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Abstra
t

We de�ne the lo
ally maximal subwords and lo
ally minimal superwords 
ommon to a

�nite set of words. We also de�ne the 
orresponding sets of alignments. We give a partial

order relation between su
h sets of alignments, as well as two operations between them.

We show that the 
onstru
ted family of sets of alignments has the latti
e stru
ture. We

give hints to use this stru
ture as a ma
hine learning basis for indu
ing a generalization of

the set of words.
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1. Introdu
tion

Mu
h has been done on �nding maximal subwords and minimal superwords to a set of

words, when the order relation is based on the length of words. We are interested in this

paper in the same problem, but for the �ner order relation based on the de�nition of a

subword. Is there a manner to 
hara
terize the set of maximal subwords and that of minimal

superwords, given a �nite set U of words, a

ording to this relation? More than that, is

there an algebrai
 relation between all these sets of subwords and superwords of U? An

answer to these questions would allow to give a pre
ise de�nition to what the words of U

share, and how this 
ommon 
ore is organised.

The �rst parts of this paper gives a partial answer to these points. We de�ne in se
tion 2 a

parti
ular 
ase of the notion of alignment, whi
h will be useful for our 
onstru
tion. A
tually,

in se
tion 3, we de�ne two operations and an order relation on sets of alignments that leads

to the 
onstru
tion of a latti
e.

We are also interested in how this stru
ture 
ould be useful in ma
hine learning. Sin
e

we start from a �nite set of words, the 
onvenient ma
hine learning framework seems to be

grammati
al inferen
e (from a �nite set of positive samples, in our 
ase). It seems that the

latti
e stru
ture is parti
ularly adapted to learning by analogy, sin
e some natural analogi
al
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proportions 
an be observed in su
h a stru
ture. We give in se
tion 4 some hints on these

points.

2. Maximal Subword, Minimal Superword, Alignment

2.1. Basi
s

Let Σ be an alphabet, i.e. a �nite set of letters. A word u is a sequen
e u1 . . . un of letters

in Σ. The length of u, denoted |u| is n. The empty word, of null length, is ǫ. A language is

a set of words. A subword of a word u is a word obtained by deleting letters of u at some

(non ne
essarily adja
ent) positions

1

in u. We denote u • v the shu�e of the two words u

and v.

In Σ⋆
, the set of all words on Σ, we use the order relation ≤ de�ned by: (u ≤ v ⇔

u is a subword of v). When u is a subword of v, v is 
alled a superword

2

of u. For example:

abc ≤ aabbcd.

A word w is a 
ommon subword to u and v when w ≤ u and w ≤ v. The word w is a

maximal 
ommon subword to u and v if there does not exist any other 
ommon subword

x to u and v su
h that w ≤ x. For example, ab and c are maximal 
ommon subwords to

u = cadba and v = fagbhc, while a is a non maximal 
ommon subword. De�ning a 
ommon

maximal subword to a �nite set of words is a straightforward extension.

A minimal 
ommon subword to two words and to a non empty �nite set of words is

de�ned in an analog way.

In a partially ordered set S, an anti
hain is a subset of S 
omposed of pairwise in
om-

parable elements. Any subset T of S 
an be redu
ed to its maximal anti
hain (by removing

from T every element lesser than another element).

2.2. Alignments

2.2.1. Definition of Alignments

De�nition 1 An alignment is a �nite set of pairs (w, l) where w is a word and l a set of

indi
es between 1 and |w|. The set l de�nes a subword of w denoted w[l]. Moreover, an

alignment a must satisfy the following properties for all (w, l) ∈ a and (w′, l′) ∈ a:

1. w[l] = w′[l′]

2. (w = w′) ⇒ (l = l′)

3. (w ≤ w′) ⇒ (w = w′)

The set of words on whi
h the alignment is de�ned is 
alled the support and is denoted

word(a) = {w | ∃l ⊂ N with (w, l) ∈ a} . A

ording to our de�nition

3

, the support is an

anti
hain of words for ≤.

1. Other terms for subword are subsequen
e and partial word. A fa
tor, or substring is a subword of u built

by 
ontiguous letters of u.

2. A superword of u, also 
alled a supersequen
e must not be 
onfused with a superstring of u, in whi
h

the letters of u are 
ontiguous. In other words, u is a fa
tor (a substring) of any superstring of u. See

(Gus�eld, 1997), pages 4, 309 and 426.

3. An alignment (regardless of the third point of our de�nition), is 
alled a tra
e by Wagner and

Fisher (Wagner and Fisher, 1974) for two words and a threading s
heme in Maier (Maier, 1978).
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The set of indi
es l will be 
alled the position of the indexed subword of w[l].
In the following, an alignment will be represented by a set of words in whi
h some letters

are boxed. For ea
h element (w, l) of the alignment, the boxed letters represent the subword

w[l] (also 
alled the boxed subword of the alignment).

For legibility, the n words 
an be displayed in su
h a manner that the 
orresponding

letters of w in the n words are in the same 
olumn. Some blanks 
an be added freely to

help the reading. For example:

a =





a c b d e g

a c e h

g a h c d





denotes the alignment a = {(acbdeg, {1, 2}), (aceh, {1, 2}), (gahcd, {2, 4})}. We 
an write

also without ambiguity:

a = ( a c bdeg, a c eh, g a h c d).

2.2.2. Lo
ally Maximal Alignments and Lo
ally Maximal Subwords

Generally, two alignments on the same support W = {w1, . . . , wn} with the same boxed

subword r 
an be di�erent (having di�erent set of indexes). We 
ould de�ne maximal

alignments as those whose boxed letters are maximal subword of W .

However, all interesting alignments would not be maximal with this de�nition. Consider

for example the two words w1 = abcd and w2 = dabcab. The 
omplete set of 
ommon

subwords is {ǫ, a, b, c, ab, ac, bc, abc, d} and their set of maximal 
ommon subwords is {abc, d}.

A
tually the alignment ( a b cd, dabc a b ) is somehow "maximal" sin
e it is not 
omparable

to the only alignment with the boxed subword abc, namely ( a b 
 d, d a b 
 ab).
This leads to de�ne the following notion of lo
ally maximal alignment and of lo
ally

maximal subword.

De�nition 2 An alignment a = {(w1, l1), . . . , (wn, ln)} is lo
ally maximal if there is no

other alignment b = {(w1, l
′
1), . . . , (wn, l

′
n)} on the same support su
h that for all i, li ⊂ l′i.

Noti
e that the empty alignment ∅ is lo
ally maximal.

De�nition 3 The set of boxed subwords asso
iated to all lo
ally maximal alignments between

a �nite set of words W = {w1, . . . , wn} is 
alled the set of lo
ally maximal subwords to W

and is denoted ·⊓ (W ).
For some r ∈ ·⊓ (W ), the set of lo
ally maximal alignments asso
iated to r is denoted

Ar(W ).
We also denote A(W ) =

⋃

r∈ ·⊓ (W )

Ar(W ).

For example, let us 
onsider W = {ababc, cabd}, its sets of lo
ally maximal alignments

are given by

Aab(W ) = {( a b abc, c a b d), ( a ba b c, c a b d), (ab a b c, c a b d)}

Ac(W ) = {(abab c , c abd)} .

and A(W ) = Aab(W )
⋃

Ac(W ). Then, the set of lo
ally maximal subwords ofW is ·⊓ (W ) =
{ab, c}.
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2.3. Language Asso
iated with an Alignment

De�nition 4 Let w = w1 · · ·wp be a word, lo
ally maximal subword of two words u and v

at only one position ( i.e. |Aw({u, v})| = 1). Then there exists an unique set of fa
tors of

u, denoted (u1, . . . , up+1
), and an unique set of fa
tors of v, denoted (v1, . . . , vp+1), su
h

that u = u1w1 . . . u
pwpu

p+1
and v = v1w1 . . . v

pwpv
p+1

. We de�ne L(Aw({u, v})) as the

following �nite language:

L(Aw({u, v})) = (u1 • v1)w1(u
2 • v2), . . . , (up • vp)wp(u

p+1 • vp+1)

The 
onstru
tion of L(Aw({u, v})) is shown in Figure 1, with straightforward graphi
 
on-

ventions.

u1

v1

w1
u2

v2

wi
ui+1

vi+1

wi wp−1
up

vp

wp
up+1

vp+1

• • • • •

Figure 1: The 
onstru
tion of L(Aw(u, v)) when |Aw({u}, {v})| = 1.

If |Aw({u, v})| > 1, L(Aw({u, v}) is de�ned as the union of all languages asso
iated with

all di�erent positions of w as lo
ally maximal subword of u and v. Finally, L(A({u, v})) is
de�ned as the union of the languages L(Aw({u, v})), for all w lo
ally maximal subwords of

u and v.

Proposition 1 Let w be a lo
ally maximal subword 
ommon to two words u and v and

L(Aw({u, v})) 
onstru
ted as above. We have:

1. All words in L(Aw({u, v})) are (non ne
essarily minimal

4

) 
ommon superwords of

u and v.

2. For any word W ∈ L(Aw({u, v})), we have

5 |W |+ |w| = |u|+ |v|.

Proof.

Let us 
onsider W ∈ L(Aw({u, v})). By de�nition of L(Aw({u, v})), there exists (u1, . . . , up+1)
and (v1, . . . , vp+1), respe
tively sets of fa
tors of u and v, su
h that the word W 
an be written as

W = x1w1 . . . x
pwpx

p+1
where, for every i ∈ {1, . . . p+ 1}, xi ∈ (ui • vi).

1. Therefore, for every i ∈ {1, . . . p+ 1}, xi ≥ ui
and xi ≥ vi.

We then have W ≥ u1w1 . . . u
pwpu

p+1 = u and W ≥ v1w1 . . . v
pwpv

p+1 = v.

4. Let two words u = abcabb and v = aabbc, the asso
iated alignment ( a b ca b b, a a b b c) is lo
ally
maximal. The language L(Aabb({u, v}) 
ontains the language aabcab(b · c) and, in parti
ular, the word

w = abcabbc. The word w′ = abcabbc is another superword of u and v, and w′ ≤ w. Thus, w is not an

lo
ally maximal superword of u and v.

5. A 
onsequen
e of this assertion is : let LCS(u, v) be a longest 
ommon subword to u and v and SCS(u, v)
be a shortest 
ommon superword to u and v. Then we have: |LCS(u, v)|+ |SCS(u, v)| = |u|+ |v|.
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2.

|W | = |x1|+ |w1|+ . . .+ |xp|+ |wp|+ |xp+1|

= |w|+

p+1
∑

i=1

|xi| = |w|+

p+1
∑

i=1

(

|ui|+ |vi|
)

= |w|+ (|u| − |w]) + (|v| − |w|) = |u|+ |v| − |w| .

�

2.4. Constru
tive Algorithms

We have devised an algorithm produ
ing a �nite automaton A ·⊓ ({u,v}) whi
h exa
tly re
og-

nizes the language ·⊓ ({u, v}), the set of lo
ally maximal subwords 
ommon to two words

u and v, due to la
k of spa
e, we do not des
ribe it here. Its 
onstru
tion and proof of


orre
tness are given in (Mi
let et al., 2012). It is based on the transformation of an 2-d

array displaying whi
h letters are 
ommon to two words into a �nite automaton re
ognizing

·⊓ (u, v) (see an example on �gure 2(a)).

Starting from A ·⊓ ({u,v}), it is then simple to produ
e a �nite automaton that we 
all

A⊔({u,v}) whi
h exa
tly re
ognizes the language L(A({u, v})) (also denoted ⊔({u, v})). We

display an example at �gure 2(b).

z

b

y

a

x

t b u a v b w

b

a

b

ǫ

ǫ

ǫ

ǫ

ǫ

(a) An automaton whi
h re
ognizes the

language ·⊓ (r, s). We have r = zbyax

and s = tbuavbw ; a and b are letters,

while t,u,v,w,x,y and z are fa
tors on

Σ\{a, b}.

z

b

y

a

x

t b u a v b w

b

a

b

(b) An automaton whi
h re
ognizes

⊔(r, s) = (z • t)b(u • y)a(vbw • x) ∪
(tbuav • z)b(w • yax). A re
tangle

holds for the shu�e of the fa
tors on

its sides

Figure 2: Two automata built on two senten
es.

3. Order Relation and Operations Between Alignments

In this se
tion, we are interested in a parti
ular family of alignments, sin
e we want to

des
ribe what have in 
ommon the subwords and superwords of a �nite set U of senten
es.

We will 
onsider alignments on U , i.e. alignments with a support whi
h is subset of U .

Moreover, we will assume that U is an anti
hain a

ording to the order relation ≤.
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3.1. Order Relation

De�nition 5 (Order on alignments on U) Given two alignments on U , a = {(w1, l1),
. . . , (wn, ln)} and b = {(w′

1, l
′
1), . . . , (w

′
m, l′m)}, we write a ⊑ b if for all i ∈ (1, n), it exists

j ∈ (1,m) su
h that

1. wi = w′
j

2. l′j ⊆ li

Therefore, if a ⊑ b, then word(a) ⊆ word(b).

It is easy to 
he
k that ⊑ is a partial order relation on the set of alignments and that

the empty alignment ∅ is smaller than every other alignment.

De�nition 6 (Homogeneous sets of alignments) A set of alignments is homogeneous

if it is non empty and all its elements have the same support. The family of homogeneous

sets of lo
ally maximal alignments is denoted AH.

In order to link this de�nition with de�nition 3, we 
an noti
e that, for any subset W of

U , A(W ) ∈ AH .

De�nition 7 (Order on homogeneous sets of alignments on U) Let A and B be two

homogeneous sets of alignments. We have A ⊑ B if for all b ∈ B, there is a ∈ A su
h that

a ⊑ b.

Proposition 2 ⊑ is a partial order on AH and the smallest element is {∅}.

Proof.

Re�exivity and transitivity are immediate. In order to 
he
k the antisymmetry, let us 
onsider

two homogeneous sets of lo
ally maximal alignments, denoted A and B, su
h that: A ⊑ B and

B ⊑ A. Sin
e A and B are homogeneous, all alignments in A have the same support, denoted

word(A), and the same holds for B, with the support denoted word(B). From the de�nition of ⊑,
we easily 
he
k that word(A) = word(B). Let us 
onsider b1 = {(w1, l

′
1), . . . , (wn, l

′
n)} ∈ B: sin
e

A ⊑ B and B ⊑ A, it exists a ∈ A and b2 ∈ B su
h that a ⊑ b1 and b2 ⊑ a. By transitivity, we

have b2 ⊑ b1. At last, b1 and b2 having the same support and being lo
ally maximal, it implies that

b1 = b2 and then a ∈ B. Hen
e, A ⊆ B. Similarly, we 
an 
he
k that B ⊆ A.
�

3.2. De�nition and Properties of g

De�nition 8 Let a ∈ Ar({u1, · · · , un}) and b ∈ As({v1, · · · , vm}), where a = {(u1, l1), . . . ,
(un, ln)} and b = {(v1, l

′
1), . . . , (vm, l′m)}. Firstly, we 
onstru
t a+ b, the �nite set of align-

ments 
 = {(w1, L1), . . . , (wp, Lp)} su
h that

1. {w1, . . . , wp} = word(a) ∪ word(b)

2. for all (i, k), if (wk = ui) then (Lk ⊆ li)

3. for all (j, k), if (wk = vj) then (Lk ⊆ l′j)
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Se
ondly, we denote ag b the set of minimal elements of a+ b a

ording to ⊑.

As 
onsequen
e, if ·⊓ ({r, s}) 6= ∅, then the boxed word in 
 ∈ a+b is a subword of r and

s, else, no letter is boxed in 
. In addition, if the supports of a and b 
ontains an identi
al

word ui = vj su
h that li ∩ l′j = ∅, no letter is then boxed in 
.

The operation g is extended to homogeneous sets of alignments by the following de�ni-

tion.

De�nition 9 Let A and B be two homogeneous sets of alignments. We de�ne AgB as the

set of the minimal elements of A+B a

ording to ⊑ where

A+B =
⋃

b∈B
a∈A

(a+ b)

Proposition 3 The operation g is internal to AH , 
ommutative and idempotent.

Proof. Let us 
onsider A ∈ AH and B ∈ AH .

1. All the alignments in A g B are lo
ally maximal by de�nition and have the same support,

namely word(A) ∪word(B).

2. The 
ommutativity is straightforward.

3. Let a be an element of A, it is immediate that a ∈ (a+ a) ⊆ A+A. Moreover, sin
e A ∈ AH ,

a is a lo
ally maximal alignment, and so a ∈ AgA. Consequently, A ⊆ AgA. Re
ipro
ally,

let 
 be an element of A g A. Then it exists a 
ouple (a, b) ∈ A2
su
h that 
 ∈ a+ b. Sin
e

A ∈ AH and word(
) = word(a) ∪ word(a), a, b and 
 have the same support. Moreover,

from de�nitions 5 and 8, a ⊑ 
 and b ⊑ 
. 
 being a minimal element of A + A a

ording

to ⊑, and a and b belonging to A + A, it turns out that a = b = 
. At last, 
 ∈ A. Hen
e

Ag A ⊆ A. ⊑ is then idempotent on AH .
�

3.3. Constru
tion of f

De�nition 10 Let a ∈ Ar({u1, · · · , un}) and b ∈ As({v1, · · · , vm}) where a = {(u1, l1), . . . ,
(un, ln)} and b = {(v1, l

′
1), . . . , (vm, l′m)}. We 
onstru
t a f b, the �nite set of alignments


 = {(w1, L1), . . . , (wp, Lp)} su
h that

1. {w1, . . . , wp} = word(a) ∩ word(b)

2. Either, for all (i, k) su
h that wk = ui we have li ⊆ Lk, or for all (j, k) su
h that

wk = vj we have l′j ⊆ Lk.

3. 
 is a lo
ally maximal alignment.

An alignment in afb is thus based either on a restri
tion of a to the support word(a)∩
word(b) or on a restri
tion of b to the same support. For instan
e, if a = {( a cd, ab a c, a ba)}
and b = {(a 
 d, aba 
 , 
 a)}, then af b = {( a 
 d, a ba 
 ), ( a 
 d, ab a 
 )}.

De�nition 11

AfB =
⋃

b∈B
a∈A

(a f b)
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Proposition 4 The operation f is internal to AH , 
ommutative and idempotent.

Proof. The 
ommutativity is straightforward (de�nition 10 is symetri
 wrt a and b). For

idempoten
e, we use the fa
t (dire
t 
onsequen
e of the de�nition) that if a and b are lo
ally

maximal alignments on the same support, then a f b = {a, b}. Let us 
onsider A ∈ AH : if a ∈ A

then a ∈ (a f a) ⊆ (A f A) and therefore A ⊆ A f A. If 
 ∈ A f A, then there exists (a, b) ∈ A2

su
h that 
 ∈ a f b. Sin
e a and b have the same support, either 
 = a or 
 = b, therefore 
 ∈ A

and Af A ⊆ A.
�

3.4. Stru
ture of Homogeneous Sets of Alignments on U

We de�ne sup⊑(A,B) as the minimal set of alignments larger than A and B (if it exists)

a

ording to ⊑. Similarly, inf⊑(A,B) is the maximal set of alignments smaller than A and

B.

Proposition 5 Let A and B be �nite homogeneous sets of alignments. Then sup⊑(A,B)
exists and

sup
⊑

(A,B) = Ag B

Proof.

• First, we show that A g B is greater than A and B for ⊑. Let 
 ∈ A g B. By 
onstru
tion,

there exist a ∈ A and b ∈ B su
h that 
 ∈ a g b ⊆ a + b. By the �rst item of de�nition 8,

word(a) ⊆ word(
) and by the two other items, we 
an 
on
lude that a ⊑ 
. Thus for every


 ∈ C there is a ∈ A su
h that a ⊑ 
. Thus A ⊑ Ag B and B ⊑ Ag B.

• Let C be a set of alignments greater than A and B, and let 
 ∈ C. There are a ∈ A and b ∈ B

su
h that a ⊑ 
 and b ⊑ 
. We need to �nd 


′ ∈ Ag B su
h that 


′ ⊑ 
. Remove from the

support of 
 all words not in the support of a or b. The obtained alignment may not be lo
ally

maximal, so we add more boxed letters to make it lo
ally maximal. The result alignment 


′

satis�es all 
onditions of De�nition 8, thus AgB ⊑ C and therefore sup⊑(A,B) = Ag B.

�

There is no equivalent relation between f and inf for all homogeneous sets of alignments,

we must restri
t to sets of all alignments built on a given set of words.

De�nition 12 If U is a �nite 
olle
tion of words, We de�ne the 
olle
tion of sets of align-

ments A(U) = {A(V ) | V ⊆ U}.

Proposition 6 Let A and B be sets of alignments in A(U). Then, in A(U), inf⊑(A,B)
exists and:

inf
⊑
(A,B) = AfB

Proof.

• First, we show that if A = A(V ) and B = A(W ) with V ⊆ U and W ⊆ U then A f B =
A(W ∩ V ). Let 
 ∈ A f B. 
 is a lo

ally maximal alignment on its support word(A) ∩
word(B) = W ∩ V , thus 
 ∈ A(W ∩ V ). Let 
 ∈ A(W ∩ V ). Let a be an alignment on W

su
h that 
 ⊑ a, then 
 is obtained from a ∈ A using the de�nition of AfB and 
 ∈ Af B.
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• Let C ∈ A(U) be a set of alignments smaller than A and B. We show that C is smaller

than A f B. Some alignments of C are smaller than alignments of A and others are smaller

than alignments of B. Sin
e C is homogeneous, its support word(C) must be in
luded in

word(A) ∩ word(B) and sin
e C = A(T ) for some T ⊆ U , then T ⊆ V ∩ W . Therefore

A(T ) ⊑ A(V ∩W ) whi
h is exa
tly C ⊑ Af B.

�

Proposition 7 Let U = {u1, u2, · · · , un} be a �nite set of words, the operations f and g

are internal to U .

Proof. For f it is a 
onsequen
e of the previous de�nition. For g, it is not di�
ult to see it

from the de�nition of g.
�

Proposition 8 Let U = {u1, u2, · · · , un} be a �nite set of words, anti
hain for ≤. Then

U = (A(U),g,f) is a latti
e. This latti
e is said to be built on the �nite language U .

Proof. This is a dire
t 
onsequen
e of the three previous propositions.

�

4. Latti
es of Alignments and Learning by Analogy

This se
tion intends to give some hints on how the latti
e stru
ture that we have 
onstru
ted

on a �nite language U 
an be used in ma
hine learning. A
tually, the alignments in the

latti
e re�e
t in a straightforward manner what a subset of senten
es share, in terms of

subsequen
es. Hen
e, a dire
t appli
ation 
ould be to imagine the 
onstru
tion of an �nite

or in�nite language (expressed intensionnally) based on the 
ommon 
ore of U and able

to give a measure of adequation of others words of Σ⋆
to U . Firstly, we give some qui
k

de�nitions on the 
on
epts of analogi
al proportion and its appli
ations to words. Then

we will give a de�nition and a result on analogi
al proportions in latti
es. Finally, we will

give preliminary results and ideas on the appli
ation of ma
hine learning by analogy to the

extension of U a

ording to the latti
e U .

4.1. Analogi
al proportion : a de�nition

De�nition 13 (Axioms of analogi
al proportion) An analogi
al proportion on a set E

is a subset of E
4
(hen
e, a quaternary relation) su
h that, for all 4-tuples A, B, C et D in

relation in this order (denoted A : B :: C : D ):

A : B :: C : D ⇔ C : D :: A : B

A : B :: C : D ⇔ A : C :: B : D

For every 2-tuple, one has the trivial analogy:

A : B :: A : B

4.2. Analogi
al Proportions Between Words

A

ording to (Stroppa and Yvon, 2005) a general de�nition of analogi
al proportion, 
on-

form to the axioms, 
an be given in many di�erent 
ases thanks to the notion of fa
torization.

We show here how it applies in Σ⋆
, and we will 
ome ba
k later to its use in general latti
es.
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De�nition 14 (Analogi
al proportions between words.)

(x, y, z, t) ∈ Σ⋆
are in analogi
al proportion, whi
h is denoted x : y : z : t , if and only if

there exists a positive integer n and two sets of words (αi)i∈{1,n} and (βi)i∈{1,n} ∈ Σ⋆
su
h

that:

x = α1. . .αn, t = β1. . .βn, y = α1β2α3. . .αn, z = β1α2β3. . .βn or

x = α1. . .αn, t = β1. . .βn, y = β1α2β3. . .αn , z = α1β2α3. . .βn

and ∀i ∈ {1, n}, αiβi 6= ǫ.

Example. re
eption : refe
tion :: de
eptive : defe
tive in an analogi
al proportion

between words, with n = 3 and the fa
tors : α1 = re, α2 = cept, α3 = ion, β1 = de,

β2 = fect, β3 = ive.

The authors have shown that this de�nition is 
onform to the axioms. There exists a

se
ond de�nition, whi
h is given in (Mi
let et al., 2008) with the asso
iated algorithms, that

veri�es the axioms as well.

De�nition 15 Let u, v, w and x four words in Σ⋆
. We assume that an analogi
al proportion

is de�ned on Σ. We extend this relations to Σǫ = Σ∪{ǫ}, adding the proportions a : ǫ :: a : ǫ
for all a ∈ Σ. Then u, v, w and x are in analogi
al proportion in Σ⋆

if there exists an

alignment between the four words su
h that every 
olumn is an analogi
al proportion in Σǫ.

Example. Let Σ = {a, b, c, A,B,C} an

alphabet with the non trivial analogi
al pro-

portions a : b :: A : B , a : 
 :: A : C and


 : b :: C : B The following alignment shows

that there is an analogi
al proportion in Σ⋆

between the four words CaCA, CabBA, bac

and babb.









C

C

b

b

a

a

a

a

b

b

C

B

c

b

A

A









Links between the two de�nitions. The se
ond de�nition using alignments is shown

to imply the �rst one (not the reverse). However, a straightforward modi�
ation of the �rst

one lead to a 
omplete equivalen
e (Hassena, 2011).

4.3. Analogi
al Proportion in Latti
es

Using the fa
torization te
hnique, the authors of (Stroppa and Yvon, 2005) have found that

a general de�nition of an analogi
al proportion 
an be given in a latti
e. Unfortunately, the

de�nition they have given was un
omplete. We give here the 
omplete one

6

.

De�nition 16 For four elements (x, y, z, t) ∈ (L,∨,∧)4, the analogi
al proportion denoted

(x : y :: z : t) is true if and only if:

x = (x∧y)∨(x∧z) and x = (x∨y)∧(x∨z)
y = (x∧y)∨ (t∧y) and y = (x∨y)∧ (t∨y)

z = (t∧ z)∨ (x∧ z) and t = (t∨ z)∧ (t∨ y)
t = (t∧ z)∨ (t∧ y) and z = (t∨ z)∧ (x∨ z)

A simple example of proportion in a latti
e is given by the following property:

6. H. Prade and L. Mi
let, personnal 
ommuni
ation.
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Proposition 9 Let y and z be two elements of a latti
e. Then the following analogi
al

proportion holds:

(y : y ∨ z :: y ∧ z : z)

4.4. Learning from U

After having given the basis in the previous se
tions, we give preliminary here remarks and

hints 
on
erning some possible extensions of this work to appli
ations, via ma
hine learning,

in 
onnexion with analogi
al proportions and latti
e stru
ture.

Firstly, when investigating the 
onnexions between lo
ally maximal subwords, lo
ally

minimal superwords and analogi
al proportions, a �rst property is easy to show from de�-

nition 15 and proposition 1.

Proposition 10

∀t ∈ L(Aw({u, v})), ∃w ∈ ·⊓ (u, v) su
h that t : u :: v : w

∀w ∈ ·⊓ (u, v), ∃t ∈ L(Aw({u, v})), su
h that t : u :: v : w

Take u = abcabb and v = aabbc with the

maximal subword y = abb. The alignment

( a b ca b b, a a b b c) is lo
ally maximal.

The language L(Aabb({u, v}) 
ontains the

word w = aabcabbc. In the fa
ing alignment

one 
an observe the analogi
al proportion

w : u :: v : y











a a b c a b b c

a b c a b b

a a b b c

a b b











However, what we are really interested in is to �nd how using the latti
e U and its analogi
al

properties to generalize U . As a se
ond remark, we note that any homogeneous set of

alignments A in U represents an intensional de�nition of the �nite language ⊔(A), also
written L(A(U)), as de�ned at se
tions 2.3 and 2.4. We 
an also 
onstru
t, as indi
ated in

se
tion 2.4, a �nite automaton as an intensional representation of this language, with the

synta
ti
 analysis fa
ility. Therefore, we have potentially at our disposal a latti
e of �nite

automata, in 
onne
tion with the latti
e of subsets of U : ea
h automaton re
ognizes a �nite

language whi
h is a parti
ular generalization of the asso
iated support, itself a subset of U .

We denote hereafter ≤ the order relation between �nite set of words derived from the

subword relation ≤, de�ned by: M ≤ N i� ∀m ∈ M, ∃ n ∈ N su
h that m ≤ n. For

example, {ab, c} ≤ {abcd, e}. There is an partial in
lusion relation between the languages

re
ognized by this latti
e of automata, 
ompatible with that of the subsets, sin
e the fol-

lowing property holds.

Proposition 11 For any subsets J and K of U , the three following relations are equivalent:

L(A(J)) ≤ L(A(K)), J ⊂ K and ·⊓ (K) ⊂ ·⊓ (J).

Note that the exploration of su
h a latti
e of automata, 
onstru
ted on a �nite set of positive

examples, is the basis of the e�
ient �nite automata inferen
e, see (de la Higuera, 2010).

This 
ould be one basis for the use of our latti
e in ma
hine learning.
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Another threads to follow 
ould be the idea of analogi
al 
losure of a �nite language, as

des
ribed in (Lepage, 2003) and that of analogi
al generation, see (Bayoudh et al., 2007).

In both, a triple of words are taken in the learning sample and a fouth senten
e is generated,

under the 
onstraint that the four senten
es are in analogi
al proportion. It is not yet 
lear

to the authors how this te
hnique 
an be 
ombined with the latti
e stru
ture, but this 
ould

be a 
onne
tion with the area of ma
hine learning on the basis of formal 
on
epts, as in

(Kuznetsov, 2001). In addition, 
onne
tions with the re
ent 
on
ept of string extension, see

Kasprzik and Kötzing (2010), have been suggested to the authors, and it seem an interesting

tra
k to follow.

5. Con
lusion and Bibliographi
al Comments

The problem of �nding one longest 
ommon subsequen
e (subword) or one shortest 
ommon

supersequen
e (superword) to two or more words has been well 
overed (see e.g. (Gus�eld,

1997), pp 287-293 and 309, (Irving and Fraser, 1992)). However, to the best of our knowl-

edge, the problem of �nding an intentional de�nition to the sets of maximal subwords and

minimal superwords of a set of words has not been explored yet. In this paper we have


hara
terized, via the 
onstru
tion of a latti
e of alignment sets, interesting sets of minimal

superwords and maximal subwords from a set of words. We have not worked yet neither

on the theoreti
al 
omplexity of the 
onstru
tion of the latti
e of alignments, nor on its

pra
ti
al 
omplexity and appli
ations. We have also given hints on using this latti
e for the

learning of intensional representations of languages generalizing a �nite set of words.

A 
omplexity result (sometimes misinterpreted) is given by Maier (Maier, 1978) who

has demonstrated that the "yes/no longest 
ommon subsequen
e problem" and the "yes/no

shortest 
ommon supersequen
e problem" are NP-
omplete for alphabets of su�
ient size.

It is also true that �nding the length of a shortest (longest) super(sub)sequen
e 
ommon to

a set of k sequen
es is in O(m1 . . . mk) 
omparisons, with mi the size of the i-th of the k

sequen
es, hen
e exponential in k.

The works of Fraser and Irving (Fraser et al., 1996) have produ
ed algorithms to �nd

the longest minimal 
ommon supersequen
e (superword) and the shortest maximal 
ommon

subsequen
e, a

ording to the order relation ≤.
(Stroppa and Yvon, 2005) give a de�nition of an analogi
al proportion between words

and also within latti
es, that we have 
ompleted as indi
ated in de�nition 16. As far as we

know, these are the only investigations about analogi
al proportions in the latti
es.

Ma
hine learning with the help of latti
e stru
ture is �rstly investigated in (Mit
hell,

1997). Referen
es on works on learning with Galois latti
es 
an be found for example in

(Kuznetsov, 2001). The 
ognitive aspe
ts of reasoning and learning by analogy 
an be

found in (Gentner et al., 1989). Methodology, algorithms and experiments in learning by

analogi
al proportions 
an be found in (Mi
let et al., 2008). Learning intensional expressions

of langages from words is the matter of Grammati
al Inferen
e, see (de la Higuera, 2010).

The authors want to thank the anonymous reviewers for their help.
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