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Abstract

We present an application of grammar inference in the domain of facial expression analysis.
Typically, only sets of AUs which occur in a given time frame are used for expression
analysis, the sequence in which these AUs occur is ignored. We wanted to explore whether
the strucural patterns of AU appearances contain diagnostically relevant information. We
applied alignment-based learning (ABL) to data of facial expressions of pain collected in
a psychological study. To evaluate the quality of the induced grammars we applied cross-
validation to estimate the generalization error. We can show that the learned grammars
have reasonably high coverages for unseen pain sequences. However, the number of rules
of the learned grammars cannot be reduced substantially without loss of generalization.

1. Introduction

We want to explore an application of grammatical inference (GI) for structural pattern
recognition in the domain of facial expression analysis (Fasel and Luettin, 2003). To our
knowledge, this is the first time that the applicability of GI in this domain is explored.
One approach to expression analysis is based on the Facial Action Coding System (FACS,
Ekman and Friesen, 1978) – an anatomically based system defined over 43 different facial
movements, the so called action units (AUs). For manual as well as for automated classi-
fication the usual procedure is to identify which AUs occur in which intensities in a given
time frame, e.g. 5 seconds. That is, the current practice is to identify the set of AUs
presently active in a face to assign the underlying mental state. However, there might be
diagnostically relevant information in the sequence in which the AUs appear. Knowledge
about empirically valid sequences of AUs might also contribute for more realistic emotion
generation in avatars and humanoid robots.

To explore whether AUs appear in specific sequences, we analyzed data which were
obtained in a psychological study of facial expression of pain in patients with dementia.
Subjects were 42 demented patients (22 female, 20 male), 54 age-matched healthy controls
(43 female, 11 male), and 28 young subjects (16 female, 12 male) which were exposed to
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Table 1: Number of subjects (#sub), of sequences (#seq), of occuring AUs and AU com-
pounds (#AUs), mean, minimum and maximum sequence lengths (l̄, minl, maxl),
mean, minimum and maximum number of different terminals per sequence (t̄,
mint, maxt) for pain episodes with high pressure stimulation.

Group #sub #seq #AUs l̄ minl maxl t̄ mint maxt

Overall 86 347 76 4.03 1.00 17.00 3.54 1.00 13.00
Demented 31 142 58 4.70 1.00 16.00 4.19 1.00 13.00
Healthy 55 205 53 3.57 1.00 17.00 3.09 1.00 13.00
Old 31 123 44 3.76 1.00 14.00 3.21 1.00 13.00
Young 24 82 33 3.28 1.00 17.00 2.91 1.00 11.00

mechanically induced pain of various intensities. The details of the experimental setting
are reported in Kunz et al. (2007).

The facial responses were analysed by a trained FACS coder and the identified AUs
were entered in a database with code, onset-time, offset-time and intensity rating. For a
first exploration, we only considered the onset time of each AU, that is, we did not consider
time intervals. AUs which appeared together in the same frame of the video recordings
were treated as self-contained symbols. Overall there occured 76 different AUs and AU
compounds which constitute the alphabet of the to be induced grammar. Facial responses
have a relatively high threshold and mostly only occur at moderate to high pain intensities.
Therefore, we only considered sequences which occured during high pressure. The numbers
of sequences for the different groups together with average lengths and numbers of different
terminals are given in Table 1. Some additional datails of the data are given in appendix A.

2. Application of ABL to Sequences of Facial Expressions

ABL (van Zaanen, 2002) realises unsupervised learning of context-free grammars by align-
ing sequences. Since ABL learns grammars which cover all presented sequences, learning
might result in grammars with a high number of rules, many of which might cover (sub-)
sequences which occur only once in a sample. Therefore, we defined a heuristics for rule
elimination which should significantly reduce the number of grammar rules while obtain-
ing high precision. We enriched the learned grammars with relative expansion frequencies.
Then, for each sequence the relative expansion frequency can be calculated by multiplying
the relative expansion frequencies of all involved rewrite rules.

While in standard machine learning there is an established approach for evaluating the
quality of learned hypotheses, this is not true for unsupervised empirical grammar inference.
One method proposed by van Zaanen and Geertzen (2008) is to measure the ability of the
learned grammar to classify sequences based on language membership. The main drawback
of this method is that results depend on how sequences are selected which are assumed to
be negative examples.

In the context of supervised learning, precision and recall of a learned hypothesis can
be estimated by k-fold cross-validation. We propose to apply cross-validation to evaluate
the quality of pain grammars learned with ABL. Because there are only positive instances,
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we will use coverage (precision) as a measure for quality. Furthermore, we propose to apply
cross-validation in two different ways: First, the standard method can be applied to esti-
mate precision by obtaining the average coverage of induced grammars over k folds. Second,
we want to investigate whether a learned grammar can be reduced using the heuristic rule
elimination method. This can be realized by learning k grammars for k sub-sets of training
data and reducing the rule set of each grammar by heuristic rule elimination using succed-
ingly higher thresholds for relative frequencies. In contrast to standard cross-validation, the
coverage of the reduced grammars is assessed for the complete set of sequences (in contrast
to the k-th subset).

To asses coverage in the standard cross-validation approach, it is necessary to generate
acceptor automatons for the learned grammars. Given an acceptor, we can count the
number of sequences in the test set covered by the grammar. To asses coverage in the rule
reduction approach, the learned grammars are used to generate all sequences for different
threshold values and obtain the amount of sequences in the test set included in the generated
sequences. Coverage is calculated as |Si∩ST |

|ST | with Si (i = 1, . . . , k) as sequences generated by
grammar i and ST as sequences in the general test set, that is, the number of all sequences.

3. Results

For cross-validation, the set of sequences was randomly divided into 5 batches of approx-
imately equal size. We controlled for equal distribution with respect to membership to
subgroups (i.e. young, old, healthy etc.) when constructing the batches. For the resulting
batches, the number of different AUs and the lengths of sequences have comparable distribu-
tions (see appendix C). To estimate precision, we evaluated how good the grammar learned
from four batches is able to classify sequences from the remaining test batch. Since we
learn from positive data, classification is operationalized as the number of unseen sequences
accepted by a learned grammar. We constructed an acceptor for the learned grammars
using DParser1. Results show that the learned grammars generalize reasonably well with
an average precision of 0.65 (see also appendix C).

Application of ABL to the empirically found sequences of facial expressions of pain
resulted in quite complex grammars: The grammar characterizing all sequences consists of
1314 rules and gives 225 alternatives in the starting rule (see appendix B for an excerpt).
If a coverage of about 70 % is acceptable then 1233 rules (93.8 %) are left for the complete
sample of subjects. The coverage rate is initially dropping faster than the number of rules
with increasing threshold. The rules decrease faster when the coverage is around 50 %.
This means that, unfortunately, for our set of data it is not possible to reduce the grammar
without loss of precision.

A follow-up hypothesis was that ideosynchraties are specific for sub-groups of subjects,
such as young/old or healthy/demented. Because the number of sequences in the subgroups
is small, we did not apply cross-validation. For the sub-groups, the grammars consist of
smaller numbers of rules (see Tab. 2) – mainly due to the smaller number of sequences
(r = .981 between number of sequences and number of grammar rules). We applied heuristic
rule reduction to test whether sub-groups show more coherent behavior than the overall

1. http://dparser.sourceforge.net/
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group. However, the results given in Table 2 show that it is not possible to remove rules
without loss of precision.

Table 2: Overview of induced grammars with total number of rules (#total), number of
expansions for the starting symbol (#top), and number of rules (#rules) and
coverage rate in percent (cov.%) for different thresholds.

Group #total #top 10−7 10−5 10−4

#rules cov.% #rules cov.% #rules cov.%

Overall 1314 225 1308 79.54 909 55.91 387 43.80
Demented 611 116 611 91.55 564 62.68 359 43.66
Healthy 681 138 681 94.15 622 70.73 353 53.65
Old 418 98 418 97.56 414 80.49 314 59.35
Young 232 51 232 100.00 232 93.90 219 74.39

4. Conclusion

Our initial exploration whether sequences of expressions of pain convey diagnostically rel-
evant information provided promising results. That is, using ABL as an out of the box
grammar inference system, we could show that grammars which describe the general struc-
ture of pain sequences do generalize reasonably well to unseen pain sequences. To validate
our findings we currently prepare an empirical study with a face avatar which will be an-
imated with grammatical and agrammatical sequences of action units for pain. We are
hoping that human subjects will show shorter performance times and smaller performance
errors when classifying grammatical in contrast to agrammatical AU sequences. Further-
more, using ABL is only one possible approach to learn generalized sequences. Currently
we are working on a swarm-algorithm based approach to grammar induction. Other fruitful
approaches might be Hidden Markov Models or approaches to learning hybrid grammars
might be tested.
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Appendix A. Results of the Psychological Study and Data Description

Kunz et al. (2007) identified which AUs occured in at least 5% of the exposures to pain (see Tab. 3).
A main result of the study was that the set of pain relevant AUs was comparable for demented and
healthy subjects.

Table 3: AUs with a critical occurence of more than 5% in denominated pain segments in
healthy controls and demented patients (abbreviated from Table 1 in Kunz et al.,
2007).

AU Description AU Description

AU1, AU2 brow raiser AU4 brow lower
AU6, AU7 orbit tightening AU9, AU10 levator contraction
AU17 chin raise AU25, AU26, AU27 mouth opening
AU45 eye blink

For sequence generalization learning, we kept all AUs appearing in a sequence, including such
AUs which occured less than 5% over all pain episodes. Overall there occured 76 different AUs and
AU compounds which constitute the alphabet of the to be induced grammar (sorted by frequency
of occurance):

Σ = {au7, au4, au25, au6, au26, au9, au18, au10, au17, au14, au12, au43, au1,
au25-26, au6-7, au2, au1-2, au20, au24, au32, au16, au4-7, au5, au23, au6-7-9,
au15, au38, au19, au6-9, au4-9, au19-25-26, au7-10, au6-7-10, au17-24, au4-7-9,
au4-6-7, au30, au28, au6-12, au6-10, au7-9, au4-6-7-10, au9-25, au4-43, au31,
au45, au4-6-7-9} ∪ 29 further AUs and compounds occuring only once over all pain episodes.

Some example sequences are given in Table 4.

Table 4: Examples for AU sequences over alphabet Σ.
au7
au6-7
au7 au4 au7 au9
au12 au19-25-26 au19-25-26 au28 au17 au4 au19-25-26
au6-7-9 au43 au4 au1-2 au7 au12 au43 au4 au9 au7 au1-2
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Appendix B. Extract from an Induced Pain Grammar

A → CI DB .012 | au4-7-9 .003 | au6 FAB au25 BJC GGB BF .003 | au25 .009 |
au4 au4 ED .003 | au4 F .003 | au2 EJ .003 | au6 EB .003 |
au7 GEB GGB DFB .003 | . . . 215 more

CI → au25 .071 | au1-2 .036 | au14 .036 | au7 .393 | au12 .107 | au17 .036 | D DI .107 |
J I .036 | au4 .036 | au4-7 .036 | au7 I .036 | EFC I .036 | HJ I .036

EJ → IGB F .125 | au5 .125 | au7 .25 | au4-7-10 .125 | BFD DB .125 |
au7 DB .125 | DDC DCC .125

DB → au25 0.091 | JEB F .018 | au1-2 .036 | au14 .018 | au5 .018 | au20 .018 | au7 .055 |
JEB FH .018 | au12 .018 | JEB ED .018 | au4 F .018 | au6 .127 | au4 .218 | au1 .018 |
au4-9 .018 | au9 .109 | au18 .055 | au16 .018 | au30 .018 | au10 .055 au17 .036 |

. . . 423 more

Figure 1: Excerpt of the grammar induced for the complete set of sequences.

Appendix C. Details of the Empirical Evaluation

Table 5: Description of the random samples for 5-fold cross-validation with number of sub-
jects (#sub), number of sequences (#seq), mean, minimum and maximum se-
quence lengths (l̄, minl, maxl), mean, minimum and maximum number of different
terminals (AUs) (t̄, mint, maxt), and total number of AUs (t).

Group #sub #seq l̄ minl maxl t̄ mint maxt t

overall 86 347 4.03 1.00 17.00 3.54 1.00 13.00 76
batch1 47 70 4.61 1.00 14.00 3.94 1.00 13.00 39
batch2 46 70 3.94 1.00 16.00 3.51 1.00 13.00 43
batch3 46 69 3.59 1.00 13.00 3.22 1.00 10.00 38
batch4 44 69 4.10 1.00 17.00 3.55 1.00 11.00 42
batch5 43 69 3.90 1.00 13.00 3.48 1.00 9.00 38

Table 6: Precision for the grammars learned by 5-fold cross-validation
1 2 3 4 5 avg

0.6857143 0.6285714 0.6376812 0.6666667 0.6376812 0.6512968
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