, else, no letter is boxed in . In addition, if the supports of a and b ontains an idential

word ui = vj suh that li ∩ l′j = ∅, no letter is then boxed in .

The operation g is extended to homogeneous sets of alignments by the following de�ni-

tion.

De�nition 9 Let A and B be two homogeneous sets of alignments. We de�ne AgB as the

set of the minimal elements of A+B aording to ⊑ where

A+B =
⋃

b∈B
a∈A

(a+ b)

Proposition 3 The operation g is internal to AH , ommutative and idempotent.

Proof. Let us onsider A ∈ AH and B ∈ AH .

1. All the alignments in A g B are loally maximal by de�nition and have the same support,

namely word(A) ∪word(B).

2. The ommutativity is straightforward.

3. Let a be an element of A, it is immediate that a ∈ (a+ a) ⊆ A+A. Moreover, sine A ∈ AH ,

a is a loally maximal alignment, and so a ∈ AgA. Consequently, A ⊆ AgA. Reiproally,

let  be an element of A g A. Then it exists a ouple (a, b) ∈ A2
suh that  ∈ a+ b. Sine

A ∈ AH and word() = word(a) ∪ word(a), a, b and  have the same support. Moreover,

from de�nitions 5 and 8, a ⊑  and b ⊑ .  being a minimal element of A + A aording

to ⊑, and a and b belonging to A + A, it turns out that a = b = . At last,  ∈ A. Hene

Ag A ⊆ A. ⊑ is then idempotent on AH .
�

3.3. Constrution of f

De�nition 10 Let a ∈ Ar({u1, · · · , un}) and b ∈ As({v1, · · · , vm}) where a = {(u1, l1), . . . ,
(un, ln)} and b = {(v1, l

′
1), . . . , (vm, l′m)}. We onstrut a f b, the �nite set of alignments

 = {(w1, L1), . . . , (wp, Lp)} suh that

1. {w1, . . . , wp} = word(a) ∩ word(b)

2. Either, for all (i, k) suh that wk = ui we have li ⊆ Lk, or for all (j, k) suh that

wk = vj we have l′j ⊆ Lk.

3.  is a loally maximal alignment.

An alignment in afb is thus based either on a restrition of a to the support word(a)∩
word(b) or on a restrition of b to the same support. For instane, if a = {( a cd, ab a c, a ba)}
and b = {(a  d, aba  ,  a)}, then af b = {( a  d, a ba  ), ( a  d, ab a  )}.

De�nition 11

AfB =
⋃

b∈B
a∈A

(a f b)
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Proposition 4 The operation f is internal to AH , ommutative and idempotent.

Proof. The ommutativity is straightforward (de�nition 10 is symetri wrt a and b). For

idempotene, we use the fat (diret onsequene of the de�nition) that if a and b are loally

maximal alignments on the same support, then a f b = {a, b}. Let us onsider A ∈ AH : if a ∈ A

then a ∈ (a f a) ⊆ (A f A) and therefore A ⊆ A f A. If  ∈ A f A, then there exists (a, b) ∈ A2

suh that  ∈ a f b. Sine a and b have the same support, either  = a or  = b, therefore  ∈ A

and Af A ⊆ A.
�

3.4. Struture of Homogeneous Sets of Alignments on U

We de�ne sup⊑(A,B) as the minimal set of alignments larger than A and B (if it exists)

aording to ⊑. Similarly, inf⊑(A,B) is the maximal set of alignments smaller than A and

B.

Proposition 5 Let A and B be �nite homogeneous sets of alignments. Then sup⊑(A,B)
exists and

sup
⊑

(A,B) = Ag B

Proof.

• First, we show that A g B is greater than A and B for ⊑. Let  ∈ A g B. By onstrution,

there exist a ∈ A and b ∈ B suh that  ∈ a g b ⊆ a + b. By the �rst item of de�nition 8,

word(a) ⊆ word() and by the two other items, we an onlude that a ⊑ . Thus for every

 ∈ C there is a ∈ A suh that a ⊑ . Thus A ⊑ Ag B and B ⊑ Ag B.

• Let C be a set of alignments greater than A and B, and let  ∈ C. There are a ∈ A and b ∈ B

suh that a ⊑  and b ⊑ . We need to �nd 

′ ∈ Ag B suh that 

′ ⊑ . Remove from the

support of  all words not in the support of a or b. The obtained alignment may not be loally

maximal, so we add more boxed letters to make it loally maximal. The result alignment 

′

satis�es all onditions of De�nition 8, thus AgB ⊑ C and therefore sup⊑(A,B) = Ag B.

�

There is no equivalent relation between f and inf for all homogeneous sets of alignments,

we must restrit to sets of all alignments built on a given set of words.

De�nition 12 If U is a �nite olletion of words, We de�ne the olletion of sets of align-

ments A(U) = {A(V ) | V ⊆ U}.

Proposition 6 Let A and B be sets of alignments in A(U). Then, in A(U), inf⊑(A,B)
exists and:

inf
⊑
(A,B) = AfB

Proof.

• First, we show that if A = A(V ) and B = A(W ) with V ⊆ U and W ⊆ U then A f B =
A(W ∩ V ). Let  ∈ A f B.  is a loally maximal alignment on its support word(A) ∩
word(B) = W ∩ V , thus  ∈ A(W ∩ V ). Let  ∈ A(W ∩ V ). Let a be an alignment on W

suh that  ⊑ a, then  is obtained from a ∈ A using the de�nition of AfB and  ∈ Af B.
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• Let C ∈ A(U) be a set of alignments smaller than A and B. We show that C is smaller

than A f B. Some alignments of C are smaller than alignments of A and others are smaller

than alignments of B. Sine C is homogeneous, its support word(C) must be inluded in

word(A) ∩ word(B) and sine C = A(T ) for some T ⊆ U , then T ⊆ V ∩ W . Therefore

A(T ) ⊑ A(V ∩W ) whih is exatly C ⊑ Af B.

�

Proposition 7 Let U = {u1, u2, · · · , un} be a �nite set of words, the operations f and g

are internal to U .

Proof. For f it is a onsequene of the previous de�nition. For g, it is not di�ult to see it

from the de�nition of g.
�

Proposition 8 Let U = {u1, u2, · · · , un} be a �nite set of words, antihain for ≤. Then

U = (A(U),g,f) is a lattie. This lattie is said to be built on the �nite language U .

Proof. This is a diret onsequene of the three previous propositions.

�

4. Latties of Alignments and Learning by Analogy

This setion intends to give some hints on how the lattie struture that we have onstruted

on a �nite language U an be used in mahine learning. Atually, the alignments in the

lattie re�et in a straightforward manner what a subset of sentenes share, in terms of

subsequenes. Hene, a diret appliation ould be to imagine the onstrution of an �nite

or in�nite language (expressed intensionnally) based on the ommon ore of U and able

to give a measure of adequation of others words of Σ⋆
to U . Firstly, we give some quik

de�nitions on the onepts of analogial proportion and its appliations to words. Then

we will give a de�nition and a result on analogial proportions in latties. Finally, we will

give preliminary results and ideas on the appliation of mahine learning by analogy to the

extension of U aording to the lattie U .

4.1. Analogial proportion : a de�nition

De�nition 13 (Axioms of analogial proportion) An analogial proportion on a set E

is a subset of E
4
(hene, a quaternary relation) suh that, for all 4-tuples A, B, C et D in

relation in this order (denoted A : B :: C : D ):

A : B :: C : D ⇔ C : D :: A : B

A : B :: C : D ⇔ A : C :: B : D

For every 2-tuple, one has the trivial analogy:

A : B :: A : B

4.2. Analogial Proportions Between Words

Aording to (Stroppa and Yvon, 2005) a general de�nition of analogial proportion, on-

form to the axioms, an be given in many di�erent ases thanks to the notion of fatorization.

We show here how it applies in Σ⋆
, and we will ome bak later to its use in general latties.
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De�nition 14 (Analogial proportions between words.)

(x, y, z, t) ∈ Σ⋆
are in analogial proportion, whih is denoted x : y : z : t , if and only if

there exists a positive integer n and two sets of words (αi)i∈{1,n} and (βi)i∈{1,n} ∈ Σ⋆
suh

that:

x = α1. . .αn, t = β1. . .βn, y = α1β2α3. . .αn, z = β1α2β3. . .βn or

x = α1. . .αn, t = β1. . .βn, y = β1α2β3. . .αn , z = α1β2α3. . .βn

and ∀i ∈ {1, n}, αiβi 6= ǫ.

Example. reeption : refetion :: deeptive : defetive in an analogial proportion

between words, with n = 3 and the fators : α1 = re, α2 = cept, α3 = ion, β1 = de,

β2 = fect, β3 = ive.

The authors have shown that this de�nition is onform to the axioms. There exists a

seond de�nition, whih is given in (Milet et al., 2008) with the assoiated algorithms, that

veri�es the axioms as well.

De�nition 15 Let u, v, w and x four words in Σ⋆
. We assume that an analogial proportion

is de�ned on Σ. We extend this relations to Σǫ = Σ∪{ǫ}, adding the proportions a : ǫ :: a : ǫ
for all a ∈ Σ. Then u, v, w and x are in analogial proportion in Σ⋆

if there exists an

alignment between the four words suh that every olumn is an analogial proportion in Σǫ.

Example. Let Σ = {a, b, c, A,B,C} an

alphabet with the non trivial analogial pro-

portions a : b :: A : B , a :  :: A : C and

 : b :: C : B The following alignment shows

that there is an analogial proportion in Σ⋆

between the four words CaCA, CabBA, bac

and babb.









C

C

b

b

a

a

a

a

b

b

C

B

c

b

A

A









Links between the two de�nitions. The seond de�nition using alignments is shown

to imply the �rst one (not the reverse). However, a straightforward modi�ation of the �rst

one lead to a omplete equivalene (Hassena, 2011).

4.3. Analogial Proportion in Latties

Using the fatorization tehnique, the authors of (Stroppa and Yvon, 2005) have found that

a general de�nition of an analogial proportion an be given in a lattie. Unfortunately, the

de�nition they have given was unomplete. We give here the omplete one

6

.

De�nition 16 For four elements (x, y, z, t) ∈ (L,∨,∧)4, the analogial proportion denoted

(x : y :: z : t) is true if and only if:

x = (x∧y)∨(x∧z) and x = (x∨y)∧(x∨z)
y = (x∧y)∨ (t∧y) and y = (x∨y)∧ (t∨y)

z = (t∧ z)∨ (x∧ z) and t = (t∨ z)∧ (t∨ y)
t = (t∧ z)∨ (t∧ y) and z = (t∨ z)∧ (x∨ z)

A simple example of proportion in a lattie is given by the following property:

6. H. Prade and L. Milet, personnal ommuniation.
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Proposition 9 Let y and z be two elements of a lattie. Then the following analogial

proportion holds:

(y : y ∨ z :: y ∧ z : z)

4.4. Learning from U

After having given the basis in the previous setions, we give preliminary here remarks and

hints onerning some possible extensions of this work to appliations, via mahine learning,

in onnexion with analogial proportions and lattie struture.

Firstly, when investigating the onnexions between loally maximal subwords, loally

minimal superwords and analogial proportions, a �rst property is easy to show from de�-

nition 15 and proposition 1.

Proposition 10

∀t ∈ L(Aw({u, v})), ∃w ∈ ·⊓ (u, v) suh that t : u :: v : w

∀w ∈ ·⊓ (u, v), ∃t ∈ L(Aw({u, v})), suh that t : u :: v : w

Take u = abcabb and v = aabbc with the

maximal subword y = abb. The alignment

( a b ca b b, a a b b c) is loally maximal.

The language L(Aabb({u, v}) ontains the

word w = aabcabbc. In the faing alignment

one an observe the analogial proportion

w : u :: v : y











a a b c a b b c

a b c a b b

a a b b c

a b b











However, what we are really interested in is to �nd how using the lattie U and its analogial

properties to generalize U . As a seond remark, we note that any homogeneous set of

alignments A in U represents an intensional de�nition of the �nite language ⊔(A), also
written L(A(U)), as de�ned at setions 2.3 and 2.4. We an also onstrut, as indiated in

setion 2.4, a �nite automaton as an intensional representation of this language, with the

syntati analysis faility. Therefore, we have potentially at our disposal a lattie of �nite

automata, in onnetion with the lattie of subsets of U : eah automaton reognizes a �nite

language whih is a partiular generalization of the assoiated support, itself a subset of U .

We denote hereafter ≤ the order relation between �nite set of words derived from the

subword relation ≤, de�ned by: M ≤ N i� ∀m ∈ M, ∃ n ∈ N suh that m ≤ n. For

example, {ab, c} ≤ {abcd, e}. There is an partial inlusion relation between the languages

reognized by this lattie of automata, ompatible with that of the subsets, sine the fol-

lowing property holds.

Proposition 11 For any subsets J and K of U , the three following relations are equivalent:

L(A(J)) ≤ L(A(K)), J ⊂ K and ·⊓ (K) ⊂ ·⊓ (J).

Note that the exploration of suh a lattie of automata, onstruted on a �nite set of positive

examples, is the basis of the e�ient �nite automata inferene, see (de la Higuera, 2010).

This ould be one basis for the use of our lattie in mahine learning.
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Another threads to follow ould be the idea of analogial losure of a �nite language, as

desribed in (Lepage, 2003) and that of analogial generation, see (Bayoudh et al., 2007).

In both, a triple of words are taken in the learning sample and a fouth sentene is generated,

under the onstraint that the four sentenes are in analogial proportion. It is not yet lear

to the authors how this tehnique an be ombined with the lattie struture, but this ould

be a onnetion with the area of mahine learning on the basis of formal onepts, as in

(Kuznetsov, 2001). In addition, onnetions with the reent onept of string extension, see

Kasprzik and Kötzing (2010), have been suggested to the authors, and it seem an interesting

trak to follow.

5. Conlusion and Bibliographial Comments

The problem of �nding one longest ommon subsequene (subword) or one shortest ommon

supersequene (superword) to two or more words has been well overed (see e.g. (Gus�eld,

1997), pp 287-293 and 309, (Irving and Fraser, 1992)). However, to the best of our knowl-

edge, the problem of �nding an intentional de�nition to the sets of maximal subwords and

minimal superwords of a set of words has not been explored yet. In this paper we have

haraterized, via the onstrution of a lattie of alignment sets, interesting sets of minimal

superwords and maximal subwords from a set of words. We have not worked yet neither

on the theoretial omplexity of the onstrution of the lattie of alignments, nor on its

pratial omplexity and appliations. We have also given hints on using this lattie for the

learning of intensional representations of languages generalizing a �nite set of words.

A omplexity result (sometimes misinterpreted) is given by Maier (Maier, 1978) who

has demonstrated that the "yes/no longest ommon subsequene problem" and the "yes/no

shortest ommon supersequene problem" are NP-omplete for alphabets of su�ient size.

It is also true that �nding the length of a shortest (longest) super(sub)sequene ommon to

a set of k sequenes is in O(m1 . . . mk) omparisons, with mi the size of the i-th of the k

sequenes, hene exponential in k.

The works of Fraser and Irving (Fraser et al., 1996) have produed algorithms to �nd

the longest minimal ommon supersequene (superword) and the shortest maximal ommon

subsequene, aording to the order relation ≤.
(Stroppa and Yvon, 2005) give a de�nition of an analogial proportion between words

and also within latties, that we have ompleted as indiated in de�nition 16. As far as we

know, these are the only investigations about analogial proportions in the latties.

Mahine learning with the help of lattie struture is �rstly investigated in (Mithell,

1997). Referenes on works on learning with Galois latties an be found for example in

(Kuznetsov, 2001). The ognitive aspets of reasoning and learning by analogy an be

found in (Gentner et al., 1989). Methodology, algorithms and experiments in learning by

analogial proportions an be found in (Milet et al., 2008). Learning intensional expressions

of langages from words is the matter of Grammatial Inferene, see (de la Higuera, 2010).

The authors want to thank the anonymous reviewers for their help.
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