
JMLR: Workshop and Conference Proceedings 21:224–236, 2012 The 11th ICGI

Model Merging versus Model Splitting
Context-Free Grammar Induction

Menno van Zaanen M.M.vanZaanen@uvt.nl

Nanne van Noord N.J.E.vanNoord@uvt.nl

Tilburg University, Tilburg, The Netherlands

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

When comparing different grammatical inference algorithms, it becomes evident that generic
techniques have been used in different systems. Several finite-state learning algorithms use
state-merging as their underlying technique and a collection of grammatical inference al-
gorithms that aim to learn context-free grammars build on the concept of substitutability
to identify potential grammar rules. When learning context-free grammars, there are es-
sentially two approaches: model merging, which generalizes with more data, and model
splitting, which specializes with more data. Both approaches can be combined sequentially
in a generic framework. In this article, we investigate the impact of different approaches
within the first phase of the framework on system performance.

Keywords: Context-free grammars, model merging, model splitting, evaluation

1. Introduction

Formal grammatical inference deals with formal learnability of families of languages. Results
in this field are typically mathematical proofs of (non-)learnability of classes of languages
under certain learning settings. Often, the learnability proofs are based on algorithms,
presented in pseudo-code, that can learn any grammar from the family under consideration.

In contrast, empirical grammatical inference deals with the learning of specific languages.
These languages come from a family that is known to be learnable efficiently, but the formal
description of the family of languages is unknown. An example of such a family is the class
of natural languages. We know these are learnable efficiently, as humans can do this within
practical limitations (Adriaans and van Zaanen, 2006).

The algorithms that are used in both formal and empirical grammatical inference often
follow a similar approach or build on a common underlying mechanism. The details or
specific settings change the bias of the algorithm which allows for learning of different, but
sometimes related families of languages.

Several algorithms that focus on learning languages that are (sub-sets of) regular lan-
guages use state-merging as the underlying principle. Starting from a finite-state machine
that accepts only the sample training sequences, states are merged according to some evalu-
ation criteria. Merging states leads to generalization over the input sequences, which means
that a more general language is created (Carrasco and Oncina, 1994; Lang et al., 1998).

In the area of learning context-free languages, a similar underlying technique or princi-
ple can be identified. Many context-free grammar (CFG) learning systems are based on the

c© 2012 M. van Zaanen & N. van Noord.

Model Merging vs. Model Splitting CFG Induction

Σ∗

∅

Space of all languages

Model splitting

Model merging

Figure 1: Model merging and model splitting in the space of possible languages.

notion of substitutability. This notion corresponds well with the idea of context-freeness.
Non-terminals in a CFG may be rewritten according to the available grammar rules regard-
less of their context. Systems based on the notion of substitutability reverse this idea and
search for regularities in the data that may have been generated through the application of
CFG rules (van Zaanen and de la Higuera, 2011).

Another way of looking at identifying the underlying grammar in the collection of all
possible languages (of a particular class) is the direction of the search path in the space of
potential languages. One can identify two general directions: model merging (Stolcke and
Omohundro, 1994) or model splitting (Belz, 2002). The model merging approach starts
from a model that describes exactly the example training sequences. The search algorithm
then tries to make the model more general. In the context of learning finite-state machines,
this corresponds to merging nodes, which may make the accepted language more general.

Model splitting starts from a general language and the learning algorithm searches for a
language that is more specific, given the example sequences. To allow the algorithm to de-
scribe more specific languages, the existing model may need to be split to indicate sequences
that are part of the language or not. According to Starkie (2002, p. 4): “[the grammar] can
be improved by simply removing those rules that generate the negative examples.” How-
ever, this can also be achieved by giving preference to highly likely structures in the model
(and pruning unlikely structures).

The ideas on model merging and model splitting are illustrated in Figure 1. The curved
lines indicate the learning process for both model merging and model splitting within the
space of possible languages (delimited by the pre-defined bias of the search algorithm).

If algorithms “overshoot” their mark, model merging algorithms will over generate
(meaning that too many sequences are accepted as valid), whereas model splitting algo-
rithms under generate (meaning that too few sequences are accepted as valid).

Many CFG learning algorithms consist of two phases. The first phase generates potential
structures and the second phase prunes unwanted structures. The generation phase is
typically in the form of a model merging algorithm. The selection phase performs model
splitting, starting from the end point of the generation phase.

225

van Zaanen van Noord

If the generation phase over generates, the selection phase has to prune more unwanted
structure to reach the correct underlying language. More over generation means that more
potential languages may still be considered during the selection phrase. On the other hand,
if the generation phase does not generate enough structure, the selection phase cannot reach
the correct language and this may only lead to an approximation.

The difficulty of the selection phase increases as the generation phase over generates
more. However, increasing the amount of over generation increases the likelihood that the
correct language is still reachable during the selection phase. Hence, reducing the amount
of over generation makes sense if we know that the correct grammar is still likely to be
reachable. This increases the complexity of the generation phase.

In this article, we will investigate the impact of the choice of the generation model (and
hence the amount of over or under generation) with respect to the optimal result that can
still be reached given a perfect selection phase.

2. Background

In the last two decades, several empirical grammatical inference systems that aim to learn
CFGs have been developed. Even though most of these systems rely on the same underlying
principle, namely that of substitutability, there are remarkable differences. In this section
we will discuss some of the better known systems and describe their approach in the context
of model merging and model splitting.

2.1. EMILE

EMILE is a grammatical inference approach developed by Adriaans (1992). A working im-
plementation is also available (Vervoort, 2000; Adriaans and Vervoort, 2002). EMILE relies
heavily on the notion of substitutability. Examples sequence are converted in recurring ex-
pressions and contexts. Expressions are subsequences that occur within particular contexts.
When different expressions are found in the same context, this corresponds to constituents
according to the notion of substitutability. EMILE introduces grammar rules once enough
evidence is available. Exactly when new rules are introduced can be adjusted (using pa-
rameters). Additionally, if an expression is identified as the right hand side of a grammar
rule, all occurrences of this expression in the data collection are structured according to
that rule.

This approach is a clear model merging approach. At first, only the example sentences
are recognized as valid. The system searches for recurring patterns and based on these
patterns, grammar rules are introduced that allow for generalization.

2.2. ADIOS

ADIOS (Edelman et al., 2004; Solan et al., 2005) stands for “Automatic Distillation of
Structure”. This systems also makes direct use of the idea of substitutability, although the
implementation is quite different from that of EMILE. To start with, a graph, quite similar
to a finite state machine, is created with a common start and end node. Each example
sequence forms a path from the start to the end node. Next, the learning phase starts.
ADIOS searches for significant patterns, where significance is computed using the Motif

226

Model Merging vs. Model Splitting CFG Induction

Extraction (MEX) procedure. This procedure considers the in and out degrees of the node
in the graph. In other words, MEX computes PL for a sub-path (ej ; ei) (with ex being a
node and (ex; ey) being a path from node ex to ey), which is the fraction of the number
of sub-paths (ej ; ei) over the number of sub-paths (ej ; ei+1). The algorithm searches for
nodes for which there are large decreases in PL between consecutive nodes in the graph.
Similarly, PR is computed by dividing the number of sub-paths (ei; ej) and (ei; ej−1). PL

and PR essentially model a Markov probability over sub-paths in a graph. The nodes with
large PL and PR changes are used as start and end points for a pattern. Since the begin
and end points of these patterns are found by taking the left and right context into account,
the patterns are inherently based on the notion of substitutability.

Like EMILE, ADIOS is a model merging approach. Starting from the sample sequences,
slowly the grammar is generalized. The main difference with EMILE is the way the patterns
are found. Here, the MEX procedure identifies the start and end points of the interesting
patterns.

2.3. CCM

The Constituent-Context Model (CCM) (Klein and Manning, 2002) is an empirical gram-
matical inference model based on classic linguistic constituency tests (Radford, 1988), which
corresponds with the notion of substitutability. The focus of the algorithm lies on param-
eter searching where the parameters describe the likelihood of structure on the sequences.
The first step of the algorithm places a uniform distribution of the set of possible binary
trees on the sequences.1 Next, the expectation maximization (EM) algorithm (Dempster
et al., 1977) is applied to the potential trees.

There are several differences between CCM and the previous systems. Firstly, CCM
works on sequences of part-of-speech tags, whereas EMILE, ADIOS and, discussed in Sec-
tion 2.5, ABL start from sequences of words. Secondly, the output of CCM is by choice a
collection of binary tree structures. The systems discussed so far are all able to generate
n-ary tree structures. Finally, CCM is a model splitting approach. It starts from all possible
(binary) tree structures and selects the best fitting structure. The notion of substitution is
used only in the selection of structure, not in the generation of structure.

2.4. U-DOP

U-DOP (Bod, 2006a,b) is an unsupervised approach that relies heavily on the statistical
model of Data-Oriented Parsing (DOP) (Bod, 1995, 1998; Bod et al., 2003). Similarly, to
CCM, all potential binary tree structures are generated. Next, the trees are converted into
a practically usable form of the DOP formalism. This allows for a statistically stronger
representation (even though the structural representation of U-DOP is equivalent to that
of CCM). Identifying the structure of a sequence can now be done by parsing the sequences
using the generated grammar. Since some symbols are more likely to occur in a subsequence,
some elementary sub-trees will be more likely. U-DOP makes use of this to give preference
to these structures.

1. This limits the potential structure of the output in the form of binary trees or grammar rules in Chomsky
Normal Form.

227

van Zaanen van Noord

The main difference between U-DOP and CCM is the statistical model used to identify
the most likely structure. Apart from that, U-DOP is in many ways similar to CCM. It also
starts from sequences of part-of-speech, it generates binary tree structures and it is also a
model splitting approach.

2.5. ABL

Alignment-Based Learning (ABL) (van Zaanen, 2000a,b, 2002) is another grammatical in-
ference system that is explicitly based on the notion of substitutability. The first phase
aligns sample sequences in pairs. Unequal parts of the sequences are stored as hypotheses,
or potential constituents. A second phase identifies the most likely of these hypotheses.
This step removes overlapping brackets (which makes sure the result is a tree structure).

ABL is similar to EMILE and ADIOS. The first phase in ABL is a model merging phase,
which starts from accepting only the sample sequences. Slowly, more structure is added,
which therefor generalizes over the training data. However, the second phase is a model
splitting step. This phase prunes the available structure, similarly to CCM and U-DOP.

In van Zaanen (2002), ABL is proposed as a general framework. All systems described
so far fit this framework. The first step in the framework generates potential structure.
In the case of EMILE and ADIOS, the introduction of structure is done carefully, whereas
U-DOP and CCM over generate. The second step prunes the introduced structure. In
EMILE and ADIOS, this step is not explicitly required. However, U-DOP and CCM rely
heavily on this step.

3. Experiments

As described in the previous section, we can map existing grammatical inference systems
into the ABL framework. This allows us to investigate the effectiveness of the generation
and selection (or model merging and model splitting) steps of the algorithms in a common
framework. In this paper we focus on the effectiveness of the generation phase only.

In this section, we will describe experimental results that aim to measure the effective-
ness and potential of the generation step in the ABL framework. We do this by comparing
a selection of generation algorithms that have been used in previous work.

3.1. Datasets

We will investigate the effectiveness of the generation phase by applying different generation
methods to natural language data collections. In particular, we will use the Air Travel
Information System (ATIS) and Wall Street Journal (WSJ) sections of the Penn Treebank
3 (Marcus et al., 1993). The ATIS section contains 578 sentences on air travel. These are
relatively short sentences, with an average length of 7.5 (sd=3.9) words.

A more extensive collection is the WSJ part of the Penn Treebank. We follow Klein and
Manning (2002); Bod (2006a) by selecting all sentences in the corpus of at most ten words
(discarding traces and punctuation). This results in a collection of 7,092 sentences with an
average length of 7.0 (sd=2.5) words. We will call this subset WSJ10.

In addition to the results on the WSJ10 collection we are also interested in the effects
when larger datasets are used. As a comparison, we use a second selection of the entire WSJ

228

Model Merging vs. Model Splitting CFG Induction

part of the Penn Treebank consisting of all sentences of at most 20 words (again discarding
traces and punctuation). This results in a second WSJ collection (WSJ20), which contains
25,017 sentences with an average length of 13.2 (std=4.8) words.

All results presented here are computed using 10-fold cross validation. The entire dataset
is divided into ten folds. Each fold is used as testing data once and the remaining nine folds
are used for training.

3.2. Metrics

Before we can show the actual results on the datasets, there are several choices that have
to be made. Firstly, we have to decide exactly what structure to use when computing
metrics. Obviously, the learned structure should be evaluated, which is done by comparing
it against a gold standard structure. However, some structure is “trivial”. For instance,
structure that indicates that a sequence is a sequence (shown by a pair of brackets around
the entire sequence) is trivial. Similarly, brackets around single symbols are trivial and
empty structure (brackets that do not span any word) may also be considered trivial.

We have analyzed the impact of trivial structure on the results. There are significant
(p < .001) differences between removing word or sentence spanning brackets or both. Even
though removing empty brackets (such as traces, that do not span any words) does not
have a significant impact, single word spanning brackets or sentence spanning brackets do
influence the results significantly.

Given that adding sentence spanning and word spanning brackets can be inserted triv-
ially, these structures do not add to the knowledge of the language and as such should not
be taken into account during the evaluation. All results shown in this article are based
on data without trivial structure. The choice of removing all trivial structure (compared
against keeping all structure) leads to significantly lower scores.

Secondly, we need to choose metrics to show the results of the different systems. Fol-
lowing most publications in the area of grammatical inference on natural language data, we
will be using precision, recall and f-score metrics as introduced by van Zaanen and Adri-
aans (2001). These are standard metrics taking from the field of information retrieval (van
Rijsbergen, 1979). Precision describes the correctness of the induced structure, whereas re-
call measures the completeness of the learned structure. The f-score is the geometric mean
between precision and recall. The metrics are formally defined as:

Precision =

∑
s∈structure |correct(gold(s), learned(s))|∑

s∈structure |learned(s)|

Recall =

∑
s∈structure |correct(gold(s), learned(s))|∑

s∈structure |gold(s)|

F-score = 2 ∗ Precision ∗ Recall

Precision + Recall

Two versions of these metrics exist: micro and macro averaged. We have analyzed the
impact of both versions on the results. As could be expected, there are significant differences
(p < .001) between the different variants. Since the different metrics are significantly

229

van Zaanen van Noord

different, the choice of metrics is important. Here, we show micro averaged performance
measures. Choosing the micro averaged metrics leads to significantly lower scores.2

Finally, to get a complete image, we have looked at the metrics themselves. We found
significant differences (p < .001) between precision and recall. Also, the f-score is statisti-
cally significantly different (p < .001) from precision and recall. This indicates that as the
f-score is the geometric mean of precision and recall, the f-score is in between the precision
and recall values and the values are relatively distant from each other.

3.3. Systems

In this article we report on the results for seven different alignment systems on the different
treebanks. The different systems can be grouped into three classes. The first class contains
systems that generate structure in a simple heuristic way. This class contains the systems:
left, right, and both, which generate left branching (from the start non-terminal, only the
left-most non-terminals are expanded), right branching (only the right-most non-terminals
are expanded), and a random choice between either the left or right branching tree structure
on a given sentence, respectively.

The second group comes from the original ABL system. The different systems find the
longest common subsequences in two sentences. These subsequences are equal parts in both
sentences and the remainder of the sentences are the unequal parts. The unequal parts in
both sentences are stored as hypotheses, or potential constituents.

All systems in this group are based on the dynamic programming edit distance (Wagner
and Fischer, 1974) algorithm. The differences lie in how ambiguity of alignments is han-
dled. Sometimes, there are multiple possible edit transcripts that lead to the same minimal
edit distance. The first system, wm, which stands for “Wagner Fisher minimal edit dis-
tance”, identifies a minimal edit distance alignment and introduces structure based on that
alignment. The second system, wb, which stands for “Wagner Fisher biased edit distance”,
has a modified cost function, which prefers alignments of words that are relatively “close
together” in both sentences. The third system in this group is called all. It uses all possible
alignments with the minimal edit distance. This introduces more potential structure.

The third group consists of only one system, which is called binary. This system corre-
sponds to the structure generation system used in U-DOP and CCM. All possible binary
tree structures are generated for a sentence. This comes down to generating all possible
pairs of brackets.

3.4. Results

We have applied all seven systems to the ATIS treebank. The structure generated by the
systems was then compared against the gold standard treebank structure. The results of
this comparison can be found in Table 1. In addition to the precision, recall and f-score
results, we have added a column that shows the number of pairs of brackets that have been
introduced by each system.

The results on the ATIS dataset show that English is generally a right branching lan-
guage. The right system outperforms all other systems on precision and f-score. In par-

2. We follow Klein (2004) in the choice of metrics, but exclude sentence spanning brackets.

230

Model Merging vs. Model Splitting CFG Induction

Table 1: Results on the ATIS dataset for a variety of alignment systems.
Alignment Precision Recall F-score # Brackets

left 6.82 9.90 8.08 3,209
right 27.49 39.86 32.53 3,209
both 17.54 25.44 20.77 3,209

wb 16.82 55.31 25.79 7,278
wm 16.41 57.34 25.52 7,731
all 15.53 61.00 24.76 8,693

binary 12.25 100.00 21.83 18,066

Table 2: Results on the WSJ10 dataset for a variety of alignment systems.
Alignment Precision Recall F-score # Brackets

left 11.96 16.21 13.77 35,596
right 45.47 61.63 52.33 35,596
both 28.76 38.98 33.10 35,596

wb 28.11 52.73 36.67 49,279
wm 24.36 76.37 36.94 82,352
all 23.94 77.02 36.52 84,512

binary 15.99 100.00 27.57 164,288

ticular, right has the highest precision of all systems under consideration. In contrast, left
performs worst.

The ABL oriented systems outperform the systems in the first group on recall, which
indicates that more brackets in the gold standard dataset are found. This is (at least
partially) accomplished by introducing more pairs of brackets (as can be seen in the right-
most column). Because the precision metric is lower than that of the right system, the
f-score of the ABL systems is still lower.

Finally, the binary system has a perfect recall result. This is because all possible pairs
of brackets are introduced. As a result all structure found in the gold standard is also to
be found in the binary structure. Since the binary system introduces more brackets (about
two and a half times as much as the ABL systems and about six times as much as the
systems in the first group), the precision is lower.

The results on the WSJ10 dataset can be found in Table 2. These results are very
similar to those on the ATIS dataset. Again, the right system performs best. The wm and
all systems are a bit more effective on the recall metric, which means that more (correct)
brackets identified. Additionally, the ABL systems outperform the binary system on pre-
cision, which means that those systems introduce fewer incorrect brackets. Obviously, the
binary system again shows a perfect recall as all possible brackets are introduced.

Comparing the WSJ10 results in Table 2 against those of WSJ20 in Table 3, we see
that the results of the first group of systems goes down. This is the case on all metrics, so
not only are fewer introduced brackets correct (indicated by precision), also fewer correct
brackets are found (indicated by recall). The binary system keeps a perfect recall, but as can
be seen by the precision metric, a larger proportion of the introduced brackets is incorrect.

231

van Zaanen van Noord

Table 3: Results on the WSJ20 dataset for a variety of alignment systems.
Alignment Precision Recall F-score Brackets

left 7.68 10.50 8.87 280,927
right 35.91 49.09 41.48 280,927
both 21.83 29.84 25.21 280,927

wb 13.76 75.88 23.29 1,133,423
wm 13.26 80.04 22.75 1,240,195
all 12.48 82.19 21.67 1,353,621

binary 9.00 100.00 16.52 2,282,623

Sentence length

S
co

re

20

40

60

80

100

10 20 30 40 50

F−score

10 20 30 40 50

Precision

10 20 30 40 50

Recall

wm
right
left
binary

Figure 2: F-score, precision and recall results on subsets of WSJ dataset (the x-axes indicate
the maximum sentence length of the subset) for a variety of alignment systems.

In contrast, the ABL metrics have a higher recall, which means that relatively more of the
brackets in the gold standard are found. However, similarly to the binary system, more
incorrect brackets are introduced.

The total number of brackets introduced also grows when the sentences get longer. This
is most obvious in the binary system that introduces all possible pairs of brackets, but also
the ABL systems introduce relatively more brackets when compared against the systems in
the first group, which never introduce pairs of brackets that overlap.

The fact that the recall results of the ABL systems increase when they are applied to
larger data collections (whereas the systems in the first group have lower results), has led
us to investigate the changing of the results when the size of the dataset is modified. In
Figure 2 we show the precision, recall and f-score results of the right, left, wm, and binary

232

Model Merging vs. Model Splitting CFG Induction

systems. We have decided to leave out the both, wb and all systems, which would otherwise
clutter the figure. The trend of those systems is similar to other systems in their group.

In the figure, we can see that the recall of the systems in the first group goes down when
the dataset contains more, and longer sentences. The recall of the wm system increases,
but seems to level off. The recall of the binary system remains at 100%.

The precision of the right system peaks when the sentence length is six. For the left
system, the peak is at sentence length four. The binary system has a precision peak when
the sentences are of length four and the wm system has the highest precision when the
sentence length is three. We do not currently know exactly why these differences occur.

The impact of the peaks in precision are also seen in the f-score results. However, due
to the increase in recall for the wm system, the peak in f-score is at sentence length five.

3.5. Discussion

The results show that the three different groups of systems (based on left/right branching
structure, taken from the ABL system, or generating all possible structure) all lead to quite
different behavior. The binary system always has perfect recall, whereas the right system,
which has the highest f-score, has decreasing recall when the dataset gets larger. The wm
system has increasing recall, but it seems that this approach will not lead to perfect recall
even with larger datasets.

Recall is an important metric in the overall picture of the systems. The ABL framework
consists of two phases, of which we are only analyzing the first here. The second phase
selects structure from the structure generated in the first phase. This means that the recall
of the complete system cannot be higher than the recall of the first phase. The second phase
can only increase precision.

Relating the results to the model merging versus model splitting division, we see that
the model merging systems (wm, wb, and all) are incremental learners that perform better
with more training data. In contrast, the different model splitting systems (left, right, and
binary) essentially show comparable behavior. Removing more structure leads to worse
results. Binary removes least structure, followed by right and left.

The importance of recall indicates that the binary system is, out of the investigated
systems, best suited for this task. Originally, we expected that the ABL-based systems,
which are all model merging approaches, would lead to higher recall (close to perfect) if the
datasets got larger as well as precision. It turns out that even though precision is higher,
recall remains lower, compared to the binary system. ABL-based systems are less suited
for the task. This is in addition to the limitations on the upper bound of the approach as
discussed in Luque and Infante-Lopez (2010).

However, there is more to the results than simply looking at recall. Introducing more
structure during the first phase makes selecting the correct structure in the second phase
harder. Consider the extremes, if the first phase only introduces correct structure, the
second phase can simply select all structure. However, if the first phase introduces many
incorrect structures, the second phase has a hard time selecting the correct brackets. The
actual impact of this problem cannot really be seen from the results discussed here. The
right-most column in the tables indicate that even though the binary system has a perfect

233

van Zaanen van Noord

recall, about twice the amount of structure, compared against the ABL-based systems, is
introduced.

Initial experiments investigating the impact of the generation method indicate that,
indeed the structure of the binary generation system leads to better overall results after
the selection phase. However, further research into the effectiveness of different selection
learning systems will need to be performed.

4. Conclusion

We have analyzed seven systems that introduce structure to be used in the first phase of
the generic ABL framework for learning of CFGs. The systems were grouped based on their
approach: simple systems that introduce left or right branching structures, systems based
on alignment learning, and a system that introduces all possible structure.

The model splitting systems perform worse with more data, whereas the model merging
systems increase performance. The model merging alignment-based systems outperform
the simple systems, but they are unable to reach perfect recall, even with larger datasets.
The system that generates all structure leads to perfect recall. Even though more research
has to be done on the effect of the amount of structure that is generated by these systems,
these results serve as an indication that systems such as U-DOP and CCM can reach better
results than ABL, which is based on a sub-optimal structure generation approach.

References

P. Adriaans and M. Vervoort. The Emile 4.1 grammar induction toolbox. In Adriaans
et al. (2002), pages 293–295.

Pieter Adriaans, Henning Fernau, and Menno van Zaanen, editors. Grammatical Inference:
Algorithms and Applications (ICGI); Amsterdam, the Netherlands, volume 2482 of Lec-
ture Notes in AI, Berlin Heidelberg, Germany, September 23–25 2002. Springer-Verlag.

Pieter W. Adriaans and Menno M. van Zaanen. Computational grammatical inference.
In Dawn E. Holmes and Lakhmi C. Jain, editors, Innovations in Machine Learning,
volume 194 of Studies in Fuzziness and Soft Computing, chapter 7. Springer-Verlag, Berlin
Heidelberg, Germany, 2006. ISBN 3-540-30609-9.

Pieter Willem Adriaans. Language Learning from a Categorial Perspective. PhD thesis,
University of Amsterdam, Amsterdam, the Netherlands, November 1992.

Anja Belz. Pcfg learning by nonterminal partition search. In Adriaans et al. (2002), pages
304–308.

Rens Bod. Enriching Linguistics with Statistics: Performance Models of Natural Language.
PhD thesis, University of Amsterdam, Amsterdam, the Netherlands, September 1995.

Rens Bod. Beyond Grammar—An Experience-Based Theory of Language, volume 88 of
CSLI Lecture Notes. Center for Study of Language and Information (CSLI) Publications,
Stanford:CA, USA, 1998.

234

Model Merging vs. Model Splitting CFG Induction

Rens Bod. Unsupervised parsing with u-dop. In CoNLL-X ’06: Proceedings of the Tenth
Conference on Computational Natural Language Learning, pages 85–92, Morristown, NJ,
USA, 2006a. Association for Computational Linguistics.

Rens Bod. An all-subtrees approach to unsupervised parsing. In Proceedings of the 21st In-
ternational Conference on Computational Linguistics (COLING) and 44th Annual Meet-
ing of the Association of Computational Linguistics (ACL); Sydney, Australia, pages
865–872. Association for Computational Linguistics, 2006b.

Rens Bod, Khalil Sima’an, and Remko Scha, editors. Data Oriented Parsing. Center for
Study of Language and Information (CSLI) Publications, Stanford:CA, USA, 2003. ISBN:
1-57586-435-5.

Rafael Carrasco and Jose Oncina. Learning stochastic regular grammars by means of a
state merging method. In ICGI, pages 139–152.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

Shimon Edelman, Zach Solan, Eytan Ruppin, and David Horn. Learning syntactic con-
structions from raw corpora. In Proceedings of the 29th Boston University Conference on
Language Development, Boston:MA, USA, 2004.

ICGI. Proceedings of the Second International Conference on Grammar Inference and Ap-
plications; Alicante, Spain, 1994.

Dan Klein. Corpus-based induction of syntactic structure: Models of dependency and
constituency. In 42th Annual Meeting of the Association for Computational Linguistics;
Barcelona, Spain, pages 479–486, 2004.

Dan Klein and Christopher D. Manning. A generative constituent-context model for im-
proved grammar induction. In 40th Annual Meeting of the Association for Computational
Linguistics; Philadelphia:PA, USA, pages 128–135. Association for Computational Lin-
guistics, July 2002.

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Abbadingo
One DFA learning competition and a new evidence-driven state merging algorithm. In
V. Honavar and G. Slutzki, editors, Proceedings of the Fourth International Conference on
Grammar Inference, volume 1433 of Lecture Notes in AI, pages 1–12, Berlin Heidelberg,
Germany, 1998. Springer-Verlag.

Franco Luque and Gabriel Infante-Lopez. Bounding the maximal parsing performance of
non-terminally separated grammars. In José Sempere and Pedro Garćıa, editors, Gram-
matical Inference: Theoretical Results and Applications; Valencia, Spain, number 6339 in
Lecture Notes in AI, pages 135–147, Berlin Heidelberg, Germany, 2010. Springer-Verlag.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–
330, 1993.

235

van Zaanen van Noord

A. Radford. Transformational grammar: A first course. Cambridge University Press,
Cambridge, UK, 1988.

Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsupervised learning of
natural languages. Proceedings of the National Academy of Sciences of the United States
of America, 102(33):11629–11634, August 2005.

Bradford Starkie. Inferring attribute grammars with structured data for natural language
processing. In Adriaans et al. (2002), pages 237–248.

Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by bayesian
model merging. In ICGI, pages 106–118.

C. J. van Rijsbergen. Information Retrieval. University of Glasgow, Glasgow, UK, 2nd
edition, 1979. Printout.

M. van Zaanen and C. de la Higuera. Computational language learning. In Johan van
Benthem and Alice ter Meulen, editors, Handbook of Logic and Language, pages 765–780.
pub-elsevier, pub-elsevier-adr, 2nd edition edition, 2011.

Menno van Zaanen. ABL: Alignment-Based Learning. In Proceedings of the 18th Inter-
national Conference on Computational Linguistics (COLING); Saarbrücken, Germany,
pages 961–967. Association for Computational Linguistics, July 31–August 4 2000a.

Menno van Zaanen. Bootstrapping syntax and recursion using Alignment-Based Learn-
ing. In Pat Langley, editor, Proceedings of the Seventeenth International Conference on
Machine Learning; Stanford:CA, USA, pages 1063–1070, June 29–July 2 2000b.

Menno van Zaanen. Bootstrapping Structure into Language: Alignment-Based Learning.
PhD thesis, University of Leeds, Leeds, UK, January 2002.

Menno van Zaanen and Pieter Adriaans. Alignment-Based Learning versus EMILE: A
comparison. In Proceedings of the Belgian-Dutch Conference on Artificial Intelligence
(BNAIC); Amsterdam, the Netherlands, pages 315–322, October 2001.

Marco R. Vervoort. Games, Walks and Grammars. PhD thesis, University of Amsterdam,
Amsterdam, the Netherlands, September 2000.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the Association for Computing Machinery, 21(1):168–173, 1974.

236

	Introduction
	Background
	EMILE
	ADIOS
	CCM
	U-DOP
	ABL

	Experiments
	Datasets
	Metrics
	Systems
	Results
	Discussion

	Conclusion

