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Abstract

We define the locally maximal subwords and locally minimal superwords common to a
finite set of words. We also define the corresponding sets of alignments. We give a partial
order relation between such sets of alignments, as well as two operations between them.
We show that the constructed family of sets of alignments has the lattice structure. We
give hints to use this structure as a machine learning basis for inducing a generalization of
the set of words.

Keywords: Finite languages, locally maximal subwords, alignments, algebraic structure
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1. Introduction

Much has been done on finding maximal subwords and minimal superwords to a set of
words, when the order relation is based on the length of words. We are interested in this
paper in the same problem, but for the finer order relation based on the definition of a
subword. Is there a manner to characterize the set of maximal subwords and that of minimal
superwords, given a finite set U of words, according to this relation? More than that, is
there an algebraic relation between all these sets of subwords and superwords of U7 An
answer to these questions would allow to give a precise definition to what the words of U
share, and how this common core is organised.

The first parts of this paper gives a partial answer to these points. We define in section 2 a
particular case of the notion of alignment, which will be useful for our construction. Actually,
in section 3, we define two operations and an order relation on sets of alignments that leads
to the construction of a lattice.

We are also interested in how this structure could be useful in machine learning. Since
we start from a finite set of words, the convenient machine learning framework seems to be
grammatical inference (from a finite set of positive samples, in our case). It seems that the
lattice structure is particularly adapted to learning by analogy, since some natural analogical
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proportions can be observed in such a structure. We give in section 4 some hints on these
points.

2. Maximal Subword, Minimal Superword, Alignment
2.1. Basics

Let X be an alphabet, i.e. a finite set of letters. A word u is a sequence uyq ... u, of letters
in 3. The length of u, denoted |u| is n. The empty word, of null length, is €. A language is
a set of words. A subword of a word u is a word obtained by deleting letters of u at some
(non necessarily adjacent) positions' in u. We denote u e v the shuffle of the two words u
and v.

In ¥*, the set of all words on X, we use the order relation < defined by: (v < v &
u is a subword of v). When u is a subword of v, v is called a superword? of u. For example:
abe < aabbed.

A word w is a common subword to uw and v when w < u and w < v. The word w is a
mazimal common subword to v and v if there does not exist any other common subword
x to u and v such that w < x. For example, ab and ¢ are maximal common subwords to
u = cadba and v = fagbhc, while a is a non maximal common subword. Defining a common
maximal subword to a finite set of words is a straightforward extension.

A minimal common subword to two words and to a non empty finite set of words is
defined in an analog way.

In a partially ordered set S, an antichain is a subset of .S composed of pairwise incom-
parable elements. Any subset T" of S can be reduced to its maximal antichain (by removing
from T every element lesser than another element).

2.2. Alignments
2.2.1. DEFINITION OF ALIGNMENTS

Definition 1 An alignment is a finite set of pairs (w,l) where w is a word and | a set of
indices between 1 and |w|. The set | defines a subword of w denoted wll]. Moreover, an
alignment a must satisfy the following properties for all (w,l) € a and (w',l') € a:

1. wll] = w'[l'] 3 (w<w) = (w=uw)
2. (w=w)=(U=10)
The set of words on which the alignment is defined is called the support and is denoted

word(a) = {w | 3 C N with (w,l) € a}. According to our definition®, the support is an
antichain of words for <.

1. Other terms for subword are subsequence and partial word. A factor, or substring is a subword of u built
by contiguous letters of wu.

2. A superword of u, also called a supersequence must not be confused with a superstring of u, in which
the letters of u are contiguous. In other words, u is a factor (a substring) of any superstring of u. See
(Gusfield, 1997), pages 4, 309 and 426.

3. An alignment (regardless of the third point of our definition), is called a trace by Wagner and
Fisher (Wagner and Fisher, 1974) for two words and a threading scheme in Maier (Maier, 1978).
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The set of indices [ will be called the position of the indexed subword of w[l].

In the following, an alignment will be represented by a set of words in which some letters
are boxed. For each element (w,[) of the alignment, the boxed letters represent the subword
wll] (also called the boxed subword of the alignment).

For legibility, the n words can be displayed in such a manner that the corresponding
letters of w in the n words are in the same column. Some blanks can be added freely to
help the reading. For example:

[a] b d e g
a= [a] e h
g [a] A d
denotes the alignment a = {(acbdeg, {1,2}), (aceh,{1,2}), (gahed, {2,4})}. We can write
also without ambiguity:

a = ([a]c]pdeg,[a]c]eh, glalh[c|d).

2.2.2. LocALLY MAXIMAL ALIGNMENTS AND LOCALLY MAXIMAL SUBWORDS

Generally, two alignments on the same support W = {wi,...,w,} with the same boxed
subword r can be different (having different set of indexes). We could define maximal
alignments as those whose boxed letters are maximal subword of W.

However, all interesting alignments would not be maximal with this definition. Consider
for example the two words wi; = abed and wy = dabcab. The complete set of common
subwords is {¢, a, b, ¢, ab, ac, be, abe, d} and their set of maximal common subwords is {abe, d}.
Actually the alignment (cd, dabc) is somehow "maximal" since it is not comparable

to the only alignment with the boxed subword abc, namely ([a | blcld,da]b|clab).
This leads to define the following notion of locally mazimal alignment and of locally
mazimal subword.

Definition 2 An alignment a = {(w1,l1),...,(wn, 1)} is locally maximal if there is no
other alignment b = {(w1,1}), ..., (wn, 1)} on the same support such that for all i, l; C 1.

Notice that the empty alignment () is locally maximal.

Definition 3 The set of bozed subwords associated to all locally mazimal alignments between
a finite set of words W = {w1,...,wy,} is called the set of locally maximal subwords to W
and is denoted 1 (W).

For some r € (W), the set of locally mazimal alignments associated to r is denoted
A (W).
We also denote AOW) = |J A (W).

rerm (W)

For example, let us consider W = {ababc, cabd}, its sets of locally maximal alignments

are given by

Aap(W) = {( alb abe, d alb d), (@ba@c,c albld), (ab alb c, Wd)}
Ac(W) = {(ababc],[clabd)} .
and A(W) = Ay (W) J Ac(W). Then, the set of locally maximal subwords of W is M (W) =
{ab, c}.
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2.3. Language Associated with an Alignment

Definition 4 Let w = wy ---wp be a word, locally maximal subword of two words u and v
at only one position (i.e. |Ay({u,v})| = 1). Then there exists an unique set of factors of
u, denoted (u',... uP™) and an unique set of factors of v, denoted (v',... vPTY), such
that u = ulwy ... vPwpuPt and v = viwy .. VPwPTL. We define L(A,({u,v})) as the
following finite language:

L(Ay({u,v})) = (u' e v )wi(u® @ v?), ..., (uP e v]")wp(upJrl o Pt

The construction of L(A,({u,v})) is shown in Figure 1, with straightforward graphic con-
ventions.

1 2 i+1 14 p+1
u U u (7 (0
ol V2 pitl P P+l

Figure 1: The construction of L(Ay(u,v)) when |A,({u},{v})] = 1.

If |[Ay({u,v})| > 1, L(Ay({u, v}) is defined as the union of all languages associated with
all different positions of w as locally maximal subword of u and v. Finally, L(A({u,v})) is
defined as the union of the languages L(Ay ({u,v})), for all w locally maximal subwords of
u and v.

Proposition 1 Let w be a locally mazimal subword common to two words u and v and
L(Ay({u,v})) constructed as above. We have:

1. All words in L(A,({u,v})) are (non necessarily minimal * ) common superwords of
u and v.

2. For any word W € L(A,({u,v})), we have® |W|+ |w| = |u| + |v].

Proof.
Let us consider W € L(A,, ({u,v})). By definition of L(A,({u,v})), there exists (ul,... uPT?)
and (v', ..., vP*), respectively sets of factors of u and v, such that the word W can be written as

W = z'w; ... 2Pw,aPT! where, for every i € {1,...p+ 1}, ' € (u’ @ 0?).

1. Therefore, for every i € {1,...p+ 1}, * > u® and z* > v'.
We then have W > ulw; ... uPwpuP™ = u and W > vlwy ... vPwyoPt = o,

4. Let two words u = abcabb and v = aabbc, the associated alignment (ca@b,@ac) is locally

maximal. The language L(Aqup({u,v}) contains the language aabcab(b - ¢) and, in particular, the word
w = abcabbc. The word w’ = abcabbc is another superword of v and v, and w’ < w. Thus, w is not an
locally maximal superword of v and v.

5. A consequence of this assertion is : let LC'S(u, v) be a longest common subword to u and v and SC'S(u, v)
be a shortest common superword to u and v. Then we have: |[LCS(u,v)| + |SCS(u,v)| = |u| + |v].
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Wl = |zt + fwi| 4.4 (2] + wp| + |27
p+1 p+1

= Jwl+ ) [2' = Jw|+ Y (ju'| +[o'])
i=1 i=1

lwl + (Juf = [w]) + (Jo] = [w]) = |ul +[o| = [w].

2.4. Constructive Algorithms

We have devised an algorithm producing a finite automaton A (f,,,}) which exactly recog-
nizes the language [ ({u,v}), the set of locally maximal subwords common to two words
u and v, due to lack of space, we do not describe it here. Its construction and proof of
correctness are given in (Miclet et al., 2012). It is based on the transformation of an 2-d
array displaying which letters are common to two words into a finite automaton recognizing
M (u,v) (see an example on figure 2(a)).

Starting from A (fy.}), it is then simple to produce a finite automaton that we call
Al({u,0}) Which exactly recognizes the language L(A({u,v})) (also denoted U({u,v})). We
display an example at figure 2(b).

;l
T
a
Y
b
z
t b U a v b w 7 t b U a v b w
(a) An automaton which recognizes the (b)) An automaton which recognizes
language F(r, s). We have r = zbyax U(r,s) = (z @ t)b(u @ y)a(vbw e x) U
and s = tbuavbw ; a and b are letters, (tbuav e z)b(w e yar). A rectangle
while t,u,v,w,x,y and z are factors on holds for the shuffle of the factors on
¥\{a,b}. its sides

Figure 2: Two automata built on two sentences.

3. Order Relation and Operations Between Alignments

In this section, we are interested in a particular family of alignments, since we want to
describe what have in common the subwords and superwords of a finite set U of sentences.
We will consider alignments on U, ¢.e. alignments with a support which is subset of U.
Moreover, we will assume that U is an antichain according to the order relation <.
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3.1. Order Relation

Definition 5 (Order on alignments on U) Given two alignments on U, a = {(w1,l1),
ooy (Wny 1)} and b = {(w), 1), ..., (w),,l,)}, we write a C b if for all i € (1,n), it exists
Jj € (1,m) such that

2. 15 C;
Therefore, if a C b, then word(a) C word(b).

It is easy to check that C is a partial order relation on the set of alignments and that
the empty alignment () is smaller than every other alignment.

Definition 6 (Homogeneous sets of alignments) A set of alignments is homogeneous
iof 1t is mon empty and aoll its elements have the same support. The family of homogeneous
sets of locally mazimal alignments is denoted Ap.

In order to link this definition with definition 3, we can notice that, for any subset W of
U, A(W) € Apy.

Definition 7 (Order on homogeneous sets of alignments on U) Let A and B be two
homogeneous sets of alignments. We have A T B if for all b € B, there is a € A such that
alb.

Proposition 2 C is a partial order on Ay and the smallest element is {0}.

Proof.

Reflexivity and transitivity are immediate. In order to check the antisymmetry, let us consider
two homogeneous sets of locally maximal alignments, denoted A and B, such that: A T B and
B C A. Since A and B are homogeneous, all alignments in A have the same support, denoted
word(A), and the same holds for B, with the support denoted word(B). From the definition of C,
we easily check that word(A) = word(B). Let us consider by = {(wy,1}),..., (wn,l},)} € B: since
ALC Band BLC A, it exists a € A and by € B such that a C by and by C a. By transitivity, we
have by C by. At last, b; and by having the same support and being locally maximal, it implies that

b; = by and then a € B. Hence, A C B. Similarly, we can check that B C A.
|

3.2. Definition and Properties of Y

Definition 8 Let a € A, ({u1, - ,un}) and b € As({v1,--- ,vm}), where a = {(u1,01),...,
(tun, 1)} and o = {(v1,1)), ..., (vm,1),)}. Firstly, we construct a+ b, the finite set of align-
ments ¢ = {(w1,L1),..., (wp, Ly)} such that

1. {ws, ..., wp} = word(a) Uword(b)
2. for all (i, k), if (wr, = w;) then (L C ;)
8. for all (j, k), if (wx = v;) then (L C1})
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Secondly, we denote a Y b the set of minimal elements of a + b according to C.

As consequence, if [ ({r,s}) # 0, then the boxed word in ¢ € a+Db is a subword of r and
s, else, no letter is boxed in ¢. In addition, if the supports of a and b contains an identical
word u; = v; such that {; N l;- = (), no letter is then boxed in c.

The operation Y is extended to homogeneous sets of alignments by the following defini-
tion.

Definition 9 Let A and B be two homogeneous sets of alignments. We define AY B as the
set of the minimal elements of A+ B according to T where

A+B= ] (a+0)
beB
acA
Proposition 3 The operation Y is internal to Ax, commutative and idempotent.

Proof. Let us consider A € Ay and B € Ay.

1. All the alignments in A Y B are locally maximal by definition and have the same support,
namely word(A) Uword(B).

2. The commutativity is straightforward.

3. Let a be an element of A, it is immediate that a € (a+a) C A+ A. Moreover, since A € Ay,
a is a locally maximal alignment, and so a € A Y A. Consequently, A C A Y A. Reciprocally,
let ¢ be an element of A Y A. Then it exists a couple (a,b) € A% such that c € a + b. Since
A € Ay and word(c) = word(a) U word(a), a, b and ¢ have the same support. Moreover,
from definitions 5 and 8, a C ¢ and b C c. c being a minimal element of A + A according
to C, and a and b belonging to A + A, it turns out that a = b = c. At last, c € A. Hence

AY AC A. Cis then idempotent on Ag. -

3.3. Construction of A

Definition 10 Leta € A, ({u1, - ,un}) andb € As({v1,--- ,vm}) where a = {(u1,01), ...,
(un,ln)} and b = {(v1,1}), ..., (vm,1},)}. We construct a A b, the finite set of alignments
c={(w1,L1),...,(wp,Ly)} such that

1. {ws,...,wp} = word(a) Nword(b)

2. FEither, for all (i,k) such that wy = u; we have l; C Ly, or for all (j, k) such that
wy = v; we have l; C Ly.

3. ¢ is a locally mazimal alignment.

An alignment in a A b is thus based either on a restriction of a to the support word(a) N
word(b) or on a restriction of b to the same support. For instance, if a = {([a]cd, ab[a]c,[a]pa)}

and b = {(a[c)d, aba[c].[cla)}, then a A b= {((a[c}d,[@palc)), (a[cd. abalc)}.

Definition 11
AXB=|]J(aib)

beB
acA
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Proposition 4 The operation A is internal to Ax, commutative and idempotent.

Proof. The commutativity is straightforward (definition 10 is symetric wrt a and b). For
idempotence, we use the fact (direct consequence of the definition) that if a and b are locally
maximal alignments on the same support, then a A b = {a,b}. Let us consider A € Ap: ifac A
then a € (a A a) C (A A A) and therefore A C A X A. If c € A A A, then there exists (a,b) € A>
such that ¢ € a A b. Since a and b have the same support, either ¢ = a or ¢ = b, therefore c € A

and A X ACA.
|

3.4. Structure of Homogeneous Sets of Alignments on U

We define sup (4, B) as the minimal set of alignments larger than A and B (if it exists)
according to C. Similarly, infr (A, B) is the maximal set of alignments smaller than A and
B.

Proposition 5 Let A and B be finite homogeneous sets of alignments. Then sup (A4, B)
exists and
sup(A,B) =AY B
C

Proof.

e First, we show that A Y B is greater than A and B for C. Let ¢ € A Y B. By construction,
there exist a € A and b € B such that ¢ € a Y b C a+b. By the first item of definition 8,
word(a) C word(c) and by the two other items, we can conclude that a C c. Thus for every
ce€ (C thereisae AsuchthataCT c. Thus AC AY Band BC AY B.

e Let C be a set of alignments greater than A and B, and let ¢ € C. Therearea € Aandb € B
such that a C c and b C c. We need to find ¢/’ € A Y B such that ¢’ C c. Remove from the
support of ¢ all words not in the support of a or b. The obtained alignment may not be locally
maximal, so we add more boxed letters to make it locally maximal. The result alignment c’

satisfies all conditions of Definition 8, thus A Y B C C' and therefore sup-(A,B) = AY B.
B |

There is no equivalent relation between A and inf for all homogeneous sets of alignments,
we must restrict to sets of all alignments built on a given set of words.

Definition 12 If U is a finite collection of words, We define the collection of sets of align-
ments A(U) = {A(V) |V CU}.

Proposition 6 Let A and B be sets of alignments in A(U). Then, in A(U), infc (A, B)
exists and:

igf(A,B) =AAB

Proof.

e First, we show that if A = A(V) and B = AW) with V C U and W C U then A A B =
AW NV). Let c € A A B. cis a loccally maximal alignment on its support word(A) N
word(B) = WNV, thus c € AWNYV). Let c € AW NV). Let a be an alignment on W
such that ¢ C a, then c is obtained from a € A using the definition of A A B and c € A A B.

171



MicLET BARBOT JEUDY

o Let C € A(U) be a set of alignments smaller than A and B. We show that C is smaller
than A A B. Some alignments of C' are smaller than alignments of A and others are smaller
than alignments of B. Since C is homogeneous, its support word(C) must be included in
word(A) Nword(B) and since C = A(T) for some T' C U, then T C V N W. Therefore

A(T) C A(V NW) which is exactly C C A A B.
|

Proposition 7 Let U = {uy,uz, -+ ,u,} be a finite set of words, the operations A and Y
are internal to U.

Proof. For A it is a consequence of the previous definition. For Y, it is not difficult to see it
from the definition of Y.

O

Proposition 8 Let U = {uy,us,- - ,u,} be a finite set of words, antichain for <. Then
U= (AWU),Y,A) is a lattice. This lattice is said to be built on the finite language U.

Proof. This is a direct consequence of the three previous propositions. .

4. Lattices of Alignments and Learning by Analogy

This section intends to give some hints on how the lattice structure that we have constructed
on a finite language U can be used in machine learning. Actually, the alignments in the
lattice reflect in a straightforward manner what a subset of sentences share, in terms of
subsequences. Hence, a direct application could be to imagine the construction of an finite
or infinite language (expressed intensionnally) based on the common core of U and able
to give a measure of adequation of others words of ¥* to U. Firstly, we give some quick
definitions on the concepts of analogical proportion and its applications to words. Then
we will give a definition and a result on analogical proportions in lattices. Finally, we will
give preliminary results and ideas on the application of machine learning by analogy to the
extension of U according to the lattice U.

4.1. Analogical proportion : a definition

Definition 13 (Axioms of analogical proportion) An analogical proportion on a set E
is a subset of E* (hence, a quaternary relation) such that, for all 4-tuples A, B, C et D in
relation in this order (denoted A :B:: C:D ):

2C:D & (C:D:A:B For every 2-tuple, one has the trivial analogy:
2C:D & A:C:B:D A:B:A:B
4.2. Analogical Proportions Between Words

According to (Stroppa and Yvon, 2005) a general definition of analogical proportion, con-
form to the axioms, can be given in many different cases thanks to the notion of factorization.
We show here how it applies in ¥*, and we will come back later to its use in general lattices.
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Definition 14 (Analogical proportions between words.)
(x,y,z,t) € X* are in analogical proportion, which is denoted x : y : z: t, if and only if
there erists a positive integer n and two sets of words (a;)ic(i,ny and (Bi)ief1,ny € X* such
that:
T=0Q1...Qpn, t=01...0n, ¥=0ai18203...0n, z= Pra203...0n or
T=0Q1...Qpn, t=01...0n, ¥=P1a203...Qn, z=a1fB203...0y

and Vie{l,n}, ;B #e.

Example. reception : refection :: deceptive : defective in an analogical proportion
between words, with n = 3 and the factors : a1 = re, as = cept, ag = ion, 51 = de,
Bo = fect, B3 = ive.

The authors have shown that this definition is conform to the axioms. There exists a
second definition, which is given in (Miclet et al., 2008) with the associated algorithms, that
verifies the axioms as well.

Definition 15 Let u, v, w and x four words in 3*. We assume that an analogical proportion
is defined on X. We extend this relations to . = X U{e}, adding the proportions a : €::a : €
for all a € . Then u, v, w and x are in analogical proportion in X* if there exists an
alignment between the four words such that every column is an analogical proportion in ..

Example. Let ¥ ={a,b,c,A,B,C} an
alphabet with the non trivial analogical pro-
portions a:b:A:B , a:c:A:C and

c¢:b:: C:B Thefollowing alignment shows C [a] C A
that there is an analogical proportion in ¥* C [a] b B A
between the four words CaC A, CabBA, bac b [a] c
and babb. b [a] b b

Links between the two definitions. The second definition using alignments is shown
to imply the first one (not the reverse). However, a straightforward modification of the first
one lead to a complete equivalence (Hassena, 2011).

4.3. Analogical Proportion in Lattices

Using the factorization technique, the authors of (Stroppa and Yvon, 2005) have found that
a general definition of an analogical proportion can be given in a lattice. Unfortunately, the

definition they have given was uncomplete. We give here the complete one®.

Definition 16 For four elements (x,vy,2,t) € (L,V,A)*, the analogical proportion denoted
(x :y =z 1 t)is true if and only if:

x=(zAy)V(xAz) and x = (zVy)A(zVz) z=({tAN2)V(xAz) and t =tV z)A({EVY)
y=(xAy)V(tAy) and y=(xVy)A({tVy) t=0tANz)V(tAyY) and z=({tV2)A(zV2)

A simple example of proportion in a lattice is given by the following property:

6. H. Prade and L. Miclet, personnal communication.
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Proposition 9 Let y and z be two elements of a lattice. Then the following analogical
proportion holds:

(y : yVz : yAz : 2)
4.4. Learning from U

After having given the basis in the previous sections, we give preliminary here remarks and
hints concerning some possible extensions of this work to applications, via machine learning,
in connexion with analogical proportions and lattice structure.

Firstly, when investigating the connexions between locally maximal subwords, locally
minimal superwords and analogical proportions, a first property is easy to show from defi-
nition 15 and proposition 1.

Proposition 10
Vt € L(A,({u,v})), Jw e M (u,v) such that ¢t : u v : w
Vw € M (u,v), 3t € L(A,({u,v})), suchthat t :u = v : w

Take u = abcabb and v = aabbc with the

maximal subword y = abb. The alignment a [a] @ c a @ b ¢
(ca@b, @ac) is locally maximal. [a] @ c a @ b
The language L(Agp({u,v}) contains the a [a] @ @ c
word w = aabcabbc. In the facing alignment [a] @ @

one can observe the analogical proportion
wiuUy

However, what we are really interested in is to find how using the lattice ¢ and its analogical
properties to generalize U. As a second remark, we note that any homogeneous set of
alignments A in U represents an intensional definition of the finite language LI(A), also
written L(A(U)), as defined at sections 2.3 and 2.4. We can also construct, as indicated in
section 2.4, a finite automaton as an intensional representation of this language, with the
syntactic analysis facility. Therefore, we have potentially at our disposal a lattice of finite
automata, in connection with the lattice of subsets of U: each automaton recognizes a finite
language which is a particular generalization of the associated support, itself a subset of U.

We denote hereafter < the order relation between finite set of words derived from the
subword relation <, defined by: M < N iff Vm € M, 3 n € N such that m < n. For
example, {ab,c} < {abed,e}. There is an partial inclusion relation between the languages
recognized by this lattice of automata, compatible with that of the subsets, since the fol-
lowing property holds.

Proposition 11 For any subsets J and K of U, the three following relations are equivalent:
L(A(J)) < L(A(K)), J C K and M (K) C R(J).

Note that the exploration of such a lattice of automata, constructed on a finite set of positive
examples, is the basis of the efficient finite automata inference, see (de la Higuera, 2010).
This could be one basis for the use of our lattice in machine learning.
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Another threads to follow could be the idea of analogical closure of a finite language, as
described in (Lepage, 2003) and that of analogical generation, see (Bayoudh et al., 2007).
In both, a triple of words are taken in the learning sample and a fouth sentence is generated,
under the constraint that the four sentences are in analogical proportion. It is not yet clear
to the authors how this technique can be combined with the lattice structure, but this could
be a connection with the area of machine learning on the basis of formal concepts, as in
(Kuznetsov, 2001). In addition, connections with the recent concept of string extension, see
Kasprzik and Kotzing (2010), have been suggested to the authors, and it seem an interesting
track to follow.

5. Conclusion and Bibliographical Comments

The problem of finding one longest common subsequence (subword) or one shortest common
supersequence (superword) to two or more words has been well covered (see e.g. (Gusfield,
1997), pp 287-293 and 309, (Irving and Fraser, 1992)). However, to the best of our knowl-
edge, the problem of finding an intentional definition to the sets of maximal subwords and
minimal superwords of a set of words has not been explored yet. In this paper we have
characterized, via the construction of a lattice of alignment sets, interesting sets of minimal
superwords and maximal subwords from a set of words. We have not worked yet neither
on the theoretical complexity of the construction of the lattice of alignments, nor on its
practical complexity and applications. We have also given hints on using this lattice for the
learning of intensional representations of languages generalizing a finite set of words.

A complexity result (sometimes misinterpreted) is given by Maier (Maier, 1978) who
has demonstrated that the "yes/no longest common subsequence problem" and the "yes/no
shortest common supersequence problem" are NP-complete for alphabets of sufficient size.
It is also true that finding the length of a shortest (longest) super(sub)sequence common to
a set of k sequences is in O(my ...my) comparisons, with m; the size of the i-th of the k
sequences, hence exponential in k.

The works of Fraser and Irving (Fraser et al., 1996) have produced algorithms to find
the longest minimal common supersequence (superword) and the shortest maximal common
subsequence, according to the order relation <.

(Stroppa and Yvon, 2005) give a definition of an analogical proportion between words
and also within lattices, that we have completed as indicated in definition 16. As far as we
know, these are the only investigations about analogical proportions in the lattices.

Machine learning with the help of lattice structure is firstly investigated in (Mitchell,
1997). References on works on learning with Galois lattices can be found for example in
(Kuznetsov, 2001). The cognitive aspects of reasoning and learning by analogy can be
found in (Gentner et al., 1989). Methodology, algorithms and experiments in learning by
analogical proportions can be found in (Miclet et al., 2008). Learning intensional expressions
of langages from words is the matter of Grammatical Inference, see (de la Higuera, 2010).

The authors want to thank the anonymous reviewers for their help.
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